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Abstract: An alternative control strategy for nonlinear processes which is an integration between the 
generalized predictive control and wavelet network (wavenet) approach is proposed in this paper. The 
wavenet is used for modeling the process as it has learning capability from the numerical data obtained 
from the measurements and subsequently used as process model in the generalized predictive control 
scheme. The process model is represented in a Nonlinear AutoRegressive with eXogeneous variables 
(NARX) model. The modeling process is implemented on-line at each control action and this allows the 
control to be done adaptively. The proposed adaptive control scheme with its wavenet based modeling is 
applied to control an ammonia stripper which is basically an aqueous ammonia binary distillation column of a 
fertilizer plant in Gresik, East Java, Indonesia. The results show how the proposed control scheme has 
satisfactorily tracking capability as well as performance with respect to changes in process dynamics.  

 
1. INTRODUCTION 

Generalized Predictive Control (GPC), which is considered 
as universal method for model-based predictive control, is 
proven to be successful in handling various kind of processes 
and has also been successfully applied in various industries. 
GPC can be used either to control a simple plant with little 
prior knowledge or a complex plant such as non-minimum 
phase, open-loop unstable and a process having variable 
dead-time (see e.g. Clark et al., 1987, Garcia et al., 1989, 
Rawlings, 2000). A very critical step toward the success of 
the implementation of GPC is the availability of a reliable 
process model as an accurate plant model is necessary to 
derive a set of future plant output close to its corresponding 
reference signal sequence. As most processes in industry 
have nonlinear behavior, then the modeling process is even 
more difficult (Nazaruddin and  Sudarto, 2007). 

Nowadays, the application of neural network can be found in 
many areas, such as signal processing, pattern recognition 
and system identification (Pham and Liu, 1995). The main 
advantage of the neural network is its capability for the self-
learning from the previous data. The neural network can be 
used as function for nonlinear tool fitting to develop a model 
from input-output data or to provide mapping between input 
and output space. However, there are some difficulties in 
implementing the neural network i.e. in the mathematical 
analysis and construction methods where the network 
representation is not single so that its use is inefficient, 
network convergence is not guaranteed, or the training 
procedure depends on the initial condition, and possibility to 
be trapped into local minima. Besides, the setting of the 
network structure (number of layers and neuron in each layer) 
is difficult due to unavailability of supporting theory and 
uneasiness in the network initialization which usually 
randomly chosen. The shortcoming of neural network 
approach has initiated an alternative idea to develop a new 

approach which is an integration between wavelet theory and 
neural network (wavelet network or wavenet) where the 
activation function sigmoid is replaced by wavelet basis 
function localized in space and frequency domain (Zhang and 
Benveniste, 1992). Wavenet itself is a feedforward neural 
network using wavelet basis function as an activation 
function where the wavenet parameters namely dilation, 
translation and weighting are optimized during the learning 
phase and the gradient method is used for the optimization of 
the parameters. 

In practice, to determine the number of neuron (wavelet in 
network) and the network initialization becomes the major 
problems. Good initialization of wavenet is of important to 
obtain faster convergence of the algorithm (Oussar and  
Dreyfus, 2000). This is the different and the advantages of 
the wavenet compared to neural network. Moreover, the task 
to determine the number of wavelet in the network is critical 
as it will reduce the model order. Here, the Final Prediction 
Error (FPE) method will be applied.  

In this paper, an alternative control strategy for nonlinear 
processes which is an integration between the generalized 
predictive control and wavelet network (wavenet) approach 
will be presented. The modeling will be performed based on a 
set of input-output data obtained from real-time 
measurements of an ammonia stripper which is basically an 
aqueous ammonia binary distillation column of a fertilizer 
plant in Gresik, East Java, Indonesia. The control strategy is 
then performed using the identified model.   
 

2.    PREDICTIVE CONTROL LAW 

Suppose that a future set-point or reference sequence 
[ ]L,2,1);( =+ jjtw  is available. In most cases )( jtw + will 
be constant w equal to current set-point )(tw , though 
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sometimes (as batch process control or robotic) future 
variations in )( jtw +  would be known. The objective of the 
predictive control law is then to derive the future plant 
outputs )( jty +  close to )( jtw +  in some sense, bearing in 
mind that the control activity required to do so. This is done 
using a receding-horizon approach for which at each sample-
instant t : 

(1). the future set-point sequence ( )jtw +  is calculated; 
(2). the prediction model is used to generate a set of 

predicted outputs ( )tjty |ˆ +  with corresponding 
predicted errors ( ) ( ) )|(ˆ tjtyjtwjte +−+=+ , by 

noting that ( )tjty |ˆ +  for j>k depends in part on the 
future control signals ( )tjtu |+  which are to be 
determined; 

(3). an appropriate quadratic function of the future error 
and control is minimized, provide a suggested 
sequence of future controls  ( )tjtu |+ ; 

 
The quadratic function, also known as the cost function, is 
defined as     

( ) ( )[ ] ( ) ( )[ ]∑∑
==

−+∆++−+=
UN

J

N

Nj

jtujjtwjtyJ
1

22 1ˆ
2

1

λ           (1) 

where 2N , 1N , uN and )( jλ  is the horizon 
maximum ( )21 N≤ , the horizon minimum ( )211 NN ≤≤ , the 
control horizon ( )21 NNu ≤≤  and a control-weighting 
sequence, respectively. 

3.  WAVENET BASED MODELING  

A. Identification Using Wavenet 

In the last few years, several methods have been elaborated 
for the identification of linear/nonlinear systems using neural 
network approach. The identification procedure is based on a 
set of input-output data of experiments so that a sequence of 
training data ),( n

m
n yx  can be developed, where 

},,,{ 21
n
Ni

nnn xxxx K= is input and n
my  is output vector. The 

main problem of identification is to obtain the relation 
between previous data input ],[ 11 −− tt yx and the output )(ty , 
which can be written as 

)(),()( 11 teyxfty tt += −−                                                     (2) 
where e(t) is noise signal which means that the output )(ty is 
not exact with the previous output. Assuming that the 
function f can be written as  

)),((),,( 11 θϕθ tfyxf tt =−−                                         (3) 
where  

T
ba ntxtxntytyt )]()1()()1([)( −−−−= LLϕ    (4) 

with ba nnd +=  and dRt ∈)(ϕ . Using a sequence of 
observation data as training data, which is written as  

{ }NkttyZ N ,...2,1),(),( == ϕ                         (5) 
then the following relation can be established  

)),((ˆ)(ˆ θϕ tfty N=                                                                 (6) 

where Nf̂  is an unknown nonlinear function. In fact, the 

model ))((ˆ tf N ϕ  can be determined using several methods. 

As a possible approximation, the nonlinear function Nf̂  can 
be written as an expansion of basis function, which takes the 
form 

( )θϕ ),(ˆ tf N ∑
=

=
K

k
kk hw

1

)(ϕ                                                    (7) 

where kh  is a basis function. An example of local basis 
function is a wavelet basis function. Also, nonlinear function 

Nf̂  will be determined using wavenet (wavelet network) 
approach, where θ is wavenet parameter 

B. Wavelet Function and Network (Wavenet) 

The term wavelet means a little wave, which has a minimum 
oscillation and a fast decay to zero, in both the positive and 
negative directions, of its amplitude. This property is 
analogous to an admissibility condition of a function that is 
required for the wavelet transform. To approximate a signal, 
then sets of wavelets are used. The objective is then to find a 
set of daughter wavelets, which are  generated by a dilated 
(scaled or compressed) and translated (shifted) original 
wavelets or mother wavelets. 

The wavelet theory has an associated transform, i.e. it is an 
operation that transforms a function by integrating it with 
modified version of some kernel function called mother 
wavelet and the modified version is called daughter wavelet. 
A function which performs as mother wavelet must be 
admissible. For a given function )(th , the admissibility 
condition for wavelet function is 

∫
+∞

∞−

= 0)( dtth                                                                           (8) 

The wavelet transform of a function )(2 RLf ∈  with respect 
to a given admissible mother wavelet )(th  is defined as 

∫
+∞

∞−

= dtthtfbaW baf )()(),( ,
*                                                   (9) 

where * denotes the complex conjugate, although most 
wavelets are real. The daughter wavelets are constructed from 
single mother wavelet h(t) by dilation and translation, or   







 −

=
a

bth
a

th ba
1)(,                                                         (10)    

where 0>a  and b is the dilation and translation factor, 
respectively.  

Wavelet function can be classified in 2 categories, i.e. 
orthogonal wavelet and wavelet frame. An orthogonal 
wavelet is a wavelet where the associated wavelet transform 
is orthogonal. Wavelet frame is constructed from simple 
operation of translation and dilation of mother wavelet 
function. Efficient nonlinear identification can be 
implemented if the wavelet family constitutes a frame 
(Zhang, 1997). A wavelet function of type POLYnomials 
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WindOwed with Gaussian (POLYWOG) is applied in this 
work, which is a derivative of a Gaussian function and 
satisfies the admissible condition of mother wavelet. 

C.  Determination of the Number of Wavelet 

To obtain a wavenet model of minimal order is an important 
task. For this purpose, a part of the model data is used to 
approximate the model order. There are several methods 
which are commonly used, and one of an ordinary method to 
determine the number of wavelet is Akaike Final Prediction 
Error (FPE), which has been implemented (Nazaruddin and 
Yuliati, 2006). FPE will minimize the following equation  

( )∑
=

−
−
+

=
n

n
nn

d

d
FPE yxf

nnn
nn

fJ
1

2
)(ˆ

2
1

/1
/1

)ˆ(                         (11) 

where dn  is the number of parameter in the estimator and d 
is input dimension. For wavelet network, then the number of 
parameters is 

)2( += dKnd                                                                    (12) 
where K is the number of wavelet in the network. In (12), 
number of parameters in the network is weight, dilation and 
translation. 
 
D.  Wavenet Algorithm 

To approximate an arbitrarily nonlinear function, there are 
two processes in the algorithm for neural network adaptive 
wavelet namely network construction and error minimization. 
A wavelet network (wavenet) as a class of feedforward neural 
network with wavelet as an activation function was 
introduced in (Zhang and Benveniste, 1992). 

 
                           
 
 
     
  
      
      
    
 
 
 
 
 
Fig. 1.  Serial-parallel wavenet model for system identification. 
 
It seems that there is similarity between the inverse of 
discrete wavelet transformation with a single hidden layer in 
the neural network. Using Nonlinear AutoRegressive with 
eXogenous (NARX) structure as a model approximation, 
then the configuration of the network which is used for 
systems identification is wavenet serial-parallel model, which 
structure is shown in Fig. 1.  

The wavenet architecture approximates a signal y(t) with 
linear combination of a set of daughter wavelet (10) which is 
formed with dilation a and translation b of the mother 
wavelet. Assuming that the output function of the network 
satisfies the admissibility condition and the network could 
approximate the target, i.e. time-frequency region which is 
effectively covered by their K windows, then the approximate 
signal of the network )(ˆ ty can be written as  

∑
=

=
K

k
bak thwtuty

kk
1

, )()()(ˆ                                                     (13) 

with K is the number of wavelet and kw is the weight  
coefficient. Fig. 2 illustrates the structure of adaptive wavelet 
network (Lekutai, 1997). 
 
 
    
  
 
 
  
 
 
Fig. 2.  Structure of adaptive wavelet network 

 
The neural network parameters kkk abw ,, can be optimized 
using Least Mean Square (LMS) by minimizing the cost 
function as a function of energy at time t, with 
 )(ˆ)()( tytyte −=                                                                (14) 
denotes the error as time variant function, where y(t) is the 
expected output/target. The objective function is defined as 

∑
=

=
T

t

teE
1

2 )(
2
1                                                                   (15) 

and to minimize E, the steepest descent method is applied, 

which needs the gradient 
kkk b

E
a
E

w
E

∂
∂

∂
∂

∂
∂ ,, to update the 

parameters kkk abw ,, for each wavelet, where the gradient of 
E to each network parameter is given by equations 
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where  

k

k

a
bt −

=τ                                                    (19) 

Consequently, each coefficient w, b, a of the network is 
updated using the following relation  

−−−
∆+=+ wnwnw wµ)()1(                                                     (20) 

−−−
∆+=+ bnbnb bµ)()1(                                                        (21) 

 
 
 
Wavelet 
Network 

z-1 

M

-

Dynamic 
System 

Learning 

z-1 

z-1 

z-1 

u ym 

+ e 








 −

1

1

a
bth  

)(ˆ ty








 −

k

k

a
bt

h  

M
u(t) +

w1

wk

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10900



 
 

     

 

−−−
∆+=+ anana aµ)()1(                                                       (22) 

where µ is the learning rate. 

4.  FORMULATION OF CONTROL SCHEME 

The main idea of the proposed control algorithm is to apply 
predictive control strategy using nonlinear process model, 
which is obtained from wavenet based modeling approach. 
Modeling process is done at each control action, and 
consequently this allows the control to be done adaptively. 
The basic structure of the proposed control scheme can be 
seen in Figure 3. The whole algorithm can be broken up into 
two main steps, modelling and control. These two steps are 
explained below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  The generalized predictive adaptive control scheme 
with wavenet based modelling  

 
The process model will be represented in a NARX model 
which is in the form  

( ) )()(,),1(),(,),1()( tendtudtuntytyFty +−−−−−−= LL

(23) 

Here y(t) and u(t) are the sampled process output and input at 
time instant t respectively, e(t) is the equation error, n denotes 
the order of the process, d represents the process dead time as 
an integer number of samples and F(.) is an unknown 
nonlinear function to be identified. With modeling process 
using wavenet approach, the function F(.) is obtained, so that 
the following relation is obtained  

( )LL ),1(),(,),1()(ˆ −−−= tuntytyFty                            (24) 

where ŷ  denotes the output prediction of wavenet based 
model. The model obtained is further used to predict the 
process outputs ( )1ˆ Nty + ,..., ( )2ˆ Nty +  when any sets of 
inputs ( )tu ,..., ( )UNtu +  is applied to process, where N1, N2, 
NU  are minimum, maximum and control horizon of the 
generalized predictive control scheme. Next, the task is to 
find a set of control signals that minimizes the cost function 
in eq. (1). This can be done by giving any arbitrary control 
signal to the process, then using the steepest descent method, 
the control signal will be calculated iteratively to find desired 
control signal. Mathematically it can be written as  

( ) ( ) ( )tu
Jtutu uii ∂

∂
−=

+

+ η1                                                     (25) 

where ηu is the learning rate. Then, using chain rule 
combined with backpropagation error method, the derivative 

of cost function  ( )tu
J

∂
∂ +

 is calculated. 

 
5. IMPLEMENTATION AND RESULTS 

5.1  Plant Description 

Ammonia stripper, a subsystem of ammonia plant plays an 
important role in the ammonia production, especially when 
the energy conservation is important. Basically, ammonia 
stripper is a binary distillation column. It separates the feed 
flow, namely aqueous ammonia into two products, ammonia 
(distillate) and water (bottom product). The feed flow comes 
from an ammonia scrubber, which has 14.1 %wt ammonia. 
For energy conservation reason, its bottom product is 
recycled back to the ammonia scrubber (Kellog,1992). 
However, there is a limitation that the maximum ammonia 
content in the bottom product shall be 0.14 %wt. Otherwise, 
significant problem in the next process, namely hydrogen 
recovery unit, will occur. From this point of view, the success 
of separation in the ammonia stripper plays an important role 
in the ammonia production. 

The ammonia stripper consists of a re-boiler, a condenser and 
a reflux accumulator. Presently, due to the oversized valve 
and other dynamic factors, the ammonia stripper is difficult 
to be controlled especially during start-up operation (IKPT, 
1992) Further, a multivariable distillation column presents a 
number of challenging problem both for system identification 
and control due to the nonlinear and ill-conditioned nature. 
These two characteristics cause difficulties in identification 
and control design of the distillation column. For that 
reasons, this work is concentrated on how to implement the 
adaptive predictive control of the ammonia stripper based on 
nonlinear identification technique, i.e. using wavenet based 
modeling. 

In the fertilizer plant, two inferential measurements of 
product concentrations, namely temperature measurement for 
top product composition, and a conductivity measurement for 
its bottom composition, have been installed. Because of any 
limitation and much complexity in the plant operation, data 
for system identification have been obtained from a number 
of single-input multi-output experiments. Only two control 
loops were considered for the implementation of control 
strategy including system identification, i.e. reflux loop and 
steam loop, as can be seen in Fig. 4. Due to the high risk of 
its plant operation, the reflux loop experiment has been done 
in a closed-loop manner, meanwhile another one in an open-
loop condition. 

In this investigation, implementation of control strategy is 
performed by assuming that the system is represented by 
Single Input Multi Output (SIMO) model. Data for plant 
modeling was obtained from valve opening of reflux flow as 
manipulated variable, and top product temperature as well as 
bottom conductivity as output. Meanwhile, steam flow to the 
boiler remained constant at 815Kg/H ± 0.5%. Data records 
were perfomed using sampling time of 1 minute due to the 
available facilities in the existing Distributed Control System 
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(DCS) in the plant. Because the control valve available in the 
system was calibrated and tested properly, it could be 
assumed that the control output value was directly related to 
the % valve opening position. 

 
Fig. 4.  Plant schematic 
 
In the experiment, 1000 data have been collected for each 
corresponding inputs and outputs. The first 500 data will be 
used for identification, and the rest for model validation. 
Prior to the modeling, those experiments data have been 
analyzed to verify any linear or nonlinear relationship and 
possibility of system time delay. Coherence test was used for 
every pair of input-output data and the results showed that 
almost all input-output relations indicated nonlinear 
behaviour. 

5.2  Identification Results and Validation 

For validation of the obtained models, beside a direct 
obeservation by comparing the plot of measured signals and 
the output of model based on the estimated parameters, a 
quantitative criteria of Root Mean Square Error (RMSE), 
defined as 

∑
=

−=
n

t

twty
n

RMSE
1

2))()((1                                           (25)           

where n is the number of data, was  used for a measure of a 
good model fitting 

For training process and modeling purpose, the equation of 
the estimator / identifier has been chosen as   

)),2(),1(),2(),1((ˆ θ−−−−Ψ= txtxtytyy pp                   ( 26) 

where x is a input network and θ  is the wavenet parameter 
i.e. weight, dilation, translation. The learning rate constant for 
each parameter network was chosen as 0.5 and the number of 
wavelet was equal to 11. The results of modeling using the 
first 500 data applying the obtained identified model for Top 
Product Temperature as a function of Reflux Flow, and its 
corresponding error, which is the different between identified 
model output and measured signal, using wavenet method are 
shown in Fig. 5. The result of RMSE value from the 
modeling was 8.491. 
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Fig. 5. (a). Validation result of the identified model using 
wavenet (Top Product Temperature vs. Reflux Flow) and (b). 
its corresponding error 
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Fig. 6. (a). Validation result of the identified model using 
wavenet (Bottom Conductivity vs. Reflux Flow) and (b). its 
corresponding error 
 
For the case of modeling the bottom conductivity as a 
function of valve opening of reflux flow, the number of 
wavelet was equal to 10. The results of modeling using the 
first 500 data applying the obtained identified model, and its 
corresponding error, is shown in Fig. 6. with the RMSE value 
was 0.406. Above results revealed that satisfactory model 
matching were obtained which means that the models have 
captured the real basic features of the nonlinear dynamics of 
the ammonia stripper unit 
 

5.2. Results of Control 

Experiments were conducted to observe the performance of 
the proposed control scheme with respect to the set-point 
changes and to plant dynamics changes, especially for the 
Top Product Temperature loop. Fig. 7 shows the results of 
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control implementation and its corresponding control signal. 
The output temperature of the ammonia stripper can track the 
set-point quite satisfactorily with RMSE value of 3.34. 
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Fig. 7.  (a). Response of top product temperature to the set-
point changes and (b). its corresponding control signal (% 
opening of the valve) using the adaptive predictive controller 
 
Parameters of predictive adaptive controller were set after 
extensive trial and error procedure, and give optimum results 
as follows : 

 Minimum horizon = N1 =1 
 Maximum horizon = N2 = 10 
 Control horizon = Nu  = 1 
 Control-weighting signal = = λ = 0.00001 
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Fig. 8.  (a). Response of top product temperature plant to 
sudden changes of plant process dynamics and (b). its 
corresponding control signal (% opening of the valve) using 
the adaptive predictive controller 
 

Objective of the next experiment was to observe the adaptive 
capability of the control strategy. For this purposes, several 
changes of process dynamic were applied to the process with 
a fixed set-point of top product temperature which was 71°C. 
This was done by changing the parameters of plant model 
from 5 to 20 percent.  Fig. 8 shows the results of control 
implementation and its corresponding control signal. As can 
be observed, the control scheme is capable to tracks the set-
points after several changes of process dynamics. 
 

6.  CONCLUSIONS 

Satisfactory control performance has been shown by the 
proposed adaptive predictive control strategy using wavenet 
based modeling, especially its application to the ammonia 
stripper, which is basically an aqueous ammonia binary 
distillation column of a fertilizer plant. This plant has 
nonlinear characteristics. Further application of the proposed 
control strategy using various methods of identification, 
especially for nonlinear processes in the ammonia plant is 
currently under study. 
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