Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

IFAC

Learning from Data using XCS

Elias B. Ayele* Abdollah Homaifar ** Albert Esterline ***
Robert Dean **** Dan Rodgers f

* Electrical Engineering Department, North Carolina A&T State
University, Greensboro, NC 27411 USA (e-mail: ebayele@ncat.edu)
** Electrical Engineering Department, North Carolina A&T State
University, Greensboro, NC 27411 USA (e-mail: homaifar@ncat.edu)
= Computer Science Department, North Carolina A&T State
University, Greensboro, NC' 27411 USA (e-mail: esterlin@ncat.edu)
e General Dynamics Robotics System, Westminster, MD 21157 USA
(e-mail: rdean@gdrs.com)
t General Dynamics Robotics System, Westminster, MD 21157 USA
(e-mail: drodgers@gdrs.com,)

Abstract: In this paper, we present first of all the working principles of an accuracy based
learning classifier system. We also discuss the use of learning classifier systems for learning from
data by considering a sample application. The sample application, the Terrain Reasoner Weight
Adapter (TRWA), is a system that learns near optimal weights to be used by a path planner
while generating routes. Manually generated weights are used to generate a sample data set
for training the TRWA. We detail the TRWA and the significant improvements made to the
usual XCS strategies in order to achieve our goal of using a supervised learning technique for
the TRWA. A reward assignment scheme is developed. The use of tournament selection instead
of roulette wheel selection for selecting two parents in the GA is also analyzed. The results

obtained show the efficiency of the method.

1. INTRODUCTION

Among machine learning approaches, learning from train-
ing examples is one track of significant interest. In
statistical machine learning, two different scenarios are
clearly distinguished : supervised and unsupervised learn-
ing (Seeger (2001)).

In supervised learning, learning is facilitated by a teacher.
Various input—output mappings are provided as part of
the training examples, and the learner is given some sort
of reinforcement for selecting the best output for a given
input. In the end, input-ouptut mapping rules, also known
as classifiers, are evolved. For some classes of problems,
identified as classification or pattern recognition problems,
the output space (set of labels) is finite whereas for others,
categorized as regression estimation problems, the output
space is infinite. Minimizing errors in generalization and
expected loss are of great importance for classification and
regression estimation problems, respectively. In unsuper-
vised learning, there is no a priori output, that is, no
labeled examples are available. Instead, a model is built
for the given set of inputs.

This work considers the use of a supervised learning
technique for learning from training data. The next section
details a learning classifier system, specifically XCS, that is
currently widely used. Section 3 discusses a specification of
the system developed, the TRWA. Section 4 then presents
the use of XCS as a supervised learning technique playing a
central role in the TRWA. It emphasizes the modifications
introduced to the usual XCS strategies. Results found are
shown in section 5, and section 6 concludes.

978-1-1234-7890-2/08/$20.00 © 2008 IFAC

15451

2. XCS

An XCS is a learning classifier system (LCS) where classi-
fier fitness is based on the accuracy of the payoff prediction
rather than the prediction itself. An XCS strives to achieve
generalization through the evolution of a population of
the condition—action—prediction rules (classifiers). An XCS
thus has the tendency to evolve accurate, maximally gen-
eral classifiers (Butz and Wilson (2001)). !

The system gets its input o(t) from the environment
and then executes actions «(t) upon the environment.
These actions are those favored by classifiers that have
matching condition with the sensory inputs and yet are
more accurate than others. For the input—output pair, a
reinforcement program (RP) determines the reward p(¢).
In multi-step problems, the RP also determines the point
of termination, which could be the receipt of reward or
exceeding the maximum number of trials.

Figure 1 illustrates the interaction of the XCS with the
environment and the RP and could address either a
single step or a multistep problem. In the former case,
successive situations are not related to each other, and
reward is received at every step. In the latter case, a
reward is received only in the final step. This reward is
then propagated back and distributed to all classifiers that
led to this final step.

1 Butz and Wilson (2001) details the XCS algorithm.

10.3182/20080706-5-KR-1001.1801

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

Reinforcement State

Program et Environment
i 4 A
H s
Fl L g
<

XCS

Fig. 1. XCS interacts with the environment and RP [Butz
and Wilson, 2001]

2.1 Classifiers in XCS

A classifier in an XCS has three slots: condition (matched
against the current environmental state), action and pa-
rameter slots. The condition is a string bits from the
set {0,1,#}, the hash, #, being a don’t care, matches 0
or 1. The action is a member of the set {a1,as,...an},
where a; represents an action the agent can perform on
the environment. The parameter slot mainly consists of
four parameters: the prediction p, the prediction error e,
the fitness F', and the numerosity num. In order to speed
processing, a classifier is represented as a macroclassifer,
which represents all num traditional classifiers (or micro-
classifiers) in the population [P] with the same condition
and action. Each classifier keeps additional parameters:
the experience exp, the time stamp ts, and the action set
size as. It is convenient to partition the description of a
single operating cycle into the traditional performance,
reinforcement, and discovery components. A schematic
illustration of XCS is given in Figure 2.

Performance Component Classifiers in [P] with con-
ditions that match the current sensory inputs form the
match set [M]. If no classifier matches the sensory input
or if [M] contains fewer than the threshold 6,,,, num-
ber of actions, then a classifier is added to [M], that is,
the input is “covered”. This covering procedure assures
that at least a certain number of actions is present in
each match set and causes the program to converge more
quickly (Butz and Wilson (2001)). Covering creates a new
classifier that matches the current input and has a random
action. But, when [M] does not have sufficient number of
actions, then the new classifier’s action is selected from
{a1,as,...a,} excluding those actions already present in
[M]. If [P] has reached its allowable maximum size N,
then a classifier is deleted from [P].

For each possible action a present in [M], XCS computes
the system’s prediction. The prediction array is the set
of all predictions PA;, for all possible actions a,. PAy is
the fitness—weighted average of the predictions p; of the
classifiers in [M] advocating that action and is given by
(where Fj is the fitness of the i'" classifier in [M])

ZFipi
PAy, = SF (1)

The XCS chooses an action from those present in [M].
This action selection could be random, roulette wheel
(prediction—based probability) or deterministic (maximum

[ALs

prediction). An action set [A], consisting of those classifiers
in [M] that advocate the selected action, is then formed.

Paramete!
Update

Fig. 2. Schematic illustration of XCS

Reinforcement component ~ When a scalar reward p is
received from the environment, the payoff P is computed
using a Q-learning-like reinforcement learning technique
given by

P =p_1+v+max(PA) (2)
where p_1 is the reward from the previous time-step and
v is the discount factor. For single-step problems, the
payoff reduces to p.

For multi-step problems, all parameter updates are per-
formed on the previous action set [A]_;. For one-step
problems, updates are done on [4], and, in fact, there is
no [A]_; for such problems. Accordingly, the term “action
set” in the preceding discussion may refer to either [A] or
[A] 1.

At generation j, the prediction p;, a statistic estimating
the payoff P, and the error ¢; of a classifier are updated
when that classifier enters [A] using the moyenne adap-
tive modifée (MAM) technique (Wilson (1995)). In this
technique, the Widrow—Hoff procedure is used only after a
classifier has been adjusted at least 1/ times; otherwise,
the new value is simply the average of the previous and
the current. The Widrow—Hoff procedure is given by

pj < p;j + B(P —pj) (3)
€ — €+ B(P —pjl —¢j) (4)
where § (0 < 8 < 1) is a learning rate constant. The
average of the current and previous values is computed as

pj — (P + (exp; —1)p;)/ exp; (5)
& — ([P —pj| + (exp; —1)e;)/ exp, (6)
or equivalently
pj —p; + (P —pj;)/ exp; (7)
€& — €+ (I[P —pjl —€)/ exp; (8)

The fitness calculation is a bit involved and is tied to
the classifier’s accuracy in prediction. First, the classifier’s
accuracy k; is computed using the formula

k;j — {?(Ej/EO)U, zf €; > € (9)

, otherwise

15452

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

A classifier is considered “accurate” if its error is less than
a threshold, €y, and is given accuracy 1. If the error is
greater than ¢g, the resulting lower accuracy is given by a
decaying polynomial of the error as in (9) where v (v > 0)
and a (0 < a < 1) are constants that control the rate
of decline in the accuracy. Then a relative accuracy k; is
calculated for each classifier in the action set by dividing
its k; by the sum of the k;s of the set, that is,

k-,

! J

b = >k
7

(10)

Finally, the fitness of each classifier is computed using the
Widrow—Hoff procedure,

F; — F; +ﬁ(k; — Fj) (11)

These cyclic and interlinked updates of p;, ¢;, and Fj
make the fitness of a classifier represent the accuracy of
its payoff prediction relative to the prediction accuracies
of other classifiers in its action sets. This is the basis for the
selective pressure in XCSs toward more accurate classifiers.

Discovery Component In several LCSs, the genetic al-
gorithm (GA) has no constraint on mating, that is, it
panmictically uses the entire population. But in XCS the
GA operates on members of [A]_; or [A]. This shift in
GA locus increases the proportion of accurate, maximally
general classifiers in [P]. Besides, the GA is not executed
at every time step. Instead, the time stamp ts values
of classifiers in [A] is averaged and subtracted from the
current time step, and, if the difference exceeds a certain
threshold, 0g 4, the GA is invoked.

Crossover and mutation maintain genetic diversity from
one generation to the next. In crossover, condition bits
(beyond a certain cross—site for one point crossover) are
swapped between two parent classifiers. In mutation, the
value of a classifier bit is changed to another valid value
(chosen from {0, 1, #} for condition bits or from {0, 1} for
action bits). The parents are selected from [A] with fitness—
based probability or using tournament selection (Butz
et al. (2002)) and copied. A cross—site is selected randomly
and the copies are crossed with probability x and mutated
with probability p per allele. The resulting offspring are
inserted into [P], possibly replacing two others if the
limit for the population size, N, is exceeded. Less fit
classifiers that participated in a threshold number of action
sets are susceptible to deletion. Using such a threshold
guarantees that individuals have had sufficient time for
their parameters to be estimated (Kovacs (1999)).

To deal with sparseness and to evolve classifiers that are
as formally general as possible without sacrificing accu-
racy, an optional procedure called subsumption deletion
is applied (Wilson (1998)). A classifier subsumes another
if its condition is more general than the condition of the
subsumed one.

Some applications of XCS to a real-world problem include
data mining (()), and optimization (Ross et al. (2002))
among several others. Investigation of XCS’s working
principles is available in (Butz et al. (2001)).

v

» TRWA | Path Planner —p Planner
TRWA TRWA Score
Request Response *
Time Importance Time Weight
Gear Preference Mobility Weight Other
Threat Level Exposure Weight Inputs

Goal Type
Goal Exposure

Fig. 3. Exploitation phase system block diagram

3. TERRAIN REASONER WEIGHT ADAPTER
(TRWA)

In this work, an example area of operation, qualitatively
characterized and with recognizable topographical fea-
tures, is considered. A mission is set for an agent with
source, target, and tasks. In areas of operation where there
are constraints other than goal achievement, routes should
be carefully planned. These constraints include time spent
by an agent for traversal, exposure to the enemy, mobility,
coverage for reconnaissance, and obstacle avoidance. It
is desired to generate routes that meet most of these
constraints while achieving the basic goal of reaching the
destination.

The Terrain Reasoner Weight Adapter (TRWA) is a super-
vised learning program that learns from a given training
dataset. (The adaptation component of the TRWA to to-
pographical features will be covered in future work.) Once
the learning is over, the TRWA generates near optimal
values of weights for stealthy movement of a single agent.
Consequently, there are two phases for the TRWA, learning
and exploitation. In the learning phase, manually gener-
ated weights are used to produce a training dataset. In
the exploitation phase, the already—developed planner uses
the TRWA outputs, in collaboration with other inputs, to
plan routes that best satisfy the constraints. Figure 3 is
a block diagram of the overall system in the exploitation
phase. We next explain the inputs and outputs shown in
this diagram.

3.1 System Inputs and Outputs

TRWA Request
The TRWA request (input) comprises the following
attributes.

(1) Time Importance (T1I) indicates the level of impor-
tance given to the time minimization while planning
a path. The levels of time importance are HARD
(maximum TT), SOFT and DON’T CARE (minimum
TI).

(2) Gear Preference (GP) is the preference for the gear
to use for navigation. Gear levels 0 (slowest) to 3
(fastest) are used.

(3) Threat Level (TL) measures the level of exposure
(NONE, POSSIBLE, or EXISTS) in the environment.

(4) Goal Type (GT) specifies the spatial representation
of the goal as POINT, LINE, or AREA.

(5) Goal Exposure (GE) is a percentage measure (0 to 1)
specifying the exposure level of the goal to threats.

TI and GP dictate the preference level given for time
minimization and gear level, respectively. The remaining
specify the current environmental condition.

15453

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

Condition Route Information | Weights Scores
Threat Level Time Estimate Time Time
Goal Type Distance Estimate Mobility Exposure
Goal Exposure | Gear Percentage Exposure

Table 1. Training data set format

TRWA Response The TRWA response (output) is a
combination of three weight factors, time weight (T,),
mobility weight (M,,), and exposure weight (Ey,) from the
interval [0,1]. For training data generation, the weights are
manually generated in an incremental fashion.

Planner Score Planner scores evaluate the routes gen-
erated by the planner based on time and exposure min-
imization. The range for both time and exposure scores
is [0, 1]. The TRWA is unaware of the score generation
process as the planner uses its own independent algorithm
to evaluate the performance of a route. Once generated,
the scores guide the learner during the learning phase.

3.2 Training Data Presentation

A dataset, produced by the path planner and covering
different scenarios for various manually generated weight
values, is used for training. A training data point is
composed of 13 attributes and has the format shown in
Table 1. In the training dataset, scenarios with threat
level, goal type and goal exposure triples of (0,0,0), (0,1,0),
(0,2,0), (2,0,0), (20,1), (2,1,0), (2,1,1), and (2,2,1) are
present. Some scenarios are represented more than once
for varying source-to-goal distance. The gear percentage
indicates the percentage of the route covered at each gear
level.

One challenge with the training set is that, for a given
scenario, there are multiple weight combinations that
generated maximum-scoring routes.

4. TRWA: LEARNING PHASE

The TRWA is a single step XCS system. It gets its inputs
from the environment (the training dataset in this context)
via the detectors (Figure 4). The environmental condition
and route information are matched with the condition of
a classifier. The TRWA outputs are compared with those
present in the training dataset. Then the environment
generates the appropriate score for the winning action.
Finally, the RP, which is effectively the reward generator,
computes a reward and sends it to the TRWA. This cycle
continues until specified convergence criteria are met.

4.1 TRWA Classifier Format

The goal exposure input and all TRWA output parameters
are real numbers within the interval [0,1] while the remain-
ing input parameters are integers with only limited sets
of values. Accordingly, a way to represent the real-valued
attributes is developed. To simplify the representation,
three regions are considered for the goal exposure (GE), as
shown in Table 2. This clustering is also used to identify
the regions for the weights T.,, M,,, and F,, that result in
near optimal scores for time and exposure. It also serves
as a validation means in the exploitation.

Environment (Training Data Set)

kE%ironmental Condition Weights ScoreJ

) © 4‘ B
Y A\ /
Detectors Effectors

Route Information

Reinforcement

2 Program

/

TRWA

®

Fig. 4. Learning phase system block diagram. The encir-
cled numbers indicate the sequence of operations.

Range Region | Value
0<GE<1/3 Low 0
1/3<GE <2/3 | Medium | 1
2/3<GE <1 High 2

Table 2. Regions for goal exposure

Condition Action (Weight)
TI [GP|[TL [GT [GE [Tw [My [Ew
Table 3. TRWA classifier format

Every condition slot is represented by two bits, and every
action slot is represented by n bits. (The slots are shown
in Table 3.) The parameter n is dependent on the weight
increment used for generating the training dataset. For
a weight increment of 0.1, where 11 different weights are
represented, the value of n is four, and there are 1330
data points per scenario. (No data point exists with all
zero weights.) Not all bit combinations are valid. In all
condition slots other than the gear preference slot and in
all action slots, there are invalid bit combinations. For
instance, there are only three possible values, 0, 1, and
2, for time importance (i.e., bit strings 00, 01, and 10,
respectively). Hence bit string 11 is invalid.

With ten condition bits and 3n action bits, the TRWA
is much more complex than the usual XCS benchmark
problems (e.g., the Woods and Maze problems), where the
numbers of actions are far smaller. Parameter n can be
changed in accordance with the level of precision required.

4.2 Strategies

Initialization Usually, in an XCS, the initial population
is either generated randomly or left empty. For the TRWA,
a number of data sets (representing a small percentage of
the population size) with maximum score are deliberately
injected into the initial population. This has a positive
impact on the speed of convergence.

Covering Unlike the usual case of inserting one classifier
when covering is necessary, a small percentage or a fixed
number of classifiers is inserted. Since there are several
possible actions, the injection of classifiers advocating dif-
ferent actions during covering hastens the action coverage
process and intensifies early diversification.

15454

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

FEzxploration and Exploitation Exploration alone is done
until a point where individuals get enough experience.
Thereafter, exploration and exploitation act alternatively.

Action Selection ~ For exploration, either random or
roulette-wheel action selection schemes are used, and ex-
ploitation uses only deterministic action selection.

Partially Matched Actions As a result of the extraor-
dinarily large number of actions, it is likely that only one
classifier advocating a given action exists in the action set.
Therefore, crossover might not operate at all. To alleviate
this problem, a classifier is inserted into the action set if
at least one of its action slots matches the corresponding
slot of the selected action. This is done for a small percent
of generations and only during exploration.

Genetic Algorithm (GA) Parent classifiers for the GA
are selected using either roulette wheel or tournament
selection mechanisms. Crossover is applied only to the con-
dition part of a classifier. A cross-site is selected randomly.
Due, however, to the presence of invalid strings, not all
cross-sites result in valid offspring, hence a check for va-
lidity is done. If one or more attributes in the offspring are
invalid, the process is repeated until all attributes become
valid or the number of trials exceeds a threshold. In the
latter case, the cross-site selection will be limited to one of
the junction points of the condition slots. In the original
XCSs and later derivations, the mutation rate is usually
kept fixed and very low. Diversity in early generations,
however, is beneficial in cases where there is a relatively
bigger domain for the actions than with standard XCS
problems. Thus, in this work, the mutation rate is made
to decrease gradually to its final, low value. If mutation
generates an invalid attribute value, the change is simply
rejected. Mutation is also dependent on the probability of
generating hashes in new classifiers. A bit is mutated to a
don’t care with probability proportional to the probability
of hash (P4), likelihood that a newly created classifier will
have a ’#’ at a position.

Reward To ensure that individuals in early generations
have sufficient time for their parameters to be estimated,
they are given a chance to participate in subsequent
generations rather than replaced early. The RP subsidizes
such classifiers, that is, it gives them a fixed bonus.

Reward Computation The reward (R) is computed as a
weighted sum of two factors,

(1) the time and exposure scores for a given weight
combination in a scenario (Individual Score) and

(2) the average performance of the weight combination
across different scenarios (Cumulative Score).

In order to favor the weight combination that performed
best for the given scenario, more weight is given to the
former. The reward is computed as

((TI*TS)+(2—TI)*ES> N

WIS *

2
WCS * CM(TI)
(12)
where MR is the maximum reward (1000), Wyg is the
weight for the individual score, Weg is the weight for

cumulative score, and the cumulative measure, CM (T1),
is computed as the average score performance of the weight
combination in different scenarios, as in (13)
S(TI«xTS)+ (2-TI)* ES
CM(TI) ="

5 (13)

where m is the total number of scenarios. C'M is a function
of the time importance (TI). The parameters Wrg and
Wes are to be tuned while subject to the constraint

Wis+Wes =1 (14)
Thus, the reward scheme discussed above is continuous,
that is, the reward given could assume any value between
0 and M R. In contrast, for a step-wise reward, either zero
or the maximum reward is given, as determined by (15).
This aids in favoring best classifiers to the next generation
when there are many competing classifiers.

<(TI*TS)+(2—TI)*ES ZRT)

2
0 ,otherwise

o) MR if

(15)

where Ry is a reward threshold (0 < Ry < 1).

Another variation uses the continuous reward scheme only

for some portion of the valid reward interval, that is, the
(LIxTS)+2-TD+ES - p .
2 = 47,

reward is computed as in (12) if
otherwise, it is reset to zero.

The reward schemes discussed thus far favor more general
classifiers. However, it is not desirable to have all maxi-
mally general classifiers in the final population as it is least
likely for one set of TRWA—generated weights to perform
equally good across a number of scenarios. Maximally
general classifiers can be screened out using a reward
assignment strategy based on the level of generalization.
Accordingly, (12) is modified as shown in (16) below.

(TI*TS)+(2—T[)*ES
R= MR« WIS*(5 +
Wcs*CM(TI)+WGEN * (1 7LG)

(i6)
where LG is the level of generalization, which is computed
as the ratio of the number of non-hashes (bits that are
not don’t cares) in the condition slot of a classifier to the
total number of bits in a condition slot, and Wgg N is the
weight given for the level of generalization in computing
the reward. The parameters W;rg, Weogs and Wagen are
subject to the constraint

Wis+Wes +Wgeny =1 (17)

5. RESULTS

At first, the learner is tested for several single scenario
cases. Once satisfactory results are obtained, then the
scenarios are grouped together and tests conducted.

5.1 Settings

For all tests conducted, the gear preference is fixed at level
3. The maximum number of steps per problem is set to
10000, and the maximum population size is 500. Other
parameters are given in Table 4.

15455

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

Parameter Meaning

B=0.2 learning rate

v=0.71 discount rate

Oga =25 GA threshold

v=0.1,aa =0.1, used in fitness calculation

eo = 0.01

x =0.2 probability of crossover

p=0.01 probability of mutation per character
O4er = 20,0 = 0.1 | used in classifier deletion from [P]
Py =0.1 likelihood of "#’

pr =10,y =0, initialization values for new classifier
Fr=10

Osup = 20 if exp > O4yp, do subsumption

Omna = 8 do covering if # of actions in |M| < Omna
R =0.95 reward threshold

Ts percentage tournament set size

Table 4. Regions for goal exposure

5.2 Test Results

XCS with its modifications has shown excellent perfor-
mance in generating optimal weights. Without the modifi-
cations, XCS was unable to converge. Except for one case
where the time and exposure scores are exceptionally low
(TL = 2, GT = 1, GE = 0.4), satisfactory results are
found. Step-wise reward computation resulted in better
convergence than continuous reward computation, which
did not converge at all. The use of tournament selection in
place of roulette wheel selection for selecting parents for
the GA, however, resulted in no better performance.

Figure 5 depicts the result (averaged over 50 iterations)
obtained for the test conducted using most of the scenarios
in the training dataset. The plot labelled “Correct” indi-
cates whether the suggested weights at that iteration are
considered correct. An output weight is considered correct
if the corresponding average score is above the threshold
value Rp. The other plot, labelled “Prediction Error”,
indicates an estimate of the error in the payoff prediction.

The payoff is effectively predicted and correct weights are
generated by iteration 5000. Though convergence began
much earlier, due, possibly, to the termination of some
strategies like decaying mutation probability, partially
matched actions, and early bonus, it is completed only
later in the run.

6. CONCLUSION

This work has shown the use of LCSs for learning from
training data. Usual XCS does not converge when using
large number of action possibilities. Moreover, the search
for the most optimal value for each scenario constrains
the flexibility on generalization, and, the presence of sev-
eral maximally scoring data points adds to this challenge.
Thus, for the supervised learning problem at hand, some
XCS strategies are adapted and some customized. Strate-
gies like initialization, covering, formation of the action
set (partially matched action), crossover and mutation are
modified. The changes introduced proved to be fruitful and
resulted in better convergence. XCS is best suited for the
TRWA than other methods in the field of machine learn-
ing, such as neural network, as it provides solutions better
understandable by the human-expert. The techniques de-
veloped could be adapted for other similar problems where

1.5

Correct
— Prediction Error

0.5

-0.5

0 2000 4000 6000 8000
Tteration

10000

Fig. 5. TRWA Percentage of Correct Prediction and Pre-
diction Error

learning from data is required. The overall results found
dictate the use of XCS in the area.

ACKNOWLEDGEMENTS

This work is sponsored by the US Army Research Lab-
oratory, under contract Robotics Collaborative Technol-
ogy Alliance (Contract Number DAAD19-01-2-0012). The
views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied,
of the Army Research Laboratory or the US Government.

REFERENCES

A. Barry, J. Holmes, and X. Llora. Data mining using
learning classifier systems.

M. Butz, T. Kovacs, P.L. Lanzi, and S.W. Wilson. How xcs
evolves accurate classifiers. In Proceedings of the 2001
Genetic and Evolutionary Computation Conference :
Gecco 2001, pages 927-934. Morgan Kauffman, 2001.

M.V. Butz, K. Sastry, and D.E. Goldberg. Tournament
selection in xcs. Technical Report 2002020, IIIiGAL,
July 2002.

M.V. Butz and S.W. Wilson. An algorithmic description
of xcs. In Advances in Learning Classifier Systems,
Proceedings of the Third International Conference -
IWLCS2000, pages 253—-272. Springer, 2001.

T. Kovacs. Deletion schemes for classifier systems. In Pro-
ceedings of the Genetic and FEvolutionary Computation
Conference, GECCO-99, pages 329-336, 1999.

P. Ross, S. Schulenburg, J. Marin-Blazquet, and E. Hart.
Hyper-heuristics: Learning to combine simple heuristics
in bin-packing problems. In Proceedings of the 2002
Genetic and Evolutionary Computation Conference :
Gecco 2002, pages 942-948. Morgan Kauffman, 2002.

M. Seeger. Learning with labeled and unlabeled data.
Technical report, University of Edinburgh, 2001.

S.W. Wilson. Classifier fitness based on accuracy. Fvolu-
tionary Computation, 3(2):149-175, 1995.

S.W. Wilson. Generalization in the xcs classifier system.
In Proceedings of the Third Annual Conference. Morgan
Kaufmann, 1998.

15456

