
 
 

Agent oriented software-development for networked embedded systems with real 
time and dependability requirements in the domain of automation 

 
A. Wannagat*, B. Vogel-Heuser* 

 

* Chair of Embedded Systems, University of Kassel, 
Kassel, Germany, (e-mail: wannagat@uni-kassel.de, vogel-heuser@uni-kassel.de). 

Abstract: A method for integrated development of multi agent PLC based control systems using IEC 
61131-3 will be introduced. Dependability of technical plants will increase if control behaviour can be 
adapted during runtime. This is achieved by dynamic reconfiguration of faulty devices, e.g. sensors, at 
run-time. The replacement is based on analytical redundancy that is represented by a network of sensors 
and their interdependencies. This method supports the developer to sketch a suitable modular software-
architecture in regards to the hardware-architecture and the specific requirements of real-time and 
dependability. The integration of classical methods like fault-tree-analysis and graph-theory enables the 
developer to build a knowledge-based system so that the agents would have the ability to recognize 
faults, seize the needed actions within their scope and fulfil their goal. Recent investigations using a 
model-plant showed the feasibilities of this approach. 

 
 

1. INTRODUCTION 

The requirement of highly flexible and reconfigurable 
systems is growing due to rising cost pressure, shorter 
product life cycles and mass customization (Harrison and 
Colombo, 2005). Correspondingly the industry has a growing 
interest in flexible, scaleable, reusable, adaptable and highly 
reliable systems. 

Due to the power of modern controller hardware it is possible 
to make even very complex software based decisions at 
runtime. This flexibility can be used to react on failures, in 
order to increase the reliability or to improve the efficiency 
by adapting to changing requirements. These strategies are 
usually specified during the engineering process to ensure the 
predictability of the system. The consequence is a static 
software design, where additional flexibility leads to a 
complex software design implementing all possible 
combinatorial operation sequences.  

A well suited approach for developing decentralized, 
complex software systems with high flexibility is the 
paradigm of agent oriented software engineering. In agent 
oriented software, development of an agent is defined as an 
encapsulated software unit with a defined goal. An agent 
autonomously fulfils its goal and continuously interacts with 
its environment and other agents (Wooldridge and Jennings, 
1995). To achieve its goals and to develop controlling 
strategies at run-time, agents need knowledge about the 
process and the automation system. If a component fails, the 
strategy has to be adapted. The agent must be able to detect 
the failure and be aware of the impact on the system, as well 
as to reconfigure the system dynamically.  

The difficulty in developing an agent system is to define the 
action space of an agent precisely enough to ensure both, the 

reliability of the system and the fulfilment of the required 
performance and product quality. However neither methods 
nor tools that are adapted to design agents for industrial real-
time applications exist (Mubarak et al., 2007).  

The lack of suitable methods for industrial applications is 
actually recognized by several working groups. The national 
project AgentAut (Lüder et al., 2006) as well as the European 
projects Pabadis (Klemm and Lüder, 2003) and Pabadis 
promise (Peschke et al., 2005) work on an integrated method 
for distributed control systems and focus on the integration of 
PPC/MES and control level. The European projects 
SOCRADES (Socrades) and RI-MACS (RI-MACS) use 
agents to organize the coordination of communication 
networks between distributed devices. Agents are not applied 
for open or closed loop control purposes in the field control 
level. In all these projects the flexibility of agents is primarily 
used to realize an optimized planning of production program 
at runtime and not to increase the dependability of the system 
regarding real time requirements. 

Due to these reasons, the development of flexible agent 
oriented real-time systems is highly desirable but still a 
challenge. The fulfilment of requirements like real-time, 
dependability and flexibility needs a systematic development 
method that considers all aspects of the system to be 
designed. 

2. DESIGN ASPECTS FOR AN AGENT BASED SYSTEM  

The approach is subdivided into four major aspects, i.e. 
architecture, requirements and boundaries, diagnosis and 
fault management, and knowledge base. These four aspects 
are substantial for the whole engineering process, which is 
separated into to main phases. The first phase is intended to 
analyse the given system, subdivide it into modules, 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 4144 10.3182/20080706-5-KR-1001.1779



 
 

 

collecting the relevant requirements and capturing the 
analytical dependencies between both, the requirements and 
the modules.  

The second phase is intended to build a suitable structure of 
the software, designing the behaviour of modules and agents 
as well as creating a knowledge base for the agents.  

To reduce the complexity and enhance the reuse of the 
engineering process, we examine the system under three 
major views (according to Lauber and Göhner, 1999) in all 
steps of the proceeding. The technical system, which 
describes the mechanical parts of a plant, the automation 
control system, which includes controllers, networks, sensors 
and actuators, and the technical process itself, which 
describes the manufacturing of the product. The advantages 
of these different views are reduction of complexity for the 
design, and the opportunity to modify each view separately 
from each other without affecting the other views. 
Nevertheless, these are all views on the same system and 
most modules will have more than one view.  

This separation into three views fits nearly perfectly to an 
agent based approach. Agents uses and offers functionalities 
by negotiation. One agent type represents the parts which 
have to be produced and uses the functions (skills) the other 
agent types offer. The first type of agent needs information 
about the technical process, to know what are the required 
functions as well as the necessary sequence to produce the 
desired product. The second type of agents offers functions 
that belong to modules of the underlying technical system. 
The challenge for the engineer is to subdivide the functions 
of the technical process in such detail until they can be 
fulfilled with a combination of the technical system 
functions. As well as the recipe of the technical process the 
technical system can have one or more different possible 
sequences to manufacture the product.  

However, this coordination is bound to many requirements 
regarding the real time behaviour, logistical aspects and the 
reliability of a production system. According to this, it is 
important to specify exactly these aspects during the design 
phase and to create the responding behaviour boundaries 
(activity space) for the agents. 

The collected requirements during the analysis phase are the 
base for the development of the agent system. The engineer 
design a suitable modular architecture based on the technical 
system with all its’ relevant requirements. The flexibility of 
an agent based system depends on the boundaries of the 
activity space. These aspects are substantial for the 
knowledge base used to enable the agents in fulfilling their 
goals and reacting flexibly to disturbances. The agent must be 
able to estimate the influence of its action on the system at 
any given time. This is a prerequisite for reliability and the 
performance of the system, because an agent must know 
when he is going to violate requirements or when there is no 
solution for further operation within the given boundaries. In 
the latter case the technical process has to be stopped. 

All chosen types of diagrams are similar to existing domain 
specific notations and easy to devolve them into PLC 

Programming suites for example. The diagram for the 
automation system can easily be used to configure a PLC, the 
specific description of behaviour based on state-machines can 
automatically be transformed into sequential function chart of 
the IEC 61131-3. (Vogel-Heuser, 2005) 

2.1. Architecture 

The basis of the software architecture for the agent is the 
model of the whole system, which is subdivided into three 
views. The goal is to reach a modular structure, where every 
module is functional and structural united. The structure is 
mainly oriented at the technical system and consists of 
sensors and actuators of the automation control system, 
residing at the most bottom level. The functionality deduced 
from the requirements of the technical process has to be 
fulfilled by one or a combination of modules of the technical 
system. At runtime the agents will use the modules’ functions 
to observe and act on the technical process. The chosen 
diagrams base upon Internal-Block and Activity Diagrams of 
the SysML (Hause, 2006). SysML (Systems Modelling 
Language) base on UML and is a domain-specific modelling 
language for systems engineering applications.  

TechnicalSystem[Modell] Dataibd [ ]

<<block>>
TechnicaSystem

hydr : HydraulicSystem
{ Satisfies = ContinuousPressure, AmbientTemperature

R1 : Frame

d1 : PressureCylinder

{ Satisfies = PressureCylinder }

d2 : PressureCylinder

d3 : PressureCylinder

d4 : PressureCylinder
}

d5 : PressureCylinder
}

m : Mat

v3 : Valve

v5 : Valve

v1 : Valve

v2 : Valve

v4 : Valve

hyrd1 : Valve
{Satisfies = ValveTemperature, ValvePressureBuildUp

Generator : PowerSupply
{ Satisfies = PowerSupply }

E_kin

E_kin

E_kin

E_kin

E_kin

Pressure

Pressure

Oil

Oil

Voltage

{ Satisfies = PressureCylinder }

{ Satisfies = PressureCylinder }

{ Satisfies = PressureCylinder }

{ Satisfies = PressureCylinder }

Pressure

Pressure

Pressure

Prozessautomatisierungssystem Rahmen[Paket] ibd [  ]

<<block>>
Prozessautomatisierungssystem

R : Rahmen

Distanzsensor : Sensor
{Satisfies = Sensorausgangsspannung , Umgebungstemperatur, Distanzmessung}

BetriebsspannungWert

Druckzylinder : Zylinder

Drucksensor1 : Sensor
{Satisfies = Drucksensor, Druckbereich} Betriebsspannung

Wert

Ventil : Aktor
{Satisfies = Ventildruck }

Betriebsspannung

Wert

Stellwert

BKwxyz : Buskoppler

KL2 : KlemmeKL1 : Klemme

S7 : SPS

Gen : GeneratorSpannung

E2.2E2.1E2.0A1.0

Bus

G(s,temp) : TransmissionBehavior
ControlPointLimitation: Int_Interval

Accuracy : Int_Interval
WokingRange : Int_Interval

DistanceSensor : Sensor
{ Satisfies = SensorOutVoltage, AmbientTemperature, DistanceMeasurement }

BKwxyz : BusCoupler

KL1 : Clamp KL2 : Clamp

R1 : Frame

Value

PreassureCylinder : Cylinder

PreassureSensor : Sensor
{ Satisfies = PressureSensor, PressureRange}

{ Satisfies = ValvePressure }
Valve : Actor

Value

Value

ControlValue

OperatingVoltage

OperatingVoltage

OperatingVoltage

Voltage

AutomationConcept

TechnischerProzess[Modell] Dataibd [  ]

<<block>>
Technischer Prozess

H3 : Wärmetauscher

Auslaufzone : Prozessabschnitt
{Satisfies = AuslaufzonenTemperatur , AuslaufzonenDruck, Auslaufzone}

Einlaufzone : Prozessabschnitt
{Satisfies = Einlaufzonendruck , EinlaufzonenTemperatur, Einlaufzone}

H1 : Wärmetauscher

Mittelzone : Prozessabschnitt
{Satisfies = Mittelzone , MittelzonenTemperatur, Mittelzonendruck}

H2 : Wärmetauscher

Rn+1 : Rahmen Rk+1 : RahmenRn : Rahmen Rk : RahmenR1 : Rahmen Ri : Rahmen

Matte
Matte

Temperatur TemperaturTemperatur

Matte

DruckDruck Druck Druck Druck Druck

Matte

H1 : Heater H2 : Heater H3 : Heater

InletSection : ProcessSection
{ Satisfies = PressureInletSection, 
InletSectionTemperature, InletSection }

Mat Mat
Mat

Mat

Pressure Pressure Pressure Pressure Pressure Pressure

Temperature

MediumSection : ProcessSection
{ Satisfies = PressureMediumSection, 
MediumSectionTemperature, MediumSection }

CalbrationSection : ProcessSection

{ Satisfies = PressureCalibrationSection, 
CalibrationSectionTemperature, CalibrationSection

Rn : Frame
R1 : Frame

Rn+1 : Frame Rk : Frame Rk+1 : Frame Ri : Frame

Temperature Temperature

Technical Process

Technical Process

 
Fig. 1. Different views on a system (see fig. 7, 9, and 10 for 
details) 

Because of real-time-requirements, agents are not used on the 
lowest level, i.e. the actuator and sensors level, in this 
approach. An agent-typical negotiation to compensate 
failures of sensors or actuators is not possible within a single 
PLC-cycle of some milliseconds. Consequently there are no 
agent-typical mechanisms on this level. Instead a uniform 
module-structure, which allows the diagnosis and messaging 
of failures and as a consequence the definition of measures to 
compensate failures, has been developed.  

In some cases both the diagnosis of a failure and the measure 
are not constricted to the same module. Fault-Tree-Analysis 
(FTA) is used as a method to define the interfaces that are 
necessary to communicate occurring failures.  

2.2. Requirements and Boundaries 

The requirements are the basis for specifying the action space 
for the agents and to define their goals as well as the 
parameter to achieve them. The survey of these requirements 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4145



 
 

 

is separated into three steps, based on the same three views 
mentioned above (fig. 3).  

St
ep

1
St

ep
3

St
ep

2

Collecting of module
 specific requirements

Relations between functional
and non functional requirements

Full specified action-space
for the agents

Modular structure of the system
seperated to the three views

Modules with their
specific requirements

Network of requirements
 and their relations

compare the desired flexibility
with the predefinied requirements

 
Fig. 2. Requirements: From Analysis to Action Space 

In the first step, the requirements related to contained 
modules, interfaces and connections are collected separately 
for each view. Unlike the modules, which can be related to 
more than one view, these requirements are strictly related to 
their view. The same module can be viewed under different 
aspects. For example a valve is an actuator for the automation 
control system; it has a mechanical representation in the 
technical system and it controls the flow rate from the 
technical process view. This leads to two advantages: firstly, 
it reduces the complexity because the requirements survey is 
separated to three views for each element and secondly, it is 
the first connection between the requirements of different 
views, when they are related to the same element.  

In the second step, relations between functional and non 
functional requirements (first step) need to be analysed and 
linked to each other using the requirement and the parametric 
constraint diagram of SysML. The predefined functions of 
the modules are linked to the appropriate requirements and 
boundaries regardless of the three views. The result is a 
network of requirements and their relations, which makes it 
easy for the developer to get an overview of functionalities, 
requirements and boundaries.  

In the third step, the developer evaluates if the desired 
flexibility may be reached with the predefined boundaries 
and specifies how much flexibility the agents should have. 
According to the action space, which allows the agents to 
navigate and to achieve their goal, its structure will be 
defined within the defined boundaries. Every parameter has 
to be checked regarding its influence on the time delay 
according to real time requirements and the failure 
probability of its related functionality regarding 
dependability. Using these relations the agents are able to 

achieve their goal by changing the relevant parameters 
dependently in relevance to the possible side effects. 

2.3. Diagnosis and Fault management 

To fulfil the requirements regarding the reliability of the 
plant, the agents have to know the effect of their actions as 
well as to estimate the significance of a changing 
environment regarding their requirements within the whole 
system. 

Error 1.1

Error 1.2 Error 1.4

Error 1.5
Sensor 

1.1
faiulre

Error 1.3

Module 1

Module 1.1

Error 1.1.1

Sensor 
1.1.1
failure

Sensor 
1.1.2
failure

Error 1.1.2

Sensor 
1.1.3

failure

Error Module 
2.1

Error 2.3Error 2.2

Error 2.5
Sensor 

2.1
failure

Error 2.4

Module 2

Module 2.1

Error 2.1.1

Sensor 
2.1.1
failure

Actuator 
2.1.2
failure

Error 2.1.2

Sensor 
2.1.3
failure

Module 3

Actuator 
3.2

failure

Sensor
3.3

failure

Sensor 
3.1

failure

Error 3.2Error 3.1

 
Fig. 3. Failure tree combined with the module structure 

On the basis of a Fault-Tree-Analysis (FTA, Vesely, 1981) 
and the same modular structure as used before for the 
software architecture, the developer is able to specify the 
relationship between the functionality of a module and its sub 
modules. The goal is to specify the probability for correct 
execution of each function based on functions of the related 
subsystem until it reaches the basis elements of the 
automation control system at the bottom level. In this way it 
should be possible to calculate the probability of a 
malfunction when the quality of a sensor measurement 
changes. Finally, the knowledge about the relation between 
the quality of an automation control system element, e.g. the 
quality of the sensors’ measurement, and the precision of the 
actuators’ action, and the functionality of a module is 
implemented in the agents. This relation is used to calculate 
both the risk of a failure regarding the observed changes and 
the effect of possible counteractions, i.e. replacement of a 
sensor by a virtual (calculated) sensor value. Each agent is 
able to observe all elements of the automation control system 
and to relate the real values to calculated values of its internal 
system model. It is able to detect faulty elements and also to 
calculate virtual sensor values in case of failure. The second 
mechanism is based on a distributed detection of failures. It is 
a matter of fact that an occurring failure and the primary 
cause are not always in the same module. Therefore a failure-
interface to send messages to corresponding modules is 
implemented in each module. The failures that needs to be 
communicated are defined by the cross cuts between the 
branches of the failure tree and the capsules of the modules. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4146



 
 

 

Knowledge base 

The knowledge base is an essential part of agents and 
includes a model of the environment as well as requirements 
and boundaries. While the latter aspects describes and 
structures the action space, the system model (fig. 5) is used 
to realize dynamical redundancy. Static redundancy needs a 
redundant component, which can be used in case of failure. 
In our approach a so-called dynamic redundancy is realized, 
which is based on a software approach using still existing 
sensors with compensation exemplarily explained in the 
following. In case of a sensor failure, analytical dependencies 
of the model are used to calculate estimated value at runtime. 
Katzke and Vogel-Heuser (2005) introduced auto 
reconfiguration service, which is a concept of UML-PA 
(UML for process automation, a UML profile) and based on a 
reconfiguration class using the mechanisms of inheritance 
and overriding. Using knowledge based approach, this virtual 
sensor can be used like a physical one even if its 
characteristics, e.g. precision, would have changed. Dynamic 
redundancy using agents is a substantial instrument to 
increase the availability by using such a mathematical model 
as part of their knowledge base. It can also be used to detect 
failures when real measurements are compared continuously 
with calculated ones. It is possible to detect the defect sensor 
by comparing it with other values. This virtual sensor values 
can be used to substitute real sensors at runtime to increase 
the availability of the whole system. 

Sensor1 Sensor2

Sensor3

Sensor5

Aktor1

f(S2,t)
q

f(S4,S5)

f(S4,S2)

f(S3,t)
q

f(S1,t)
q

Q Q Q

Q Q
Sensor4

Q

f(S3,t)
q

f(S1,S3,t)
q

f(S5,t)
q

f(S2,t)
q

Sensor1 Sensor2

Sensor3

Sensor5

Aktor1

f(S2,t)
q

f(S4,S5)

f(S4,S2)

f(S3,t)
q

f(S1,t)
q

Q Q Q

Q Q
Sensor4

Q
Sensor4

Q

f(S3,t)
q

f(S1,S3,t)
q

f(S5,t)
q

f(S2,t)
q

 
Fig. 4. Analytical dependencies of sensor and actuator values 

These mathematical dependencies are part of the knowledge 
base and can be modelled using a directed graph (Chartrand). 
Each node represents a component, e.g. a sensor or an 
actuator, and each line has functional correlation between 
them and can be used to calculate a virtual sensor value in 
case if there is no valid measurement available. Because of 
the substitution of real nodes with virtual ones, the structure 
of the graph will not change and it is possible to calculate 
values even on base of virtual sensors as long as no algebraic 
loops occur. Expecting that these estimated values are less 
precise than the original ones, the loss of quality is 
represented by a factor q at each connection between two 
nodes. Additionally every sensor has a quality value that 
represents the precision of measurement. The quality value of 
a virtual sensor is calculated by multiplying the quality value 
of the source sensor and the quality factor of the connection. 
Depending on the new quality-value the agents can plan its 
actions according to their requirements. 

3. EVALUATION 

The introduced concept was evaluated by two applications, a 
sorting machine (lab, Wannagat, et al., 2007) and a 
continuous thermo-hydraulic press, which is a real industrial 

application. Fig. 6 shows the example of a continuous fibre 
board press application. It is composed of up to 80 separately 
controlled frames. Each frame consists of 5 separately 
controlled cylinders with sensors for pressure and distance. 
The sensors and actuators are linked via a field bus to four 
PLCs, which are the runtime environment of the control 
software. One PLC may control between 10 and 20 frames. 
The failure of one of the components results in failure of the 
entire control chain.  

+

controlled
system

-

distance control

GiLs

GiL

Kp TN PICyiL

S-set value

 
Fig. 5. First identified entities of the sample application 

The requirements of the technical process (fig. 7) are 
modelled using internal block diagram which is part of the 
SysML. It shows the three sections of a continuous thermo-
hydraulic press from a material point of view. The mat is fed 
into the press on the left side and will be heated and 
pressurized by the inlet section with high temperature and 
pressure. The medium section is characterized by lower 
pressure and lower temperature, while the glue in the mat 
starts to harden. The final or calibrating section is in charge 
of producing a proper surface with low pressure and low 
temperature.  

TechnischerProzess[Modell] Dataibd [  ]

<<block>>
Technischer Prozess

H3 : Wärmetauscher

Auslaufzone : Prozessabschnitt
{Satisfies = AuslaufzonenTemperatur , AuslaufzonenDruck, Auslaufzone}

Einlaufzone : Prozessabschnitt
{Satisfies = Einlaufzonendruck , EinlaufzonenTemperatur, Einlaufzone}

H1 : Wärmetauscher

Mittelzone : Prozessabschnitt
{Satisfies = Mittelzone , MittelzonenTemperatur, Mittelzonendruck}

H2 : Wärmetauscher

Rn+1 : Rahmen Rk+1 : RahmenRn : Rahmen Rk : RahmenR1 : Rahmen Ri : Rahmen

Matte
Matte

Temperatur TemperaturTemperatur

Matte

DruckDruck Druck Druck Druck Druck

Matte

H1 : Heater H2 : Heater H3 : Heater

InletSection : ProcessSection
{ Satisfies = PressureInletSection, 
InletSectionTemperature, InletSection }

Mat Mat
Mat

Mat

Pressure Pressure Pressure Pressure Pressure Pressure

Temperature

MediumSection : ProcessSection
{ Satisfies = PressureMediumSection, 
MediumSectionTemperature, MediumSection }

CalbrationSection : ProcessSection

{ Satisfies = PressureCalibrationSection, 
CalibrationSectionTemperature, CalibrationSection

Rn : Frame
R1 : Frame

Rn+1 : Frame Rk : Frame Rk+1 : Frame Ri : Frame

Temperature Temperature

Technical Process

Technical Process

 
Fig. 6. Internal block diagram technical process 

From the initial description an activity diagram (fig. 8) of this 
process is designed showing the three sections and the 
process steps and its boarders represented by swim lanes.  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4147



 
 

 

holding 
{Satisfies = holdin

in

precompress

Closing : closingsequence
{Satisfies = closingpressure , closingdistance}

in out airing : Airingsequence
{Satisfies = airingdistance , airingpressure}

out
in

w_Closing : IF_setPoints w_Holdinw_Airing : IF_setPoints

closing [4s-0,1s < t < 4s+0,1s] airing [5s-0,1s < t < 5s+0,1]

heatingpress

compress : compressqeuence
{Satisfies = Verdichtungszonendistanz , Verdichtungszonendruck}

in outholding : Holdsequence
{Satisfies = holdingdistance , holdingpressure}

in out

precompress

Closing : closingsequence
{Satisfies = closingpressure , closingdistance}

in out airing : Airingsequence
{Satisfies = airingdistance , airingpressure}

out
in

calibrate zone

calibrate : calibratesequence
{Satisfies = calibratedistance , calibratepressure}

in out

w_Compress : IF_setPoints w_calibrate : IF_setPointsw_Closing : IF_setPoints w_Holding : IF_setPointsw_Airing : IF_setPoints

M

hold [6s-0,1s < t < 6s + 0,1s]closing [4s-0,1s < t < 4s+0,1s] airing [5s-0,1s < t < 5s+0,1]

  
Fig. 7. Activity diagram technical process 

The technical system consists of a generator and the 
hydraulic system and its interface to the mat (technical 
process view) the hydraulic main valve and the five valves 
and pressure cylinders of each frame. The particle board mat 
is pressurized by these cylinders. 

hydr

Supplyz : Supplyzone

F5 : Frame_nCl_Pl_1F4 : Frame_TransLongFct_1F3 : Frame_TransLongFct_1F2 : Frame_TransLongFct_1F1 : Frame_TransLongFct_1 F6 : Fram

H1 : Drumheater

R_DrivePassive_Btm : RollerPassive

R_DriveAct_Top : RollerActive

Force Force Force Force Force

Torque

Torque

Öl Öl Öl Öl Öl Ö

Force,
Temperature

Temperature,
Force

Temperature,
Force

Force,
Temperature

Temperature,
Force

Te
Fo

Temperature,
Force

Force,
Temperature

Force,
Temperature

Force,
Temperature

Force,
Temperature

Temperature,
Force

Force,
Temperature

Force,
Temperature

Temperature,
Force

Temperature,
Force

T
F

T
F

technical system

 
Fig. 8. Internal Block diagram technical system 

Teil von Fig 1.Architektur der Automatisierungssystems

Cable Channel

F38u39u40u41 : F_nClosedl_Plunger_RetFct_4_Var3

F20u21u22u23 : F_nClosed_Plunger_RetFct_4_Var1

F24u25u26u27 : F_nClosed_Plunger_RetFct_4_Var2

F28u29u20u31 : F_nClosed_Plunger_RetFct_4_Var1

F9 : F_nClosedl_zClosed

F10u11 : F_nClosed_Plunger_2

F12u13 : F_nClosed_Plunger_RetFct_2

F14u15u16 : F_nClosed_Plunger_RetFct_3_Var1

F17u18u19 : F_nClosed_Plunger_RetFct_3_Var1

F32u33u34 : F_nClosed_Plunger_RetFct_3_Var1

F35u36u37 : F_nClosed_Plunger_RetFct_3_Var1

PLC1 : PLC [1]

F42u43u44 : F_nClosed_Plunger_RetFct_3_Var2

F45 : F_nClosedl_zClosed

PLC2 : PLC [1]

KompHinten : MotorCop

SSI_bidirect : SSIbidirectional

Roller_DriveActBtm : RollerActive

Motor : Servomotor

Coupler8 : BusCopRight1

Coupler5 : BusCopRight1

Coupler6 : BusCopRight1

Coupler7 : BusCopRight1

<<block>>
Aut_System

 
Fig. 9. Internal Block diagram automation concept 

The automation control system (fig. 10) represents the chosen 
automation concept in this case with a PLC (S7) connected 
via a bus coupler to the input and output connectors of the 
single frame. The distance sensor and the pressure sensor as 

input value and the proportional valve with its set value as 
out value and its position value as input as well. The 
generator (bottom right) shows the connection to the 
technical system in dashed line (because the generator is not 
part of the automation control system, it is coming from 
another view). By representing the most important links 
between different views using dashed lines the usability and 
understanding is increased. This presentation supports the 
awareness of the interfaces and links, and interfaces to the 
other engineering disciplines. At first an example of 
requirement being influenced by different disciplines would 
be discussed regarding an actuator failure in the press 
application example. Secondly a failure of a sensor will be 
introduced with its impact on the dependability.  

The material in the middle zone of a continuous press has to 
be pressed for 20±2 seconds (given a constant speed of the 
material through the press) by 220°C±1°C and 150±2 
bar/cm². The agents have to meet these process related 
requirements (PTP) with the given precision when they 
control the transport speed, the temperature or the pressure. If 
the engineer is able to find and describe dependencies 
between these boundaries and the product quality then the 
agent can use these dependencies to find an appropriate 
operating point. In case of an actuator failure, e.g. hydraulic 
pressure sub system frame 2 (F2), the pressure would 
decrease (dot-dash-dot line) and leave the allowed tolerance 
band between PTPmax and PTPmin at frame 2 (white band). 
This would lead to the stoppage of the whole line (fig. 11). 

Frame

t

F1 F2 F3 F4

PTPmax

Qmax

Qmin

F2 failed

set value–
fault compensated

set value–
normal case

set value–
fault not compensated

PTSmax

PTSmin

PTPmin

PTPmax

PTPmin

 
Fig. 10. Compensation of an actuator failure by the agent 
(Quality (Q), Pressure technical system (PTS), Pressure 
technical process (PTP)) 

The agent approach tries to compensate the actuator failure of 
frame 2 by increasing the pressure in frame 1 and 3. Due to 
the heated plate along the press there will be a resulting 
pressure in frame 2, which is above the necessary minimum 
(PTPmin at frame 2) and inside the allowed tolerance (white 
area) to achieve the panel quality. The strictest requirement 
of the different views regarding this aspect has to be covered 
by the according agent and is the boundary of the agent 
activity space. The white area in figure 11 is the allowed 
tolerance band for product (panel) quality, i.e. process view. 
The light grey area is the tolerance for machine security, i.e. 
technical system point of view (PTSmin and PTSmax). The 
pressure restrictions of the automation control systems view 
(PACmin and PACmax) are not included because they are less 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4148



 
 

 

restrictive, e.g. the necessary current for the valves to reach 
the pressure is available. 

The network of requirements enables the agent to acquire if 
the plant is still operating in an acceptable state (automation 
control system and technical system) and whether the product 
quality is in the required tolerance band or not. The discussed 
application example showed that in case of an actuator failure 
the plant can still operate with the required panel quality. By 
that the dependability of the plant is increased. 

The benefit of an agent oriented compared with a classical 
approach is its behaviour adaptation during run time on basis 
of the knowledge base (fig. 5) and under the constraints of 
dependability requirements (fig. 3). The benefit is a result of 
the additional knowledge included during run-time. If it is 
necessary to predefine all measures and their parameters 
(min., max.) before run-time, worst case scenarios will be 
used and according parameters chosen. The agents’ 
knowledge base and mechanism allows reaction based on 
changes in environmental conditions and by that changed 
precision of sensors and/or actuators during run-time, by 
adapting on the actual values and not on the worst case values 
with the appropriate changes. The process operation time will 
be longer under the prerequisite that the process operation is 
still beneficial with reduced precision, speed etc. This leads 
to higher dependability of the production line.  

4. CONCLUSION 

The developed method is conceptual universal and includes 
domain-specific modelling languages from the analysis phase 
to the implementation. The combination of the modular and 
agent-oriented approach supports standard automation 
devices, e.g. PLCs. Focussing on embedded systems in 
automation there are strict constraints concerning operating 
systems and programming languages, i.e. for factory 
automation PLC based hardware structure (Hard or Soft 
PLC) with IEC 61131-3 as programming language and 
proprietary RTOS. An agent oriented approach needs to be 
implemented in this environment. The agents have to be 
executable on standard industrial controllers that are often 
distributed and connected by field busses. This structure 
neither represents a uniform platform nor allows it an 
unrestricted communication between agents. The same 
applies to the use of resources of controllers and field bus by 
the agents. The process control tasks use a large part of the 
limited resources and shall not be affected by the additional 
activities of agents. 

REFERENCES 

Chartrand, G. (1985). Directed Graphs as Mathematical 
Models. In: Introductory Graph Theory, pp. 16-19. 
Daver, New York. 

Harrison, R. and A.W. Colombo (2005). Service-oriented 
architectures for collaborative automation. In: 
Industrial Electronics Society, IECON. 

Hause, M. (2006). The SysML Modelling Language. Fifth 
European Systems Engineering Conference, 
Edinburgh, 2006. 

Katzke, U. and B. Vogel-Heuser (2005). Design and 
Application of an Engineering Model for Distributed 
Process Automation. In: American Control 
Conference, pp. 2960-2965, Portland. 

Klemm, E., A. Lüder (2003). Agentenbasierte 
Flexibilisierung der Produktion bei Verwendung von 
vorhandenen Steuerungssystemen. In: atp – 
Automatisierungstechnische Praxis, Vol. 45. 

Lüder A., J. Peschke, R. Sanz (2006). Design Patterns for 
Distributed Control Applications. atp international, 
Vol. 3, pp. 32-40. 

Lauber, R. and P. Göhner (1999). 
Prozessautomatisierung 1, Springer Verlag, Berlin. 

Mubarak, H., P. Göhner, A. Wannagat, B. Vogel-Heuser 
(2007). Evaluation of agent oriented methodologies. In: 
atp international. 

Peschke, J., A. Lüder, H. Kühnle (2005). The 
PABADIS'PROMISE architecture - a new approach for 
flexible manufacturing systems. In: Industrial 
Electronics Society (EFTA 2005), pp. 491-496. 
Catania. 

RI-MACS (Radically Innovative Mechatronics and Advanced 
Control Systems). European Project: FP6 NMP-
IST Joint Call 2. 

Socrades (Service-oriented cross-layer infrastructure for 
distributed smart embedded devices), Integrated 
Project, European Commission, Information 
Society Technologies, Frame Programme 6, 2006–
2009. 

Vesely, W. (1981). Fault Tree Handbook. NUREG-
0492, Nuclear Regulatory Commission, Washington DC. 

Wannagat, A., B. Vogel-Heuser, H. Mubarak, and P. Göhner 
(2007). Bestimmung automatisierungstechnischer 
Anforderungen bei der agentenorientierten Entwicklung 
flexibler eingebetteter Echtzeitsysteme. In: Automation 
im gesamten Lebenszyklus, GMA-Kongress.  

Vogel-Heuser, B., U. Katzke, D. Witsch, D. (2005) 
 Automatic Code Generation from a UML model to IEC 
61131-3 and system configuration tools. 5th 
International Conference on Control & 
Automation (ICCA), Budapest 

Wooldridge, M.J. and N.R. Jennings (1995). Intelligent 
agents: Theory and practice. The knowledge 
Engineering Review, 10(2), pp. 115-152. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

4149


