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∗ Department of Control Engineering
Faculty of Electrical Engineering

Czech Technical University
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Abstract: The paper deals with the problem of determining stability margin of a linear
continuous-time systems with fuzzy parametric uncertainty. The coefficients of characteristic
polynomial with linear affine dependency on system parameters are considered. The system
parameters are described by fuzzy numbers with nonsymmetric triangular membership func-
tions. An elegant solution, graphical in nature, based on generalization of Tsypkin-Polyak plot
is presented.

1. INTRODUCTION

Very often the dynamic system works almost all the time
in one operating point. The system is designed in such
a way that it performs optimally in some sense in this
point. Nevertheless, sometimes it has to work in different
conditions (at least for a short period). In such a case
the system is usually not required to preserve the optimal
behaviour. It often suffices if the system remains stable,
i.e. it is robustly stable.

When parametric uncertainty is considered the following
problem can be stated. Let a system be (asymptotically)
stable for some nominal values of its parameters. The
question is, within what boundary the stability remains
preserved. Such a problem is called stability margin de-
termination. Since the celebrated Kharitonov’s theorem
(Kharitonov [1978]) was published big attention is de-
voted to solving both problems – checking stability of
the uncertain system and determining its stability mar-
gin. Kharitonov’s theorem provides very efficient tool for
stability analysis of interval systems, i.e. linear systems
whose coefficients are supposed to lie in the prescribed
mutually independent intervals. To check stability of a
system with linear parameter dependency the Edge the-
orem (Bartlett et al. [1988]) provides an elegant solution.
More complicated coefficient structures such multilinear
or polynomic dependency on an interval vector parameter
are also considered, however the corresponding algorithms
are rather complicated.

All the problems mentioned above and solved by classi-
cal robust analysis approach assume that the uncertainty
remains the same independently on the working condi-
tions. It means that the worst case has to be considered
and conservative results are obtained. However, in many
practical situations the uncertainty varies, e.g. depending
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on operation conditions. In such a case the uncertainty
interval can be often parameterized by a confidence level.
This parameter is usually tough to measure but it can be
estimated by a human operator. If each parameter of a
system is described in this way the system corresponds to
a family of interval linear time-invariant systems parame-
terized by the confidence level.

Naturally, as in classical analysis of systems with struc-
tured uncertainty the parameterized uncertainty intervals
can enter into the coefficients linearly, multilinearly, poly-
nomically or even in more complicated manner. To handle
such type of uncertain systems a mathematical framework
is desired. Such a framework was proposed by Bondia and
Picó [1999]. They adopted the concept of fuzzy numbers
and fuzzy functions, see Dubois and Prade [1980]. The
approach interprets a set of intervals parameterized by a
confidence level as a fuzzy number with its membership
degree given by this confidence level. It means that all
the coefficients ci are characterized by means of fuzzy
numbers with membership functions αi = µc̃i

(ci). When a
confidence level αi is specified then the coefficient interval
is determined by the αi-cut [ci]αi

. If αi = 1 (the maximum
confidence level – the system works in normal operating
conditions) the coefficient ci can take any value (crisp or
interval) within the cores of c̃i’s (ci = ker(c̃i)). If αi = 0
(the minimum confidence level) the coefficient ci is the
interval equal to the support of c̃i (ci ∈ supp(c̃i)). It
is supposed that supp(c̃i) are finite sets, e.g. sigmoidal
membership functions cannot be applied.

The question is what minimum confidence level αmin

guarantees stability of the system under the assumption
that the nominal system (i.e. for α = 1) is Hurwitz stable.
Different approach for definition of fuzzy system stability
was proposed in (Nguyen and Kreinovich [1994]). In the
sequel stable means Hurwitz stable.

Let us consider characteristic polynomial

C̃(s) = q̃0 + q̃1s + · · · + q̃nsn (1)
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where the coefficients q̃k, k = 0, . . . , n are described by
triangular membership functions (generally nonsymmet-
ric). More precisely, considering common confidence level
α, if triangular membership function with ker{q̃k} =
q0
k, supp{q̃k} = [q−k , q+

k ] characterizes the coefficient q̃k

then the functions

q−k (α) = (q0
k − q−k )α + q−k ,

q+

k (α) = (q0
k − q+

k )α + q+

k (2)

determine the α-cut representation of polynomial (1) de-
fined as an interval polynomial

C̃α(s) = C(s, α) =

n
∑

k=0

qk(α)sk ,

qk(α) ∈ [q−k (α), q+

k (α)] . (3)

Let us suppose that the nominal (1-cut) polynomial
C(s, 1) =

∑n

i=0
q0
i si is stable. The task is to find sta-

bility margin of the polynomial (1), i.e. confidence level
αmin ∈ [0, 1] such that interval polynomial (3) is stable for
α > αmin and unstable for α ≤ αmin.

The solution of this problem was stated by Bondia and
Picó [2003] with the help of Argoun stability test (Argoun
[1987]), which is graphical in nature, or by Lan [2005]
using Kharitonov theorem and by Hušek [2004] using the
generalization of Tsypkin-Polyak loci (Tsypkin and Polyak
[1991]). Unfortunately, there are only very few systems
where the parameters coincide with the coefficients of the
characteristic polynomial as in (1). Much more typically
the parameters of a system enter in the characteristic
polynomial in linear, multilinear or polynomic fashion. In
this paper stability margin of the linear affine dependency
of the coefficients of characteristic polynomial on param-
eters described by nonsymmetric triangular membership
functions is studied.

2. LINEAR AFFINE FUZZY PARAMETRIC
UNCERTAINTY

In the sequel we will consider polynomial

D̃(s) = d̃0 + d̃1s + · · · + d̃nsn (4)

where the coefficients d̃i, i = 0, . . . , n are supposed to be
linear affine functions of the parameters q̃k, k = 1, . . . , m,
i.e.

d̃i = βi +

m
∑

k=1

γik q̃k, βi, γik ∈ ℜ . (5)

The parameters q̃k, k = 1, . . . , m are described by nonsym-
metric triangular membership functions sharing common
confidence level α. If the triangular membership function
with ker{q̃k} = q0

k, supp{q̃k} = [q−k , q+

k ] describes the
coefficient q̃k then the linear functions

q−k (α) = (q0
k − q−k )α + q−k ,

q+

k (α) = (q0
k − q+

k )α + q+

k (6)

characterize the linear interval polynomial

D(s, α) = d0(α) + d1(α)s + · · · + dn(α)sn (7)

where

di(α) = βi +

m
∑

k=1

γikqk(α), i = 0, . . . , n ,

qk(α) ∈ [q−k (α), q+

k (α)] . (8)

Let us suppose that the nominal (1-cut) polynomial
D(s, 1) =

∑n
i=0

d0
i s

i, d0
i = βi +

∑m
k=1

γikq0
k is stable. We

are looking for confidence level αmin ∈ [0, 1] such that
linear interval polynomial (7) is stable for α > αmin and
unstable for α ≤ αmin.

In order to solve the problem a generalization of the
Tsypkin-Polyak plot (Tsypkin and Polyak [1992]) will be
used.

3. STABILITY MARGIN DETERMINATION

3.1 Zero exclusion theorem

Let Q be a connected region in the (n + 1)-dimensional
space. Let us consider family of polynomials

δ(s,Q) = p0 + · · · + pnsn,p = [p0, . . . , pn],p ∈ Q. (9)

To derive the main result of this paper well-known bound-
ary crossing theorem will be used.

Theorem 1. (Boundary crossing theorem) (Bhattacharyya
et al. [1995]). The family of polynomials δ(s,Q) (9) of
invariant degree is stable if and only if

a) there exists a stable polynomial δ(s,p∗),p∗ ∈ Q,
b) jω /∈ roots{δ(s,Q)}∀ω ∈ ℜ .

This intuitive result simply states the fact that the first
encounter of polynomial with fixed degree (i.e. coefficient
pn does not include zero) with instability has to be
on the boundary of stability domain. Computationally
more efficient version of the boundary crossing theorem
is formulated by the zero exclusion principle.

Theorem 2. (Zero exclusion principle) (Bhattacharyya et al.
[1995]). The family of polynomials δ(s,Q) (9) of invariant
degree is stable if and only if

a) there exists a stable polynomial δ(s,p∗),p∗ ∈ Q,
b) 0 /∈ δ(jω,Q)∀ω ∈ ℜ .

The set δ(jω,Q), ω ∈ ℜ is called the value set. Due to
symmetry of value sets it suffices to check zero exclusion
for ω ≥ 0 only.

3.2 Main result

Let us consider the polytope of polynomials of constant
degree

Q(s, ρ) = A(s) + ρ

m
∑

k=1

rkBk(s), r−k ≤ rk ≤ r+

k (10)

where

A(s) = d0
0 + d0

1s + · · · + d0
nsn, d0

i = βi +

m
∑

k=1

γikq0
k ,
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Fig. 1. Projection of the value set onto L*

i = 0, . . . , n ,

Bk(s) = γ0k + γ1ks + · · · + γnksn ,

r−k = q−k − q0
k, r+

k = q+

k − q0
k, k = 1, . . . , m ,

ρ > 0 . (11)

The family of polynomials (10) is usually written as

Q(s, ρ) = A(s) + ρ

m
∑

k=1

[r−k , r+

k ]Bk(s) . (12)

Theorem 3. The minimum confidence level preserving sta-
bility of (7)

αmin = max{0, 1 − ρmax} (13)

where ρmax is maximum value of ρ preserving stability of
(12) called stability margin.

Proof. Substituting α = 1 − ρ into (7) one obtains
D(s, 1−ρ) = Q(s, ρ) from which (13) immediately follows.

Let us examine the value set of polynomial family (12) in
some point s = jω,

Q(jω, ρ) = A(jω) + ρ

m
∑

k=1

[r−k , r+

k ]Bk(jω) . (14)

Since ri, i = 1, . . . m, are interval parameters the value
set is a polygon, see Fig. 1. In particular, if the complex
numbers A,B1, . . . , Bm are defined as

A(jω) = |A|ejθ ,

Bk(jω) = |Bk|e
jφk , k = 1, . . . , m (15)

then the value set (14) equals to the set A + ρB where

B =

{

m
∑

k=1

rkBk : r−k ≤ rk ≤ r+

k

}

. (16)

Due to zero exclusion theorem we need to examine when
zero is excluded from value set A+ρB. The following result
gives the answer.

Theorem 4. The condition

0 /∈ A + ρB, ρ > 0 (17)

holds if and only if

max
1≤k≤m

|A|| sin(θ − φk)|
∑m

i=1
|r∗i Bi|| sin(φi − φk)|

> ρ ,

if sin(φi − φk) �= 0 for some i, k (18)

where

r∗i = r−i if sign (sin(φi − φk)) = sign (sin(φk − θ)) ,

r∗i = r+

i if sign (sin(φi − φk)) �= sign (sin(φk − θ))

and

max
1≤k≤m

|A|
∑m

i=1
|r∗i Bi|

> ρ ,

if sin(φi − φk) = 0 and sin(φk − θ) = 0 ∀i, k (19)

where

r∗i = r−i if θ = φk,

r∗i = r+

i if θ = −φk.

Proof. Zero is excluded from the set A+ρB if and only if
there exists a line L which separates the set from the origin
in complex plane. We will use the polygonal shape of value
set and try to project the set into direction L∗ which is
orthogonal to the line L passing the origin at an angle ψ
with the real axis, see Fig. 1. The length of the projection
of the vector A into this direction is |A|| sin(θ − ψ)| (the
line CPA in Fig. 1). The total length of the projection of
the set B is

ρ(|r+
1 | + |r−1 |)| sin(φ1 − ψ)| + · · ·

+ (|r+
m| + |r−m|)| sin(φm − ψ)|.

The line L separates the set A + ρB from the origin if
and only if the projection of A is greater than the part of
the projection of B (of the projections of each Bi) whose
direction is opposite to the direction of the projection of
A. In Fig. 1 these directions are −B1 and −B2 and the
corresponding projections are the lines CP1 and CP2. The
total length of this part is

ρ(|r∗1 || sin(φ1 − ψ)| + · · · + |r∗m|| sin(φm − ψ)|) (20)

where

r∗i = r−i if sign (sin(φi − ψ)) = sign (sin(φk − θ)) ,

r∗i = r+

i if sign (sin(φi − ψ)) �= sign (sin(φk − θ)) .(21)

It means that if and only if there exists an angle ψ ∈ [0, 2π)
such that

|A|| sin(θ − ψ)| >

ρ(|r∗1 || sin(φ1 − ψ)| + · · · + |r∗m|| sin(φm − ψ)|) (22)

with r∗i defined in (21) then the value set A + ρB does
not contain the origin. Because of polygonal shape of B
it suffices to test if the inequality (31) holds only for
ψ = φi, i = 1, . . . , m, which corresponds to the formula
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(18). The formula (19) solves the case when the value set
B degenerates to a line.

In order to determine the stability margin ρmax of the
polytope (12) we will look for maximum ρ = ρ(ω) for each
ω ≥ 0 such that the inequalities (18) and (19) are satisfied.
Then ρmax = infω ρ(ω).

4. LINEAR INTERVAL FAMILY WITH FUZZY
PARAMETRIC UNCERTAINTY

The obtained result can be applied to a special form of
polynomials with linear dependency of its coefficients on
the parameters characterized by fuzzy numbers.

Let us consider a family of polynomials

δ̃(s) = F1(s)P̃1(s) + · · · + Fm(s)P̃m(s) ,

Fi(s) = fi0 + fi1s + · · · ,

P̃i(s) = p̃i0 + p̃i1s + · · · (23)

where the coefficients p̃ij are characterized by non-
symmetric triangular membership functions ker{p̃ik} =
p0

ik, supp{p̃ik} =
[

p−ik, p+

ik

]

which are described by the
linear functions

p−ik(α) =
(

p0
ik − p−ik

)

α + p−ik ,

p+

ik(α) =
(

p0
ik − p+

ik

)

α + p+

ik .

We are looking for minimum confidence level αmin such
that the interval polynomial

δ(s, α) = F1(s)P1(s, α) + · · · + Fm(s)Pm(s, α) ,

Pi(s, α) =
[

p−i0(α), p+

i0(α)
]

+
[

p−i1(α), p+

i1(α)
]

s + · · · ,

i = 1, . . . , m (24)

is stable for α > αmin and unstable for α ≤ αmin under
assumption that the nominal polynomial δ0(s),

δ0(s) = δ(s, 1) = F1(s)P1(s, 1) + · · · + Fm(s)Pm(s, 1) ,

P 0
i (s) = Pi(s, 1) = p0

i0 + p0
i1s + · · · ,

is stable.

Let us consider linear interval family of polynomials

∆(s) = F1(s)P1(s) + · · · + Fm(s)Pm(s) ,

Fi(s) = fi0 + fi1s + · · · ,

Pi(s) = pi0 + pi1s + · · · (25)

where

∣

∣pik − p0
ik

∣

∣≤ ρβ−
ik if pik ≤ p0

ik ,
∣

∣pik − p0
ik

∣

∣≤ ρβ+

ik if pik > p0
ik, ρ > 0 ,

β−
ik = p0

ik − p−ik ,

β+

ik = p+

ik − p0
ik .

Theorem 5. The minimum confidence level preserving sta-
bility of (24)

αmin = max{0, 1 − ρmax} (26)

where ρmax is maximum value of ρ preserving stability of
(25).

Proof. Substituting α = 1 − ρ into (24) one obtains
δ(s, 1 − ρ) = ∆(s) from which (26) immediately follows.

Denote

A(s) = F1(s)P
0
1 (s) + · · · + Fm(s)P 0

m(s) ,

S−
i (ω) = β−

i0 + β+

i2ω
2 + β−

i4ω
4 + · · · ,

S+

i (ω) = β+

i0 + β−
i2ω

2 + β+

i4ω
4 + · · · ,

T−
i (ω) = ω(β−

i1 + β+

i3ω
2 + β−

i5ω
4 + · · ·) ,

T+

i (ω) = ω(β+

i1 + β−
i3ω

2 + β+

i5ω
4 + · · ·) .

In order to determine stability margin of (25) we will
examine the value set ∆(jω) for 0 ≤ ω ≤ ∞. Since
Pi(s) are interval polynomials application of Kharitonov
theorem yields

Pi(jω) =
{

si(ω) + jti(ω) : −S−
i (ω) ≤ si(ω) ≤ S+

i (ω) ,

− T−
i (ω) ≤ ti(ω) ≤ T+

i (ω), i = 1, . . . , m
}

.

Then the value set

∆(jω) = A(jω) + ρB(ω) (27)

where

B(ω) =

{

m
∑

i=1

(si(ω) + jti(ω)) Fi(jω) :

−S−
i (ω) ≤ si(ω) ≤ S+

i (ω),

−T−
i (ω) ≤ ti(ω) ≤ T+

i (ω), i = 1, . . . , m

}

.

that is usually written as

B(ω) =

{

m
∑

i=1

([

−S−
i (ω), S+

i (ω)
]

Fi(jω)

+
[

−T−
i (ω), T+

i (ω)
]

jFi(jω)
)

, i = 1, . . . , m

}

.

Now theorem 4 can be applied for zero exclusion test of
the set (27) with

A(jω) = F1(jω)P 0
1 (jω) + · · · + Fm(jω)P 0

m(jω) ,

r−k = S−
k (ω), r+

k = S+

k (ω) ,

r−m+k = T−
k (ω), r+

m+k = T+

k (ω) ,

Bk(jω) = Fk(jω), Bm+k(jω) = jFk(jω), k = 1, . . . , m .

The stability margin ρmax will be determined from the
frequency plot of ρ(ω) as ρmax = inf0≤ω≤∞ ρ(ω). However,
there could be discontinuities of the function ρ(ω) in the
points 0 and ∞. For ω = 0 we have

ρ(0) = ρ0 =

∣

∣

∑m
i=1

p0
i0fi0

∣

∣

∑m

i=1
βi0|fi0|

, (28)

βi0 = β−
i0 if





m
∑

j=1

p0
j0fj0



 fi0 ≥ 0 ,
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βi0 = β+

i0 if





m
∑

j=1

p0
j0fj0



 fi0 < 0 .

For ω → ∞ we have

ρ(∞) = ρn =

∣

∣

∑m

i=1

∑

k+l=n p0
ikfil

∣

∣

∑m

i=1

∑

k+l=n βik|fil|
, (29)

βik = β−
ik if





m
∑

j=1

∑

k+r=n

p0
jkfjr



 fil ≥ 0 ,

βik = β+

ik if





m
∑

j=1

∑

k+r=n

p0
jkfjr



 fil < 0

where n is degree of polynomial ∆(s). The value ρn

corresponds to degree drop of ∆(s).

Then if ρmin := inf0<ω<∞ ρ(ω)

ρmax = min{ρ0, ρn, ρmin} .

5. EXAMPLE

In Safari-Shad and Takabe [1997] the characteristic poly-
nomial of the Fiat Dedra engine model was obtained as a
fourth-order polynomial with seven uncertain parameters

p(s,q) = a0(q) + a1(q)s + a2(q)s2 + a3(q)s3 + s4 (30)

where

a0(q) = (k11(k24 + 0.05) − k14k21)q1q4q7,

a1(q) = (k11 − k14k23 + k13(k24 + 0.05))q1q4q7

+(k12(k24 + 0.05) − k14k22)q1q5q7

+(k12k21 − k11k22)q1q6q7 + (k24 + 0.05)q2q5q7

+k21q2q6q7 + (k24 + 0.05)q3q4q7,

a2(q) = k13q1q4q7 + k12q1q5q7 + (k12k23 − k13k22)q1q6q7

+q2q5q7 + k23q2q6q7 + q3q4q7

+(k24 + 0.05)q5q7 − k22q3q6q7 + k21q6q7 +

(k24 + 0.05)q2 + ((k24 + 0.05)k12 − k22k14)q1,

a3(q) = k12q1 + q2 + k23q6q7 + q5q7 + k24 + 0.05.

kij denotes the elements of the controller gain matrix
(Barmish [1994])

K =

[

0.0081 0.1586 0.8072 −0.1202
0.0187 0.0848 0.1826 −0.0224

]

. (31)

The coefficients of the characteristic polynomial (30) de-
pend multilinearly on the uncertain parameters defined as
a box

Q =
{

q =
[

qi, qi ∈ [q−i , q+

i ], i = 1, . . . , 7
]}

(32)

where the vector of lower and upper bounds is given as

q− = [q−i , i = 1, . . . , 7]

= [0.3261 − 0.2073 0.0357 0.2539 0.0100 2.0247 0.1000]

q+ = [q+

i , i = 1, . . . , 7]

= [3.4329 0.1627 0.1139 0.5607 0.0208 4.4962 1.0000]

respectively.

In Barmish [1994] the nominal parameter values corre-
sponding to most operating point representing slightly
loaded engine at idle speed are considered as

q0
1 = q+

1 = 3.4329 , q0
2 = q+

2 = 0.1627 , q0
3 = q+

3 = 0.1139 ,

q0
4 = q−4 = 0.2539 , q0

5 = q+
5 = 0.0208 , q0

6 = q−6 = 2.0247 ,

q0
7 = q+

7 = 1.0000 . (33)

It should be noted that the nominal parameter values
do not lie in the middle of the admissible intervals. The
question is how far we can get away from the nominal point
to preserve stability of (30).

The characteristic polynomial (30) has multilinear uncer-
tainty structure. In Kanno and Yang [2002] affine lineariza-
tion is carried out – by fixing some parameters the original
polynomial is changed to an affine linear interval polyno-
mial. Such transformation leads to a necessary stability
condition only, however, this information can still provide
very useful insight to the original problem using effective
methods.

In particular, an inspection of the coefficients of the
characteristic polynomial (30) reveals that if q4, q5, q6 and
q7 are fixed then the coefficients depend affine linearly on
q1, q2 and q3. In Kanno and Yang [2002] the parameters
q4, q5, q6 and q7 are fixed at their nominal values but
for the parameters q1, q2 and q3 the midpoints of the
admissible intervals are chosen as ”nominal” values and
do not correspond to the real nominal (operating) point
(33). In fact it means that if the stability margin of (30)
(or the corresponding polytope (10)) will be less than 1
then the corresponding maximum admissible intervals, in
which the parameters can lie to preserve stability of the
characteristic polynomial, do not cover the real operating
point. This is a serious drawback of that procedure.

In order to overcome the drawback mentioned above we
will characterize the uncertain parameters q1, q2 and q3

by fuzzy numbers described by nonsymmetric triangular
membership functions q̃1, q̃2 and q̃3 with

supp{q̃i} = [q−i , q+

i ] , ker{q̃i} = q0
i , i = 1, 2, 3 . (34)

Affine linearization of (30) by fixing q4, q5, q6 and q7 at
the nominal point and characterization of q1, q2 and q3 by
q̃1, q̃2 and q̃3 (34) form polynomial

D̃(s) = d̃0 + d̃1s + d̃2s
2 + d̃3s

3 + s4 (35)

where

d̃0 = 0.0006q̃1 ,

d̃1 = 0.0182q̃1 + 0.0384q̃2 + 0.0070q̃3 ,

d̃2 = 0.0384 + 0.1429q̃1 + 0.4181q̃2 + 0.0822q̃3 ,

d̃3 = 0.4181 + 0.1586q̃1 + q̃2 + 0.0822q̃3 ,

with q̃i, i = 1, 2, 3 given by (34).

Transformation of polynomial (35) into the polytope (10)
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Fig. 2. Frequency plot of ρ(ω) of Fiat Dedra engine

Q(s, ρ) = A(s) + ρ

m
∑

i=1

riBi(s), r
−
i ≤ ri ≤ r+

i (36)

yields

A(s) = s4 + 1.1253s3 + 0.6063s2 + 0.0695s + 0.0022 ,

B1(s) = 0.1586s3 + 0.1429s2 + 0.0182s + 0.0006 ,

B2(s) = s3 + 0.4181s2 + 0.0384s ,

B3(s) = 0.0822s2 + 0.0070s ,

r−1 =−3.1068, r−2 = −0.3600, r−3 = −0.0782,

r+

1 = 0, r+

2 = 0, r+

3 = 0 .

Since the polytope of polynomials (36) is of constant
degree and the polynomial A(s) is Hurwitz stable we
can apply the result from theorem 4. The plot of ρ(ω)
against frequency is depicted in Fig. 2. From this plot
ρmin = inf0<ω<∞ ρ(ω) = 0.9304 and using (28) and (29)
ρ0 = 1.1050 and ρn = ∞. The stability margin ρmax of
(36) is

ρmax = min{ρ0, ρn, ρmin} = 0.9304 .

Let us note that this result differs from the value ob-
tained by the method presented in Kanno and Yang
[2002] (ρ∗max = 0.8608). Also the maximum admissible
intervals of the parameters preserving stability (q1 ∈
[0.5423, 3.4329], q2 ∈ [−0.1816, 0.1627], q3 ∈ [0.0411, 0.1139])
reflects better the operating conditions than those ob-
tained in Kanno and Yang [2002], (q∗1 ∈ [0.5423, 3.2167],
q∗2 ∈ [−0.1816, 0.1370], q∗3 ∈ [0.0802, 0.1085]).

The corresponding minimum confidence level preserving
stability of (35) is αmin = max{0, 1 − ρmax} = 0.0696.

6. CONCLUSION

The paper extends the known results about systems with
fuzzy parametric uncertainty. A more realistic case is
considered when the coefficients of characteristic polyno-
mial are linear affine functions of parameters described
by fuzzy numbers. This is for example the case when a
plant with the coefficients of transfer function described

by fuzzy numbers is controlled with a fixed controller.
Since nonsymmetric membership functions are involved
the presented approach can deal with the systems whose
operating point does not lie in the middle of admissible
parameter intervals that is a common situation.
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