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Abstract: Stability results for time-varying systems with output averaged using the norm are
established. The discrete-time linear system is considered under a bound on time-average on
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then under an additional limiting condition the system is uniformly asymptotically stable.
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1. INTRODUCTION

We denote respectively the real and natural numbers by
R and N, and the n–dimensional real Euclidean space by
R

n . The normed linear space of all n×m real matrices is
denoted by R

n,m. The superscript ′ indicates the transpose
of a matrix.

Consider a time-varying discrete linear system modeled by
the following evolution difference equation

S0 :

{

x(k + 1) = Akx(k) + Bkw(k),

y(k) = Ckx(k) + Dkw(k), k ≥ 0, x(0) = x0 ∈ R
n,

The sequences {x(k); k ≥ 0}, {w(k); k ≥ 0} and {y(k); k ≥
0} evolve respectively, in R

n, R
m and R

p and they rep-
resent the system state, input and output, in this order.
The sequence of matrices {Ak; k ≥ 0}, {Bk; k ≥ 0} and
{Ck; k ≥ 0} are composed by elements of the correspond-
ing dimensions R

n,n, R
n,m and R

p,n.

Many important properties about the system S0 can be
inferred by analysing the behavior of the following matrix
system:

X(k + 1) = AkX(k)A′
k + BkB′

k, (1)

Y (k) = CkX(k)C ′
k + DkD′

k, k ≥ 0, (2)

where X(0) = x0x
′
0. The difference equation (1) is known

as the state correlation evolution according to Davis and
Vinter [1985], and (2) is the corresponding output. Recur-
rences (1) and (2) may represent, for instance, the system
S0 evolving in a stochastic environment, as a result of
letting w(k) be a second order noisy process driving it.

If the sequence {X(k)} generated by (1) is bounded and
the pair (Ak, Bk) is stabilizable, Anderson and Moore
[1981] showed that the autonomous system x(k + 1) =
Akx(k) is uniformly asymptotically stable, provided that
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the sequences {Ak} and {Bk} are uniformly bounded. Dra-
gan and Morozan [2006] and Kubrusly [1988] generalized
this result to the context of positive operators and infinite-
dimensional systems, respectively; however, in both papers
Bk = I for all k ∈ N. The boundedness of {X(k)} to
assure the uniform exponential stability of the autonomous
system is a critical assumption in these works.

We wish to generalize the study of stability in the following
way. If {‖Y (k)‖} is bounded, then it is straightforward to
show that there exists c > 0 such that

‖Y (0)‖ + . . . + ‖Y (n)‖

n + 1
< c, for all n ∈ N. (3)

Conversely, suppose that the elements of {‖Y (k)‖} can
be averaged in norm, in the sense that that there exists
c > 0 such that (3) holds. In this situation, an intriguing
question is whether the sequence {‖Y (k)‖} is bounded
or not. The answer would be “no” since it is possible to
create a subsequence of {‖Y (k)‖} that diverges whereas
(3) still holds, e.g. see [Goldberg, 1964, p.55]. However,
in the above argument we are not taking into account
the particular structure of the dynamical system (1). We
shall demonstrate that this feature with some additional
conditions leads to a positive answer to the above question.

Another important question is whether the system S0

would be stable in some sense. Based on the assumption
that there exists a real number c > 0 such that (3) holds
for all n ∈ N, conditions are derived to ensure that the
null solution of the autonomous system x(k+1) = Akx(k)
is

i) asymptotically stable;
ii) uniformly asymptotically stable.

The conditions we employ to obtain (i) are quite common
but the reinforcement to guarantee (ii) is purposeful, since
property (ii) may be useful specially in applications.
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The average relation (3) arises in certain situations of
interest. From observations of the sequence {‖Y (k)‖}, k ≤
n it is simpler to find a number c from averaging as in
(3) than to establish an uniform bound to the sequence.
Another situation of interest is when (3) is known to
hold beforehand. Suppose that the choice of the sequences
{Ak, Bk, Ck} are set to minimize the “quadratic cost”
∑n

k=0 ‖Y (k)‖ for increasing n. If it is known that these
problems have solution, then the minimizing sequence
should observe

∑n
k=0 ‖Y (k)‖ < c · n + d, for some d

depending on the initial value ‖X(0)‖ and n sufficiently
large.

The results obtained in this paper extend the results
given by Vargas et al. [2007] in two directions. First, we
study the averaged-output instead of the averaged-state,
and the results are then proved assuming observability
and controllability of the time-varying system. Second,
the uniform asymptotic stability is established for almost
periodic matrices, a weaker condition than the periodic
one adopted by Vargas et al. [2007].

Section 2 presents some preliminary results. Section 3
presents the main results.

2. PRELIMINARY RESULTS

Let R
n,n
+ be the closed convex cone {U ∈ R

n,n : U =
U ′ ≥ 0}; U ≥ V signifies that U − V ∈ R

n,n
+ . Let tr{·}

be the trace operator. If U is a matrix in R
m,n, we let

‖U‖2 := tr{U ′U}
1

2 be the Euclidean (Frobenius) norm
for matrices. With this notation, U ∈ R

n,n
+ if and only

if ‖U
1

2 y‖2
2 ≥ 0 for all y ∈ R

n (where U
1

2 ∈ R
n,n
+ is

such that U
1

2 U
1

2 = U). Recall that ‖U‖2 = ‖U ′‖2, and
if U ∈ R

n,m and V ∈ R
n,p are such that UU ′ ≥ V V ′, then

‖U‖2
2 ≥ ‖V ‖2

2.

In association with the sequence of matrices {Ak; k ≥ 0} in
S0, we can define a family of discrete evolution operators,
namely,

Φ(k, s) = Ak−1Ak−2 · · ·As, for each k > s ≥ 0, (4)

with Φ(s, s) = I. By induction on (1) and (4) one can
readily verify as in [Halanay and Ionescu, 1994, p. 17] that

X(k) = Φ(k, s)X(s)Φ(k, s)′+
k−1
∑

j=s

Φ(k, j+1)BjB
′
jΦ(k, j+1)′,

(5)
holds for every k ≥ s, for X(0) ∈ R

n,n
+ . For ease

of notation, we represent X(0) ∈ R
n,n
+ without loss of

generality by X(0) = B−1B
′
−1, where B−1 = X(0)1/2 is a

matrix in R
n,n. Thus, (5) yields

X(k) =

k
∑

j=0

Φ(k, j)Bj−1B
′
j−1Φ(k, j)′, ∀k ∈ N. (6)

In the following sections some properties of (1) and (2)
will be exploited.

Observability, controllability and some results for state
correlation evolution

The uniform observability and controllability concepts for
discrete time-varying linear systems were defined in 1960

by Kalman Kalman [1960]. Among others, we can cite
as important contributions in the theoretical setting of
time-varying controllability and observability concepts,
the papers of Silverman and Anderson [1968], Kern and
Przyluski [1990] and Benzaid [1999] for stability; and
Moore and Anderson [1980] for estimation and control of
time-varying linear systems.

The definition of observability and controllability are given
below (see Halanay and Ionescu [1994] and Moore and
Anderson [1980] for further details).

Definition 1. The pair (Ak, Ck) is uniformly observable
(or simply observable) if there exists To ≥ 1 and a real
number β > 0 such that, for all k ≥ 0,

To−1
∑

i=0

Φ(k + i, k)′C ′
k+iCk+iΦ(k + i, k) ≥ βI.

Definition 2. The pair (Ak, Bk) is uniformly controllable
(or simply controllable) if there exists Tc ≥ 1 and a real
number σ > 0 such that, for all k ≥ Tc,

Tc−1
∑

i=0

Φ(k, k − i)Bk−i−1B
′
k−i−1Φ(k, k − i)′ ≥ σI.

The next two lemmas yield two inequalities related to
system (1),(2) that shall be useful in the sequence.

Lemma 3. If the pair (Ak, Ck) is observable, then there
exist T ≥ 1 and δ = δ(T ) > 0 such that, for all n ≥ T − 1,

n
∑

i=0

‖Ck+iΦ(k + i, k)y‖2
2

≥

n−T+1
∑

i=0

δ‖Φ(k + i, k)y‖2
2, ∀k ∈ N, ∀y ∈ R

n. (7)

Proof. Notice that for n = T − 1, the relation in the
lemma holds straightforwardly from the observability def-
inition, by setting T = To and δ = β. For n > T − 1,
a more elaborated argument to show the result shall be
developed.

First note from the observability definition that there exist
T = To ∈ N and β > 0 such that

(r+1)T+i−1
∑

ℓ=rT+i

‖Ck+ℓΦ(k + ℓ, k + rT + i)y‖2
2 ≥ β‖y‖2

2,

∀r, i, k ∈ N, ∀y ∈ R
n. (8)

The above inequality shall be of use in the sequel.

Choose N ∈ N. Two cases then arises.
Case 1. (N ≥ T −1) For each i = 0, . . . , T −1, let us define

r∗(i) = max{r ∈ N : i + rT ≤ N}. (9)

From this definition, we get the following identity:

T−1
∑

i=0

r∗(i)
∑

r=0

‖Φ(k + rT + i, k)y‖2
2

=

N
∑

ℓ=0

‖Φ(k + ℓ, k)y‖2
2, ∀k ∈ N, ∀y ∈ R

n. (10)

In addition, by (9), the following inequality is valid for all
k ∈ N and y ∈ R

n and for each i = 0, . . . , T − 1:
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N+T−1
∑

ℓ=0

‖Ck+ℓΦ(k + ℓ, k)y‖2
2

≥

r∗(i)
∑

r=0

(r+1)T+i−1
∑

ℓ=rT+i

‖Ck+ℓΦ(k + ℓ, k)y‖2
2, (11)

But

‖Ck+ℓΦ(k + ℓ, k)y‖2
2

= ‖Ck+ℓΦ(k + ℓ, k + rT + i)Φ(k + rT + i, k)y‖2
2,

hence from (8), the right-hand side of (11) is bounded
below by

r∗(i)
∑

r=0

β‖Φ(k + rT + i, k)y‖2
2.

Now, summing up on i = 0, 1, . . . , T − 1, one obtains that

T ·

N+T−1
∑

ℓ=0

‖Ck+ℓΦ(k + ℓ, k)y‖2
2

≥
T−1
∑

i=0

r∗(i)
∑

r=0

β‖Φ(k + rT + i, k)y‖2
2

=

N
∑

ℓ=0

β‖Φ(k + ℓ, k)y‖, (12)

where the last identity follows from (10). Take δ = β/T ,
and the result then follows from (12) for N ≥ T − 1.

Case 2. (0 ≤ N < T − 1) In this case, define r∗(i) = 0
for each i = 0, . . . , N , and the result can be easily shown
by repeating the arguments used in Case 1 only for i =
0, . . . , N . 2

The next result is the dual of Lemma 3 and the proof
is omited. See Halanay and Ionescu [1994], Moore and
Anderson [1980] for further details on duality for time-
varying linear systems.

Lemma 4. If the pair (Ak, Bk) is controllable, then there
exist T ≥ 1 and ρ = ρ(T ) > 0 such that, for each k ≥ T−1,

k
∑

j=0

‖B′
j−1Φ(k, j)′y‖2

2 ≥

k
∑

j=T−1

ρ‖Φ(k, j)′y‖2
2, ∀y ∈ R

n.

The next lemma is an auxiliary step to the main result of
this section. For the sake of space, we omit its proof.

Lemma 5. Let {X(k)} in R
n,n
+ and {Y (k)} in R

p,p
+ be the

sequences that satisfy (1) and (2), respectively.

i) If the pair (Ak, Ck) is observable, then there exist
T ∈ N and δ > 0 such that

n+T
∑

i=k

‖Y (i)
1

2 ‖2
2 ≥

n
∑

i=k

δ‖X(i)
1

2 ‖2
2, ∀n ≥ k ∈ N. (13)

ii) If the pair (Ak, Bk) is controllable, then there exist
T ∈ N and ρ > 0 such that

‖X(k)
1

2 ‖2
2 ≥

k
∑

j=T

ρ‖Φ(k, j)‖2
2, ∀k ≥ T. (14)

The next result provide an important relation between the
output Y (·) and the evolution operator Φ(·).

Lemma 6. Let {X(k)} in R
r,r
+ and {Y (k)} in R

p,p
+ be the

sequences that satisfy (1) and (2), respectively. If the pairs
(Ak, Ck) and (Ak, Bk) are observable and controllable,
respectively, then there exist T ∈ N and α = α(T ) > 0
such that, for all n ≥ k and all k ≥ T ,

n+T
∑

i=k

‖Y (i)
1

2 ‖2
2 ≥

n
∑

i=k

i
∑

j=T

α‖Φ(i, j)‖2
2. (15)

Proof. It follows from Lemma 5 (i) (resp., (ii)) that there
exist T ′ ∈ N and δ > 0 (resp., T ′′ ∈ N and ρ > 0) such
that (13) (resp., (14)) holds. Take T = max{T ′, T ′′}, and
so (13) and (14) imply

n+T
∑

i=k

‖Y (i)
1

2 ‖2
2 ≥

n
∑

i=k

δ‖X(i)
1

2 ‖2
2 ≥

n
∑

i=k

i
∑

j=T

δρ‖Φ(i, j)‖2
2,

for all n ≥ k and all k ≥ T . This shows the result. 2

The next assumption plays a key role in the development
of stability conditions.

Assumption 7. There exists J > 0 such that, for all N ∈
N,

N
∑

k=0

‖Y (k)
1

2 ‖2
2 ≤ (N + 1)J,

where {Y (k)} in R
p,p
+ satisfies (2).

Remark 8. It follows from Assumption 7 and the difference
equations (1) and (2) that there exists J > 0 such that

(N + 1)J ≥
N

∑

k=0

k
∑

j=0

‖CkΦ(k, j)Bj−1‖
2
2, ∀N ∈ N. (16)

Note that if all the elements in the right-hand side of
(16) would be equal to a positive constant value, namely
c > 0, then we would have (N + 1)J ≥ c(N + 1)(N +
2)/2 for all N ∈ N, which is absurd. This indicates
that some elements in the right-hand side of (16) should
vanish. Indeed, we prove in Section 3 that observability,
controllability and uniform bounds on {Ak} are enough
to ensure a contraction property of the evolution operator
Φ(·).

The main idea in the following analysis is to consider only
matrix sequences {A0, . . . , AN−1} that satisfy both (1),
(2) and Assumption 7. The next definition subsumes this
discussion.

Definition 9. For all N ∈ N,

AN =
{

(A0, . . . , AN−1) : Ak ∈ R
n,n, k = 0, . . . , N − 1,

and Assumption 7 holds true
}

. (17)

Now we are able to present the main result of this section.

Theorem 10. Let the pairs (Ak, Ck) and (Ak, Bk) be ob-
servable and controllable, respectively. If (A0, . . . , AN−1)
is in AN , then there exist a subsequence {ni} of N and a
real number L > 0 (which does not depend on {ni}) such
that

N
∑

k=0

‖Φ(k + ni, ni)‖
2
2 ≤ L, ∀N, i ∈ N. (18)

Proof. The proof follows by contradiction. The logical
negation of the thesis is as follows. For all L > 0, there
exist N0 ∈ N and i0 ∈ N such that, for all i ≥ i0, we have

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

1307



N0
∑

k=0

‖Φ(k + i, i)‖2
2 > L. (19)

In addition, by Assumption 7, there exists J > 0 such that
N

∑

k=0

‖Y (k)
1

2 ‖2
2 ≤ (N + 1)J, ∀N ∈ N. (20)

After some algebraic manipulations in the inequality of
Lemma 6, it is possible to show that there exist T ∈ N

and α > 0 so that
2(N+T )+m

∑

k=0

‖Y (k)
1

2 ‖2
2 ≥

N+m
∑

i=m

N
∑

n=0

α‖Φ(n + i + T, i + T )‖2
2,

(21)
for all N,m ∈ N. Now choose L > 5J

α , then by (19),
N

∑

k=0

‖Φ(k + i, i)‖2
2 >

5J

α
, ∀N ≥ N0, ∀i ≥ i0. (22)

Hence, if Ñ = max{N0, i0, T}, then by (20), (21) and (22),

(5Ñ + 1)J ≥ (2(Ñ + T ) + i0 + 1)J ≥

2(Ñ+T )+i0
∑

k=0

‖Y (k)
1

2 ‖2
2

≥

Ñ+i0
∑

i=i0

Ñ
∑

n=0

α‖Φ(n + i + T, i + T )‖2
2

>

Ñ+i0
∑

i=i0

α
5J

α
= 5(Ñ + 1)J,

which is absurd. This argument completes the proof. 2

Note that Theorem 10 is not able to guarantee that the
value L > 0 is uniform with respect to all n in N such that
(18) holds. If this were true, then the autonomous system
x(k + 1) = Akx(k) would be uniformly asymptotically
stable (we shall formalize this property latter). Despite
the non-uniformity, the result of Theorem 10 enable us to
affirm that L > 0 is uniform for a subsequence {ni} of
N. Moreover, a theoretically interesting point is that the
conditions we use in Theorem 10 are quite general and do
not require, for instance, bounds on the matrix sequence
{Ak}. In the next section we will let the horizon N in (18)
tend to infinity, and so we study under what circumstances
should L > 0 be uniform not only for a subsequence {ni}
of N but also for all n ∈ N . One difficulty in this approach
is the unboundedness property that may appear in the
step ni − ni−1, namely, we may have a subsequence from
{ni−ni−1} on which diverges. We shall develop conditions
in order to remedy this situation.

3. STABILITY CONDITIONS

It is possible now to obtain some useful results concerning
the stability of the system S0. Attention is focused on the
class AN defined in (17) when N → ∞. In connection, it
will be denoted by A∞.

Next, we investigate the stability of the zero-input re-
sponse of S0. More specifically, we study the response of

x(k + 1) = Akx(k) (23)

due to any initial state x(k0) = x0. In connection, we recall
some stability definitions from Willems [1970] and Sastry
[1999].

Definition 11. The null solution of the autonomous system
(23) (or simply the system (23)) is called:

i) stable, if for any given k0 ≥ 0 and ǫ > 0, there exists
a positive number δ(ǫ, k0) such that if ‖x0‖ < δ, then
‖x(k)‖ ≤ ǫ holds for all k ≥ k0. If δ does not depend
on k0 we say the system is uniformly stable.

ii) asymptotically stable, if for any k0 ≥ 0, there exists a
positive number δ(k0) such that if ‖x0‖ < δ, then for
any ǫ > 0, there exists a natural number T (ǫ, δ, k0)
such that ‖x(k)‖ < ǫ for all k > k0 + T .

iii) uniformly asymptotically stable, if the numbers δ
and T , introduced in the item (ii) can be taken
independent of k0.

Remark 12. It may be shown [Willems, 1970, Ch.4] that
the system (23) is stable (uniformly stable) if and only if
there exists c > 0 which depends on k0 (does not depend
on k0) such that ‖Φ(k, k0)‖ ≤ c for all k ≥ k0. Asymptotic
stability then follows if, in addition, ‖Φ(k, k0)‖ → 0 as k →
∞. Some equivalences for uniform asymptotic stability are
provided later.

3.1 Asymptotic stability results

The following theorem provides arguments to guarantee
that any sequence {Ak} generated according to (17) (i.e.,
{Ak} ∈ A∞) is asymptotically stable and uniformly stable.
The proof follows similarly as in [Vargas et al., 2007, Th.2].

Theorem 13. Let the pairs (Ak, Ck) and (Ak, Bk) be ob-
servable and controllable, respectively. If the matrix se-
quence {Ak} ∈ A∞ is bounded, then the following holds:
(a) For all k ≥ 0 and all ℓ > 0, there exists c > 0 (which
does not depend on k nor ℓ) such that

‖Φ(k + ℓ, k)‖ < c.

(b) There exist a subsequence {nm} of N and a real number
L > 0 (which does not depend on {nm}) such that

∞
∑

k=0

‖Φ(k + nm, ℓ)‖ ≤ L, ∀ℓ = 0, . . . , nm, ∀m ∈ N.

The above theorem leads to the following result.

Corollary 14. Suppose that the conditions of Theorem
13 hold. Then the system (23) is uniformly stable and
asymptotically stable.

An advantage of the above approach is that it enables us
to derive some conditions in order to assure the uniform
asymptotic stability of the system (23). The study of this
important context of stability will be carried out in the
next section.

3.2 Uniform asymptotic stability results

The aim of this section is to investigate how the conditions
of Theorem 13 (and Corollary 14), which ensure the
asymptotic stability, can be strengthened to yield to the
“uniform” asymptotic stability.

The following equivalence shall be used in the sequel (see
[Willems, 1970, Th.1.5, p.101] and [Kubrusly, 1988, Th.1]).

Proposition 15. The following conditions are equivalent:

i) The system (23) is uniformly asymptotically stable.
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ii) For some p > 0, there exists a positive number σp

such that
∞
∑

i=0

‖Φ(k + i, k)‖p
2 ≤ σp, ∀k ∈ N.

It was shown by Vargas et al. [2007] that if the matrices
Ak are periodic, then the system (23) is uniformly asymp-
totically stable provided that the conditions of Theorem
13 are satisfied. Here it is demonstrated that the periodic
condition can be replaced by a weaker one.

Almost periodic systems The theory of almost periodic
functions has been a subject of intensive research in pure
and applied mathematics. There are applications to the
theory of differential and difference equations, statistics
and celestial mechanics (see Corduneanu [1961], Fink
[1972] and the references therein).

Our contribution is to show that, if ξk0
(k) is an almost

periodic solution of (23) for each k0 ≥ 0, and if the
hypotheses of Theorem 13 are satisfied, then (23) is
uniformly asymptotically stable.

Before passing to the study of almost periodic solutions of
systems, let us recall the Bohr’s definition of almost peri-
odic sequences. Such definition can be found, for instance,
in [Halanay and Ionescu, 1994, p.205],[Corduneanu, 1961,
p.45].

Definition 16. Let X be a Banach space. An X-valued
sequence {f(k)} is called almost periodic, if to any ε >
0 there corresponds a natural number N(ε), such that
among any N consecutive integers there exists a natural
number p with the property

‖f(k + p) − f(k)‖ < ε, k = 0, 1, . . . . (24)

Remark 17. It follows from the above definition that, for
any given ε > 0, one can extract a subsequence {pi} from
N such that ‖f(k + pi) − f(k)‖ < ε, for all k, i ∈ N.

Lemma 18. Suppose that {ξk0
(k)}k≥k0

is an almost peri-
odic solution of (23). If δ is a finite natural number, then
for all ε > 0 there exists τ = τ(ε, δ) ∈ N (with τ > δ) such
that, for all k ≥ k0,

ε >

∣

∣

∣

∣

∣

δ
∑

i=0

‖Φ(τ + k + i, k0)x0‖
2
2 − ‖Φ(k + i, k0)x0‖

2
2

∣

∣

∣

∣

∣

.

Proof. Let {F (k)}k≥k0
be the nonnegative real sequence

defined as

F (k) =

δ
∑

i=0

‖ξk0
(k + i)‖2

2, ∀k ≥ k0. (25)

It is clear that {F (k)}k≥k0
is almost periodic, since

{ξk0
(k)}k≥k0

is almost periodic and so is any finite sum
of almost periodic sequences [Corduneanu, 1961, p.46].
Hence, by Definition 16 and Remark 17, for any ε > 0 there
exists τ ∈ N with τ > δ such that ε > |F (k + τ) − F (k)|
for all k ∈ N. The result then follows from this inequality
and (25). 2

Now it is possible to provide the main result of this section.

Theorem 19. Suppose that {ξk0
(k)}k≥k0

is an almost pe-
riodic solution of (23) for any k0 ≥ 0. Then, under the
assumptions of Theorem 13, the autonomous system (23)
is uniformly asymptotically stable.

Proof. Notice first that, by Theorem 13, there exist a
subsequence {nm} of N and a real number L > 0 such
that
∞
∑

k=0

‖Φ(k +nm, j)‖ ≤ L, ∀j : nm ≥ j > nm−1, ∀m ≥ 1.

(26)
Assume that there exists M > 0 such that

nm−1
∑

k=j

‖Φ(k, j)‖ ≤ M, ∀j : nm > j > nm−1, ∀m ≥ 1.

(27)
Then (26) and (27) imply that
∞
∑

k=0

‖Φ(j+k, j)‖ ≤ L+M, ∀j : nm ≥ j ≥ nm−1, ∀m ≥ 1.

(28)
Evidently, (28) holds for all j ∈ N, and so the result follows
from Proposition 15.

It remains to show that the claim (27) is valid. To do
so we employ a contradiction argument. If (27) were not
true, then there would exist a subsequence {ji} of N and
a subsequence {nmi

} of {nm} with nmi
> ji > nmi−1 for

which
nmi

−1
∑

k=ji

‖Φ(k, j)‖2
2 → ∞ as i → ∞. (29)

If we let ε0 > 0 be any given number, then (29) assures
that there are natural numbers nm0

and j0 (with nm0
>

j0 > nm0−1) such that

nm0
−1

∑

k=j0

‖Φ(k, j0)‖
2
2 > ε0 + L.

Set δ0 = nm0
− j0 −1, and one can find a suitable x0 ∈ R

n

with ‖x0‖
2
2 = 1 such that

δ0
∑

k=0

‖Φ(j0 + k, j0)x0‖
2
2 > ε0 + L. (30)

Now, in Lemma 18, set δ = δ0, ε = ε0, and k0 = j0. Then
there exists τ ∈ N (with τ > δ0) such that

ε0 >

δ0
∑

k=0

‖Φ(j0 +k, j0)x0‖
2
2 −‖Φ(j0 + τ +k, j0)x0‖

2
2. (31)

However, since τ > δ0 = nm0
− j0 − 1, it follows from (26)

that
δ0

∑

k=0

‖Φ(j0 + τ + k, j0)x0‖
2
2 ≤

∞
∑

k=0

‖Φ(k + nm0
, j0)x0‖

2
2 ≤ L.

(32)
Thus, by (30), (31) and (32),

ε0 + L <

δ0
∑

k=0

‖Φ(j0 + k, j0)x0‖
2
2

=

δ0
∑

k=0

‖Φ(j0 + k, j0)x0‖
2
2 − ‖Φ(j0 + τ + k, j0)x0‖

2
2

+

δ0
∑

k=0

‖Φ(j0 + τ + k, j0)x0‖
2
2 < ε0 + L,
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which is absurd. This establishes the contradiction and so
the result is proven. 2

Intuitively one expects that any bounded solution of (23),
with almost periodic matrices Ak, is almost periodic.
However, it may be shown that this statement is false (e.g.
Conley and Miller [1965], Mingarelli et al. [1995] and [Fink,
1974, p.97]). Many authors have considered the problem of
how to obtain almost periodic solutions for difference and
differential equations (see Corduneanu [1961], Fink [1972],
Sell [1966], and the references therein). In particular, the
Amerio’s condition is the only one used here because of its
simplicity.

Let g = {g(k)} be an almost periodic sequence. Then
there exist subsequences {tn} of N for which g(k + tn)
converges to ĝ(k), where ĝ(k) may be different from g(k)
(see Fink [1974] for a detailed proof). Let one considers
all possible subsequences {tn} of N for which there is a
uniform convergence

g(k + tn) → ĝ(k) (as n → ∞),

and denote the set of limit sequences {ĝ(k)} by H (g).

The following statement follows from the Amerio’s theo-
rem (see [Corduneanu, 1961, p.109] and [Pennequin, 2001,
Cor.2.7] for further details). Suppose that the following
two conditions hold:

(A) The autonomous system (23), with almost periodic
matrices Ak, is uniformly stable;

(B) For each {Âk} ∈ H (A), the system y(k + 1) =

Âky(k), y(k0) = y0 ∈ R
n, has just the null solution

as bounded solution.

Then any bounded solution of (23) is almost periodic. An
immediate consequence from the above fact and Theorem
19 is the following.

Corollary 20. Assume that the conditions of Theorem 13
are satisfied. If {Ak} ∈ A∞ is almost periodic and the
condition (B) holds true, then the autonomous system (23)
is uniformly asymptotically stable.

It is noteworthy that, if {Ak} ∈ A∞ is periodic, there is
no need of condition (B) in Corollary 20, since (23) should
have an almost periodic solution [Fink, 1974, Cor.6.5].

4. CONCLUDING REMARKS

The main results of this paper rely on the assumption that
{Ak} ∈ A∞. Asymptotic stability and uniform stability
are established for the null solution of the autonomous
system x(k + 1) = Akx(k), but this holds only if the pairs
(Ak, Ck) and (Ak, Bk) are observable and controllable,
respectively Future research can investigate if the above
statement is true if observability and controllability are
replaced by detectability and stabilizability, in this order.

It is shown that the existence of an almost periodic so-
lution of x(k + 1) = Akx(k) is sufficient to the uniform
asymptotic stability (see Theorem 19). In contrast with
almost periodic systems, the development of results for
general time-varying systems has additional difficulties
because uniformity is, indeed, a somewhat restrictive char-
acteristic imposed on the system. Thus, another point of
future investigation could be the search for conditions to

guarantee the uniform asymptotic stability when {Ak} ∈
A∞ does not have almost periodic matrices.
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