Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

IFAC

A UML profile for transforming GRAI
Extended Actigrams into UML*

Reyes Grangel * Anne-Francgoise Cutting-Decelle **
Jean-Pierre Bourey **

* Grupo en Integracion y Re-Ingenieria de Sistemas (IRIS), Dept. de
Llenguatges i Sistemes Informatics, Universitat Jaume I, 12071
Castelld, Spain (e-mail: grangel@ugi.es)

** Laboratoire de Génie Industriel de Lille, Fcole Centrale de Lille,
59561 Villeneuve d’Ascq Cedex, France (e-mails:
anne-francoise. cutting-decelle@ec-lille. fr, jean-pierre.bourey@ec-lille.fr)

Abstract: Interoperability is one of the main problems linked to the rapid evolution of
Information and Communication Technologies (ICT), and to the need to set up quickly alliances
among different kinds of enterprises based on cooperative information systems in order to benefit
from market opportunities. Solving this problem at both the Enterprise Modelling level and the
Business Process Modelling instead of the code level by using model-driven approaches is a
promising proposal.

In this context, this paper mainly focuses on transformations of business process models
at the Enterprise Modelling level. This kind of transformation is one component of a more
general model-driven approach to solve business process integration problems or, more widely,
interoperability problems. This describes a UML Profile definition to transform GRAI Extended
Actigrams into UML Activity Diagrams, as a mechanism to avoid the semantic losses generated
by transformations. The implementation of this Profile with the Atlas Transformation Language

(ATL) is finally presented.

1. INTRODUCTION

Enterprises must tailor their functions and processes to
improve their competitiveness and to take advantage of
new market opportunities. Both Business Process and
Enterprise Modelling methods have been successfully used
by enterprises to integrate their information and manufac-
turing systems throughout the last few decades [Vernadat,
1996]. New problems, such as Business Process Integration
or more widely Interoperability, arise in collaborative en-
terprises. Solving these problems not only at the code level
but also at a higher level of abstraction (i.e at the enter-
prise modelling) level is a great challenge. The two main
problems we have to address at this level are, first, that
the enterprises may use different formalisms to express
their process models and, second, that the gap between
business models and models used in the IT domain must be
filled. For solving the first kind of problems, point to point
model transformations can be developed for each couple
of used formalisms. Another more effective way, is to use a
neutral formalism, framework or architecture supporting
integration [Anaya and Ortiz, 2005]. This last solution
was presented for example in [Cuenca et al., 2006] where
CIMOSA [Berio and Vernadat, 1999] was used as integra-
tion framework. This work focused more on the mapping
of UML Use Cases or DFD models onto CIMOSA partial
models to perform enterprise integration. For solving the
second kind of problems, MDA-based approach [OMG,

* This work was funded by the EC within the 6! FP, INTEROP
NoE [INTEROP, 2007]. The authors were indebted to TG2. It was
also partially supported by DPI12006-14708.

978-1-1234-7890-2/08/$20.00 © 2008 IFAC

12885

2003] can be used. Within this kind of approach different
levels of abstractions are defined from business level (en-
terprise level) down to code. The transition from one level
to another is supported by transformations. The common
point of these approaches is that they are both model-
and transformation based for solving what can be called
horizontal or vertical interoperability. In this context, the
Task Group 2 (TG2) of the INTEROP NoE [INTEROP,
2007] has worked on models and transformations to be
performed at the Computation Independent Model level
from theoretical point of view. At this level the GRAI
method [Doumeingts et al., 1993, Berio, 2003] has been
chosen for capturing the enterprise models and UML as
an interface between enterprise models and IT models. To
ensure the feasibility of its proposal, TG2 worked on trans-
formations from the Business Process Modelling point of
view,i.e. from GRAI Extended Actigrams to UML Activity
Diagrams [Bourey et al., 2006] and the results presented
in this paper deal with the definition of a UML Profile
and its use with a transformation language to perform a
transformation without semantic loss.

The paper is organised as follows. Section 2 defines the
context of the study. Section 3 gives an overview on
model transformation concepts. In Section 4, the basic
constructs of GRAI Extended Actigrams are presented
and a first mapping with semantic losses is described and
discussed. Then, a UML profile is defined in Section 5 and
implemented within a transformation tool presented in
Section 6. Finally, Section 7 outlines the main conclusions.

10.3182/20080706-5-KR-1001.1776

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2. CONTEXT OF THE STUDY

Enterprise Modelling is achieved through using Enter-
prise Modelling Languages. In this context, there are
several formalisms and methodologies dealing with En-
terprise Modelling, such as GRAI! [Doumeingts et al.,
1993, Berio, 2003], CIMOSA [Berio and Vernadat, 1999],
PERA [Williams, 1993], IDEF [IDEF, 2007], and so forth.
The GRAI Methodology is a well-known Enterprise
Modelling Methodology. One of the strengths of this Enter-
prise Modelling Methodology is that it takes into account
both the decisional and the functional aspect together, as
well as the informational and business process aspects. All
these aspects are taken into account from both a general
and a local point of view. GRAI Extended Actigram
(noted 'GRAI EA’ in the following) are dedicated to
Business Process Modelling. However, one the main weak-
nesses of Enterprise Modelling Languages is the difficulty
in establishing strong links between enterprise models and
software development [Grangel et al., 2005]. This paper
addresses one part of this issue and more precisely the
Business Process Modelling aspects by defining a trans-
formation of GRAI Extended Actigram.

On the other hand, UML [OMG, 2007], which has been
successfully used to model and develop information sys-
tems in different domains, can also be useful in the con-
text of Enterprise Modelling [Marshall, 2000, Eriksson and
Penker, 2000]. It is the most widely known Object Man-
agement Group (OMG) specification, as an object-oriented
modelling and specification language used to model appli-
cations in the context of Software Engineering. Numerous
revisions have enabled UML to mature significantly to
UML 2.1.1, which is the current OMG adopted specifi-
cation [OMG, 2007]. For these reasons, UML is a good
candidate to establish links between the context of Enter-
prise Modelling and Software Engineering, and therefore,
to bridge the gap between these two contexts.

3. MODEL TRANSFORMATIONS

The objective is to transform a source model 'Ma’ into
a target model 'Mb’. One of the most commonly used
techniques for model transformation is known as the
"MetaModel Approach’ [OMG, 2003] based on the Model
Transformation Pattern shown in Fig. 1. In this ap-
proach, the first step consists in defining source and tar-
get metamodels (resp. 'MMa’ and '"MMDb’) defining the
languages used for the model descriptions (resp. 'Ma’
and 'Mb’). Each model conforms to its metamodel. Then
a mapping ("Tab’) between the metamodels is built. It
consists in establishing correspondances between contructs
of each metamodel. This mapping can be defined as a
simple table showing the construct matching. For example
in [Cuenca et al., 2006] a table for the mapping of UML
use cases or DFD onto CIMOSA can be found. This kind
of table can be used as specification to be implemented
by using a more formal and executable language (like
XSL, general programming languages or languages ded-
icated transformation such ATL [Jouault et al., 2006]).
In this case the used language conforms to its metamodel
'MMt’. By using an executable language it is possible to

1 Graph with Results and Activities Interrelated

conformsTo

conformsTo conformsTo
TconformsTo
[MmMa][mmt || MMb |
basedOn basedOi
T confofmsTo T
conformsTo conformsTo
[Ma | [Tab [Mb]

\/ executed
input output

Fig. 1. Model Transformation Pattern from [Allilaire et al.,
2006]

- extendedActigramModel
<>

1 . extendedActigramModel
" [-processes . processes
> E Process |<> L
proces T W WP
_~process, - process - resource:
T A * |ogicalOperators . *|- resources

] LogicalOperator
Eg type : OperatorType|

«enumeration»

/V,actlth\es *_|flows NG connectors

‘] Activity =l Resource
Cg type : ResourceType

] Connector
(5 type : ConnectorType

El Flow
g type : FlowType:

«enumeration»
€] ResourceType
= Human
= Material

«enumeration»
€ ConnectorType ‘€] OperatorType
= Internal = AsynchronousAnd
= External =1 SynchronousAnd

= Process = Oor

«enumeration»
‘€] FlowType
= Product
= Information

Fig. 2. GRAI Extended Actigram metamodel: structure

perform the transformation 'Tab’ from any input model
'Ma’ conforming to 'MMa’ to generate the corresponding
target model "Mb’conforming to "MMDb’.

In our study 'MMa’ is the GRAI EA metamodel. It will
be described in the following section. '"MMDb’ is the UML
metamodel which is completely defined in [OMG, 2007]. A
first mapping from 'MMa’ to '"MMDb’ is presented in section
4.2. Since this mapping introduces semantic losses, the
target UML metamodel is extended that means that the
extension mechanism of UML is used to define a dedicated
Profile presented is section 5.

4. FIRST TRANSFORMATION FROM GRAI
EXTENDED ACTIGRAM TO UML ACTIVITY
DIAGRAM

GRAI EA are one of the three main formalisms defined
in the GRAI Methodology. It is used to model business
processes and is an extension of IDEF(0 Diagrams [IDEF,
2007]. The main concepts of GRAI EA and their relations
are represented on the Metamodel shown in Fig. 2 and 3
and described more in detail hereafter. A more complete
GRAI EA Metamodel description can be found in [Berio,
2003, Grangel et al., 2007].

4.1 GRAI Eztended Actigram

A GRAI Extented Actigram is composed of:

e Process: set of extended activities that are logically
inter-realted and triggered by flows and eventually by
using operators.

e Activity: this represents a transformation and a
production (output flow). Due to the hierarchical
structure of an Extended Actigram, an activity can
be broken down into several activities. In this case,
from here on, the activity will be called a ’Structured
Activity’. An activity that has not been broken down
will be called a ’Leaf Activity’.

12886

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5 type : ConnectorType JowFrom. i /pe ResourceType
0.1 0.1 041

isInputOfCon
0.1 0.1

isOutputOfCon

— = N 0.1
] LogicalOperator 0.1 * = Flow ____isControlOfAct =" |
IsinputOfOpe +_isOutputOfAct
Egtype : OperatorType Ea type : FlowType .4”0#
0..1isOutputOfOpe * * isinputOfAct 0.1
* isResourceOfAct 0.1

Fig. 3. GRAI Extended Actigram metamodel: flow con-
nections

E Activity

Cortrol
Available
Quantity

orders

|

|
Not OK !
ClientDB

Fig. 4. Excerpt of a GRAI Extended Actigram

GRAI Extended Actigram Condition UML Activity Diagram
Extended Actigram Model Model
Process Activity

it is a structured Activity Activity +

CallBehaviourAction

it is a hon structured Activity | Action
ActivityParameterNode
MergeNode

JoinNode

Activity

Connector
LogicalOperator

Converging OR
Converging AND

Diverging OR DecisionNode
Diverging AND ForkNode

Resource ActivityParameterNode
not connected to a Resource

Flow or to a connector ControlFlow
connected to a Resource
or to a connector ObjectFlow

Fig. 5. Simple mapping of GRAI EA to UML AD

e Resource: human or material mean used by a pro-
cess to support one or several activities.

e Connector: used to represent the origin or the des-
tination of a flow when the origin or the destination
is outside the current diagram. Possible roles are:
process connector, internal connector, external con-
nector.

e Flow: used to link Activities. A flow is directed and
can be an input, output, control or resource of an
activity. A flow can also be used to link Connectors
to other diagram elements.

e Logical Operator: this represents a convergence
or a divergence of multiple flows and their timing.
There are three different kinds of process logical
operators: synchronous AND (sAND), asynchronous
AND (aAND) and OR.

Fig. 4 shows an excerpt of a GRAI EA describing an order
management process of a real case study.

4.2 First Mapping

Grangel et al. [2007] have proposed and implemented a
first transformation from GRAI EA to standard UML
AD using the basic UML constructs defined in [OMG,
2007]. This mapping is synthetised in Fig. 5. This table
is made of three columns. The first one describes the
source constructs of GRAI EA. The second one describes,
when mentioned, the conditions to be checked out in order
to select the corresponding target construct of UML AD
described in the third column.

4.8 Application and Discussion

The implementation of a transformation in conformance
to this first mapping of the GRAI EA to UML AD leads

to some semantic losses which are:

(1) Connectors and Resources. Since these two source
constructs are mapped onto the same target elements,
it is impossible to determine on the obtained model
if the ActivityParameterNode is related to a resource
or to a connector. Moreover, for this source construct,
its type (internal, external, process) is not preserved.

(2) Synchronism features of AND operator. This infor-
mation is not preserved during the transformation of
the source model.

(3) Type of incoming flows of the obtained activities:
it is impossible to determine if these flows are input,
control or resource flows as they appear in the source
model. The type of flow (product or information)
is also lost. At last the type of GRAI Resources
("human’ or 'material’) is not preserved by the trans-
formation.

All these semantic losses make it impossible to have a com-
plete traceability between the source and the target model.
It is also impossible to build up a reverse transformation
from the obtained UML AD to a GRAI EA.

The question is then, how to preserve the semantics of
the source model after the transformation? Two main ap-
proaches for solving this problem can be investigated. The
first one consists in enriching the set of constructs of the
target modelling language and then in keeping additional
information in the target model. The second one consists
in keeping the additional semantics ’outside’ the target
model, for example, by storing applied transformation
rules into a log file. In this paper, only the first approach
is investigated through the definition of a UML profile,
which is presented in the next section.

5. UML PROFILE DEFINITION

A profile is a specific version of UML. Generally, a profile
is first defined by means of a domain model which rep-
resents the new concepts and their relationships as well
as a description of their semantics. Then the mapping
of these new concepts onto UML constructs is defined
through a set of extension elements applied to the UML
basic constructs. Therefore a UML Profile can be consid-
ered as a lightweight extension mechanism that adapts a
UML Metamodel [OMG, 2007] to one Specific Modelling
Domain. A typical UML Profile is made up of stereotypes,
tagged values and constraints [OMG, 2007]:

e Stereotypes: these are specialisations of the meta-
class ’Class’; they define how an existing metaclass
may be extended. Each stereotype may extend one or
more metaclasses of the UML Metamodel.

e Tagged Values: these are properties of a stereotype
and are standard metaattributes.

e Constraints: these are conditions or restrictions
expressed in natural language text or, better, in
a machine readable language such as OCL [OMG,
2006].

12887

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

<<metaclass>>
ObjectFlow

<<stereotype>>

<<metaclass>>
ControlFlow
graiFlow

[ControlFlow , ObjectFlow |

<<enumeration>>
GraiFlowNature Type

information
product

-graiFlow Nature : GraiFlow NatureType
=
<<stereotype>>
graiResourceFlow
[ControlFlow , ObjectFlow]

<<stereotype>>
grailnputFlow
[ControlFlow , ObjectFlow]

<<stereotype>>
grailntermediate Flow
[ControlFlow , ObjectFlow]

<<stereotype>>
graiControlFlow
[ControlFlow , ObjectFlow]

<<stereotype>>
graiOutputFlow
[ControlFlow , ObjectFlow]

Fig. 6. Stereotypes extending UML ControlFlow and Ob-
jectFlow

The profile definition presented in this section is only
applies to the GRAI EA transformation. It is a part of
a more general on-going work that aims at defining a
complete specialisation of UML for bridging all the GRAI
formalisms (Extended Actigram, Grids and Nets) with
UML. Since the objective is both to transform GRAI EA
and to define a UML profile, the starting domain model for
the profile definition is the GRAI EA metamodel presented
in Section 4.1. As mentioned, one of the main problems
of model transformations is the loss of information. In
this section, an approach based on the definition of a
UML Profile called "UML Profile for GEA2UAD’is
presented.

5.1 Flows

GRALI defines four types of flows: Control Flow, Resource
Flow, Input Flow and Output Flow. This definition of
types of flow is given from an activity point of view.
Another type of flow can be introduced. It deals with
flows which establish connections between two operators
or between one operator and one connector. This kind
of flow will be named 'Intermediate Flow’ in the follow-
ing. To keep this distinction between different flow types,
five main stereotypes are defined as illustrated in Fig.
6 and are called ’grailnputFlow’, 'graiControlFlow’ and
‘graiResourceFlow’, 'graiOutputFlow’ and ’grailntermedi-
ateFlow’. All these stereotypes are specialisations of the
abstract stereotype ’graiFlow’, which has been introduced
to factorise the common property 'graiFlowNature’ intro-
duced to characterise the type of flow (information or
product). The abstract stereotype ’graiFlow’ is an exten-
sion of both UML ControlFlow and ObjectFlow because
one GRAI Flow can be transformed either into a UML
ControlFlow or ObjectFlow depending on the nature of
the GRAI elements it links. Actually, the transformation
result must conform to the UML Metamodel and espe-
cially to its connection rules: a UML ObjectNode is only
connected to other nodes using an ObjectFlow. Therefore
if a GRAI Flow connects a resource or a connector which
are both mapped onto UML ActivityParameterNode (as
explained in section 5.3) which is a specialisation of UML
ObjectNodes, then the GRAI Flow must be transformed
into a UML ObjectFlow. In the other case, GRAI Flow are
transformed into a UML ControlFlow. Fig. 6 also shows
the definition of the enumeration 'GraiFlowNatureType’
containing two literals (’information’ and ’product’) used
to type the property ’graiFlowNature’.

<<metaclass>> <<metaclass>>
ForkNode JoinNode

i T

<<stereotype>> <<stereotype>>
graiSynchronous graiAsynchronous
[ForkNode, JoinNode] [ForkNode, JoinNode]

Fig. 7. Stereotypes extending UML JoinNode and ForkN-

ode
<<metaclass>>
GraiResourceNatureType ActivityParam eterNode
material
human -g

Y P Y <<stereotype>>
graiExternalC ct

grailnter: graiPre
[ActivityParameterNode]

[ActivityParar

<<stereotype>>
graiResource
[ActivityParameterNode]

ceNature ureType

[ActivityP Node]

Fig. 8. Stereotypes extending UML ActivityParameterN-
ode

5.2 Synchronous and Asynchronous Operators

As illustrated in Fig. 7, UML JoinNode and ForkNode
were extended using two different stereotypes: ’graiSyn-
chronous’ and ’graiAsynchronous’. The use of these stereo-
types make it possible to keep in the obtained UML model
information depending on the nature of the source GRAI
Logical Operator (Synchronous or Asynchronous) [Berio,
2003].

5.8 Connectors and Resources

The third type of extension defined is related to the UML
ActivityParameterNode Metaclass. ActivityParameterN-
odes are ObjectNodes at the beginning and the end of
flows, they accept inputs to an activity and provide out-
puts. As illustrated in Fig. 8, four stereotypes are defined
as extensions of ActivityParameterNodes: three of them
correspond to each type of GRAI connector (’graiExter-
nalConnector’, ’grailnternalConnector’ and ’graiProcess-
Connector’) and the fourth deals with the mapping of
GRALI resources. A property is added to the stereotype
‘graiResource’ in order to specify the type of resource
('material’ or ’human’).

5.4 Application

The proposed profile described in the previous sections
is used to define a new mapping presented in Fig. 9.
Compared to Fig. 5, two columns have been added on
the left part. The first one defines the stereotypes to be
used according to the source element and the condition.
The second one gives the different values to be given to
stereotype properties when needed.

6. IMPLEMENTATION WITH A MODEL
TRANSFORMATION TOOL

In order to demonstrate the feasibility of the implementa-
tion of the proposal, this section shortly presents a Model
Transformation Language. Then, the application of the
defined UML Profile is described.

6.1 ATL Overview

Atlas Transformation Language (ATL) [Jouault et al.,
2006] is a hybrid of declarative and imperative transforma-
tion languages based on OCL [OMG, 2006]. The preferred

12888

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

GRAI Condition TumL Stereot: Tagged Value
Extended Actigram |Model
Process Activity
[Activity ot a structured Activity OpaqueAction
(Activity +

structured Activity CallBehaviourAction
Connector Process ActivityParameterNode [graiProcess

Internal ActivityParameterNode _[grailnternal

[External ActivityParameterNode '&aiExtema\

Material /

Resource ActivityParameterNode [graiResource Human

grailnputFlow /
graiControlFlow /
graiResourceFlow /
graiOutputFlow /

Input Flow / Control Flow /
Resource Flow / Output Flow /
Intermediate Flow not connected to
Flow a Connector nor to a Resource

Information /

[ControlFlow Product

grailr
grailnputElow /
graiControlFlow /
graiResourceFlow /

Input Flow / Control Flow /
Resource Flow / Output Flow /
Intermediate Flow connected to a graiOutputFlow /
Connector or to a Resource ObjectFl grailr
Converging OR MergeNode
Converging Synchronous AND JoinNode graiSynchronous
Converging Asynchronous AND 'EraiAsynchroncus
Diverging OR DecisionNode |

Diverging Synchronous AND ForkNode graiSynchronous
graiAsynchronous

Diverging Asynchronous AND
Fig. 9. Definition of a mapping using the proposed UML
Profile

style of transformation writing is declarative, which means
that mappings can be expressed rules. However, impera-
tive constructs are provided so that some mappings too
complex to be declaratively handled can still be specified
inside rules or by means of helpers.

Information /
Product

LogicalOperator

A rule describes the transformation from a source model
to a target model by relating metamodels. It is introduced
by the keyword ’rule’ followed by the rule’s name. In
the source pattern, rules declare which element type
of the source model has to be transformed. It consists of
the keyword from’; a source variable declaration and an
optional precondition. This precondition is expressed using
an OCL expression that restricts the rule triggering to
elements of the source model that satisfy this precondition.
A first optional section introduced by the keyword
'using’ can be used to declare local variables. In the
target pattern, rules declare element(s) of the target
model the source pattern has to be transformed into.
It may contain one or several target pattern elements.
A target pattern element starts with the keyword ’to’
and consists of a variable declaration and a sequence of
bindings (assignments). The second optional section
is the 'do’ section. This section specifies a sequence of
ATL imperative statements that will be executed once the
initialisation of the target model elements generated by the
rule has been completed. This section will be used below to
apply stereotype to a target element. The general structure
of a rule is shown in the following code.

rule <ruleName> {
from <sourceVariable> :
[(<precondition>)]
[using <local variable declaration>]
to <targetVariable> : <targetMetalModel>!<targetElement>
(<assignments>)
[do {<imperative statements>}]
} -- end of the rule

<sourceMetaModel>!<sourceElement>

6.2 Applying UML Profiles

ATL makes it possible to use UML Profiles. The method
to use profile with ATL is made up of four steps:

(1) The first one consists in defining the profile with an
UML tool.

(2) In the second step, the profile is applied to the
generated UML model. For example, in order to apply
the profile called "UML_Profile_for GEA2UAD’ to a
target UML Model, the following statement must be

[2proje.. 52 Navig... | tnber...| = 5 (X activiyDiagram £

< SalesProcess |
tors

«qrailntermediateFlows
503 Order

- <arilnp
. S 504 Order 101 Control Available
I Quanity

O Tows
505
<grailnputFlows

«grailnputFlows
ot enough quant

& 103 Fulfl Orders From
Shaps And Franchisees

Call_102 Fulfi
= Al Grders

—
1%

104 Check Credit Lim

5 106 send Items to Logitics Dept
) Cal_102 Fuli Al orders
>

Fig. 10. UML Activity Diagram using the profile

added in the 'do’ section of the rule creating the UML
Model:

target_UmlModel.applyProfile (UML2!Profile.allInstances()->
select(e | e.name = ’UML_Profile_for_GEA2UAD’).first());

(3) The third step consists in applying stereotypes to
the elements of the UML target model for which
we want to keep additional semantics coming from
the source model. The ’applyStereotype’ method is
invoked on the target element with an instance of the
metaclass 'Stereotype’ as parameter. To get it, the
‘get ApplicableStereotype’ method is invoked with the
name of the stereotype to apply.

Finally, for target elements, tagged values of stereo-
typed UML model elements are set using the ’set-
Value’ method. This method is invoked on a UML
element through the use of three parameters: (1) the
stereotype, (2) the name of the tagged value and (3)
its value.

—
=~
N

6.3 Discussion

To date, 19 ATL rules have been written to implement
the complete mapping and Fig. 10 shows the result ob-
tained after the transformation of the GRAI EA shown
in Fig. 4. The defined UML Profile has been used and
Fig. 10 shows especially the stereotypes used for Flows
and ActivityParameterNodes. This graphical output was
obtained after importing the generated model into a UML
Modelling tool.

This experiment has shown how it was possible to define a
UML profile to fill in the semantic gap between GRAI
EA and UML AD and to implement the profile-based
mapping using a transformation language. This approach
which is not limited to GRAI EA makes it possible to
establish a bridge between dedicated Enterprise Modelling
Languages and UML. It can be used within a vertical
MDA approach to link together CIM and PIM levels.
This approach can also be used horizontally to transform
enterprise models expressed using different formalisms
into models using a unique language thus leading to an
improved interoperability between the enterprise systems.

7. CONCLUSION

Te first contribution of this paper is focused on the trans-
formation from GRAI EA to UML AD, and particularly

12889

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

on a specialisation of UML AD through a profile defi-
nition. This profile makes it possible to define a com-
plete mapping without semantic losses between the two
modelling languages used for business process modelling.
That is the reason why this mapping is more adapted to
solve horizontal interoperability problems at CIM level.
The second contribution is related to the implementation
of the defined mapping. A transformation language has
been presented and used both to show how a profile can
be implemented and to validate the mapping by exper-
imentation. The study developed within the framework
of the project tends to demonstrate the feasibility of an
overall proposal for improving the interoperability and the
cooperation in a Business Process Management context.

The profile discussed in the paper is a part of a more gen-
eral UML specialisation dedicated to the transformation
of all the GRAI formalisms into UML. Two other profiles
are under development for the transformation of GRAI
Grids and GRAI Nets used for decision making processes
modelling. About interoperability problem solving, the
main interest of this kind of transformations is, first, to
bridge the gap between the business process modelling
domain that uses specific methodologies such as GRAI,
and the software development domain using UML. More
generally, this proposal can be considered as a translation
from one formalism to another one, and therefore, it can
be used to achieve an horizontal interoperability between
two enterprises that use two different business process
modelling languages at the same level of abstraction.

REFERENCES

F. Allilaire, J. Bézivin, F. Jouault, and I. Kurtev. ATL
- Eclipse Support for Model Transformation. In Pro-
ceedings of the Eclipse Technology eXchange Workshop
(eTX) at the ECOOP 2006 Conference, Nantes, France,
2006.

Victor Anaya and Angel Ortiz. How enterprise architec-
tures can support integration. In THIS’05: Proceedings
of the first international workshop on Interoperability of
Heterogeneous Information Systems, pages 25-30, New
York, NY, USA, 2005. ACM. ISBN 1-59593-184-5. doi:
http://doi.acm.org/10.1145/1096967.1096973.

G. Berio. Project UEML, WP3, Deliverable D3.3,
Requirements Analysis: initial core constructs and
architecture, Annex2.2, GRAI metamodelling v2.5.
Technical report, 2003. URL http://athena.troux.
com/AKMii/WebComputas/TeamBlob.aspx?TeamPage=
/Team/Repository/Projects/Project_249/Upload/
Attachments/239_30_124__Annexes31.zip.

G. Berio and F. B. Vernadat. New developments in
enterprise modelling using CIMOSA. Comput. Ind., 40
(2-3):99-114, 1999. ISSN 0166-3615.

J-P. Bourey, R. Grangel, G. Doumeingts, and A. Berre. IN-
TEROP NoE: Deliverable DTG2.2: Report on Model In-
teroperability, 2006. URL http://interop-noe.org/
deliv/dtg22.

L. Cuenca, A. Ortiz, and F. Vernadat. From UML or DFD
models to CIMOSA partial models and enterprise com-
ponents. International Journal of Computer Integrated
Manufacturing, 19(3):248-263, April-May 2006. doi: doi:
10.1080/03081070500065841. URL http://www.tandf.

co.uk/journals.

G. Doumeingts, D. Chen, B. Vallespir, P. Fénié, and
F. Marcotte. GIM (GRAI Integrated Methodology)
and its Evolutions - a Methodology to Design and
Specify Advanced Manufacturing Systems. In Hiroyuki
Yoshikawa and Jan Goossenaerts, editors, DIISM ’93:
Proceedings of the JSPE/IFIP TC5/WG5.8 Workshop
on the Design of Information Infrastructure Systems
for Manufacturing, volume B-14 of IFIP Transactions,
pages 101-120. North-Holland, 1993. ISBN 044481681X.

H. Eriksson and M. Penker. Business Modeling with UML:
Business Patterns at Work. J. Wiley, 2000.

R. Grangel, R. Chalmeta, C. Campos, and 0. Coltell.
Enterprise Modelling, an overview focused on software
generation. In H. Panetto, editor, Interoperability of
Enterprise Software and Applications Workshops of the
INTEROP-ESA International Conference EI2ZN, WSI,
ISIDI and IEHENA 2005, pages 65—76. Hermes Science
Publishing, 2005.

R. Grangel, R. Ben Salem, J-P. Bourey, N. Daclin, and
Y. Ducq. Transforming GRAI Extended Actigrams into
UML Activity Diagrams: a First Step to Model Driven
Interoperability. In Ricardo J. Gongalves, Jorg Muller,
Kai Mertins, and Martin Zelm, editors, 3rd Inter-
national Conference on Interoperability for Enterprise
Software and Applications, Enterprise Interoperability
1I, New Challenges and Approaches, pages pp447—458.
Springer, March 2007. ISBN 978-1-84628-857-9.

IDEF. Integrated DEFinition Methods, 2007. URL http:
//www.idef .com/.

INTEROP. Interoperability Research for Networked
Enterprises Applicationsand Software NoE (IST-2003-
508011), 2007. URL http://www.interop-noe.org.

F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Val-
duriez. ATL: a QVT-like transformation language. In
Peri L. Tarr and William R. Cook, editors, OOPSLA
Companion, pages 719-720. ACM, 2006. ISBN 1-59593-
491-X.

C. Marshall. Enterprise Modeling with UML. Designing
Successful Software Through Business Analysis. Addi-
son Wesley, 2000. ISBN 0201433133.

OMG. Object Constraint Language 2.0. Object
Management Group, formal/06-05-01 edition, 2006.
URL http://www.omg.org/technology/documents/
modeling_spec_catalog.htm.

OMG. MDA Guide Version 1.0.1. Object Manage-
ment Group, document number: omg/2003-06-01 edi-
tion, June 2003. URL http://www.omg.org/mda.

OMG. Unified Modeling Language: Superstructure,
version 2.1.1. Object Management Group, version
2.1.1 formal/2007-02-05 edition, February 2007.

URL http://www.omg.org/technology/documents/
modeling_spec_catalog.htm.

F. B. Vernadat. FEnterprise Modeling and Integration:
Principles and Applications. Chapman and Hall, 1996.
ISBN 0412605503.

T. J. Williams. The Purdue Enterprise Reference Architec-
ture. In Proceedings of the Workshop on Design of Infor-
mation Infrastructure Systems for Manufacturing. Else-
vier, November 1993. URL http://www.ecn.purdue.
edu/IIES/PLAIC/Enterprise-Handbook _PERA.pdf.

12890

