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Abstract:
Metabolic models can substantially improve control of hyperglycaemia in critically ill patients.
Control efficacy depends on how accurately a model-based system is able to predict future blood
glucose (BG) concentrations after a glycaemic control intervention. This research compares
two metabolic models in terms of their predictive power. Predictions 30 minutes to 10 hour
forward are made using the Glucosafe model (GS) and a clinically validated model (CC) from
Christchurch in a retrospective study of 11 hyperglycemic patients, 6 from New Zealand and
5 from Denmark. Median and ranges of prediction errors are similar for predictions up to
360 minutes. Both models make better predictions on the Danish patients. At long prediction
times of more than 5 hours, GS predictions tend to be more accurate in the cohort from New
Zealand whereas the CC model tends to predict better in the cohort from Denmark. However,
relative differences in root mean square (RMS) of prediction errors are not greater than 4–5%
in both cohorts. For both models, outlying prediction errors are dominated by single patients,
particularly type 1 diabetic patients. GS predicted BG values are generally higher compared to
CC predicted values. As expected, the RMS prediction error increases with prediction interval
for both models and cohorts. Results show the potential of both models for use in prospective
clinical trials with 120–180 min sampling intervals. Predictive power is attributed to the type
of cohort in terms of degree of illness and glycaemic stability as well as sensor type used.

Keywords: Model-based control; Physiological Models; Decision support systems; Prediction
error methods.

1. INTRODUCTION

Hyperglycaemia occurs frequently among patients in crit-
ical care (Umpierrez et. al. [2002], Krinsley [2003]). Gly-
caemic control can save lives, reduce morbidity and reduce
hospital stay (Van den Berghe et. al. [2001]). However,
resources are often limited, prohibiting strict regulated
protocols, in addition to which increased hypoglycaemia
has been reported (Van den Berghe et. al. [2006], Brunk-
horst et. al. [2008]).

Systems based on metabolic models account for pa-
tient specific dynamics and can provide better glycaemic
control without additional clinical intervention (Chase
et. al. [2007]). Efficacy depends on the accuracy of pre-
dictions of future blood glucose concentrations (BG). The
length of time ahead for which accurate predictions can
⋆ This work was partially supported by a grant awarded by the
Programme Commission on Nanoscience, Biotechnology and IT
under the Danish Council for Strategic Research.

be made will affect the clinical burden, which can limit
performance (Shulman et. al. [2007], Chase et. al. [2006]).

This research compares two metabolic models in terms
of their predictive power. Glucosafe (GS) is a new com-
posite model that encompasses previous work on insulin
appearance and diffusion (VanCauter et. al. [1992], Lotz
[2007]), a glucose transporter model (Arleth et. al. [2000]),
and new research on insulin binding and the absorption
of carbohydrates in critically ill patients. It’s compared
against a clinically validated model (CC), that has been
demonstrated to provide good glycaemic control in critical
care with blood samples taken in one to two hour intervals
(Shaw et. al. [2006]).

Two-hourly blood screens require more time and resources
for some intensive care units that cannot be routinely
afforded. The focus of this comparison is therefore on
prediction times that might routinely exceed two hours.
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Table 1. Patient Characteristics and Blood Glucose Control

Aalborg Patients Christchurch Patients

Characteristic A1 A2 A3 A4 A5 87 130 229 519 554 847

Patient Charateristics

Sex F F F M M F M F M F F
Age n.a. 58 75 60 46 62 21 73 69 20 67
Admission ∗ SAH SAH trauma SDH SAH med. trauma card. surg. med. med.
GCS 3 8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
ApacheII n.a. n.a. n.a. n.a. n.a. 26 11 15 29 26 17
Diabetes – – – 2 – – 1 – 2 1 –
BG upon admission (mmol/l) 6.2 5.9 10.8 11.6 7.1 10.1 14.1 15 11.5 10 12.7

Blood Glucose Control

Hours 265 251 317 46 80 154 33 241 294 54 37
Blood Glucose (mmol/l)

— mean 7.4 7.0 7.5 6.9 7.6 9.1 11.3 7.6 6.3 7.1 7.5
— max 11.9 9.0 11.2 11.6 9.7 13.9 16.6 15.0 11.5 11.8 12.7
— min 4.5 5.4 3.5 3.9 6.3 3.3 4.2 2.5 3.3 3.1 3.9

Sampling interval ∗∗ 3h19 5h20 3h31 2h25 3h49 3h12 1h04 3h05 3h35 1h21 3h05
proportion in band ∗∗∗ .44 .55 .32 .56 .16 .21 .12 .43 .65 .34 .52

∗ SAH: subarachnoid hemorrhage, SDH: subdural hematoma, card.: cardiologic, surg.: surgical, med.: other medical
∗∗ mean blood glucose sampling interval in (hours:minutes)
∗∗∗ proportional time spent in 4–7 mmol/l band, calculated by linear interpolation

2. METHODS

Data from 11 patients in two cohorts were retrospec-
tively gathered. The first cohort were six patients from a
Christchurch, New Zealand (NZ) data pool that had been
previously used for data fitting and validation of the CC
model (Hann et. al. [2005]). They were chosen for a data
density of ≤ 3.5 hours. Three patients were diabetics; this
patient subgroup was also over-represented in the original
data pool. Recordings of five consecutively observed hyper-
glycaemic patients from the Neuro- and Trauma Intensive
Care Unit at Aalborg Hospital, Denmark (DK) constituted
the second cohort. The first part of Table 1 lists the patient
characteristics at admission.

Glycaemic control in both cohorts was conducted ac-
cording to local department policies. In the DK group,
blood samples were taken via a prior inserted (arterial)
cannula and blood glucose concentrations determined by
an ABL700 blood gas analyzer (Radiometer A/S). Arte-
rial cannula samples with GlucoCard glucometers (Arcroy
Inc., Japan) were used for the NZ group. These latter
sensors have a larger measurement error up to 10%. All
patients were enterally fed aside from two Aalborg patients
who received supplementary intravenous glucose infusions.

Figure 1 shows the cumulative measured blood glucose
distributions for both cohorts. The second part of Table
1 summarizes the glycaemic control data per patient. The
NZ cohort is more variable, possibly reflecting more severe
illness in these patients.

Glucosafe is a four-compartment model that combines
research by VanCauter et. al. [1992], Lotz [2007] on
insulin secretion and the glucose transporter model by
Arleth et. al. [2000]. The model assumes a saturating
insulin effect at high interstitial insulin concentrations.
The intestinal glucose absorption rate as described by
Arleth et. al. [2000] was decreased by a factor of two
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Fig. 1. Cumulative measured blood glucose concentrations
of the Aalborg (DK) and the Christchurch (NZ)
cohort.

to account for the often observed delay in gastric emp-
tying in enterally fed critically ill subjects (Chapman
et. al. [2007]). In the Glucosafe model, the endogenous
insulin production rate and the insulin sensitivity are two
patient parameters with a priori values of 40 U/day for
the endogenous production of insulin and 0.1625 for the
insulin sensitivity. In this model, the insulin sensitivity is
a factor for the reduced insulin-mediated glucose uptake
in hyperglycaemic critically ill patients relative to normal
subjects with an insulin sensitivity of 1.0. The parameters
were identified by a function that minimized the error from
fitting the simulated BG concentration curve to the last
measured datapoint and the difference of the parameters
to their a priori values. The identified patient parameters
were used to predict future blood glucose concentrations.

In the CC model, a suppression of endogenous insulin
production is assumed at typically ample administration
of exogenous insulin. The patient parameter that deter-
mines predictions of blood glucose is the insulin sensitiv-
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ity. The implementation was done as described in Wong
et. al. [2005], with the following modifications: 1) Insulin
sensitivity was determined as the average value from the
parametric fits of the last two datapoints, rather than
using the integral method; 2) To prevent patients who did
not receive a continuous insulin infusion from having zero
plasma insulin, a constant “basal” insulin concentration
was added at 11 mU/l (Katz et. al. [1993]).

In both models, the glucose distribution volume was set
to 14 liters and the plasma insulin volume was calculated
from body surface area and gender according to the
method proposed by VanCauter et. al. [1992].

Predictions were made per patient per model by moving
forward along the blood glucose measurements. At each
measured point, blood glucose concentrations were calcu-
lated every minute over the following ten hours. Matching
pairs of predicted values and prospective measurements
were recorded together with the prediction time interval
and the identified patient parameters. Errors were calcu-
lated in percent as predicted minus measured value divided
by measured value. Median and total ranges of the percent
errors were analysed per model per cohort, grouped by
measured blood glucose concentration. The groups were
arranged with approximately equal numbers of predictions
in each group. The root mean square (RMS) of predic-
tion error was determined for hourly time intervals per
cohort and model, and means and standard deviations of
prediction errors were calculated for individual patients.
Software tools for statistical analysis were SPSS 15.0 and
Matlab 7.0.

3. RESULTS

3.1 Patient cohorts

Median BG concentrations were the same in the two
patient cohorts (NZ: 7.4 mmol/l; DK: 7.3 mmol/l), but
the interquartile ranges differed, showing a wider spread
in BG concentrations among Christchurch patients (NZ:
6.0(25%), 9.2(75%); DK: 6.6(25%), 8.0(75%)), as is also
evident in Figure 1.

The average blood sampling time interval (± standard
deviation) was 154 (±64) minutes in the NZ cohort and
221 (±64) minutes in the DK cohort. The mean propor-
tional time in the normoglycaemic band (4 − 7 mmol/l)
was slightly higher in the Aalborg group (0.41) than in
the Christchurch group (0.38). Pearson’s correlation test
showed that neither initial blood glucose at beginning of
treatment nor mean blood sampling interval were corre-
lated to the time spent in the normoglycaemic band.

3.2 Prediction results

1066 and 614 pairs of measured and predicted blood
glucose concentrations were collected for the NZ and DK
cohort, respectively.

Figure 2 displays percent prediction errors, grouped by
measured blood glucose range, for all predictions of max-
imum three hours ahead. Predictions from both models
for the DK cohort were more accurate than for the NZ
cohort, resulting in smaller ranges and fewer outliers. GS
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Fig. 2. Model prediction errors in percent, grouped by
measured blood glucose range, for prediction times
up to 180 minutes. Upper panel shows predictions
for the Danish cohort, the lower panel for the cohort
from New Zealand. Boxes include the range of scores
falling into the middle 50% of the distribution (25th to
75th percentile) with medians as bold horizontal lines
inside each box. Lines extend to the minimum and
maximum scores in the distribution or to ±1.5 times
the interquartile range (IQR). Circles (asterisks) are
outlying values more than 1.5 (3.0) times IQR from
the first or the third quartile. Outliers are labeled with
forward prediction times in minutes.

performed better in predicting the DK patients, whereas
CC was more accurate predicting the NZ group.

As could be expected, error outliers were dominated by
predictions of two to three hours ahead. A disproportion-
ally high number of outliers resulted from predictions of
patients 130, 554 and 229 (not displayed). Both models
tended towards too low predictions for measurements that
were very high and vice versa.

Errors for predictions of three to six hours ahead are
shown in Figure 3. Prediction error ranges of the NZ
cohort were again substantially larger than the DK cohort,
though outliers were not primarily for longest prediction
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Fig. 3. Model prediction errors in percent, grouped by
measured blood glucose concentration, for prediction
times between 180–360 minutes. Upper panel shows
the Danish cohort, the lower panel is the cohort
from New Zealand. Labels of outliers denote forward
prediction times in minutes.

times as might have been expected. The tendency towards
underestimating high blood glucose measurements and too
high predictions of low measurements recurred. Overall
performance of the models was very similar.

Figures 4 and 5 give the RMS of the prediction errors,
calculated from absolute deviations from measured values
in mmol/l and from percent errors, respectively, in hourly
intervals per model per patient group.

The predictive power of the two models matches for the
NZ cohort over the first five hours, whereafter predictions
by the GS model tend to be a little more accurate. For the
NZ cohort the maximum difference in RMS of prediction
error was 4.1% that was reached at prediction times of
420–480 minutes ahead.

Both models performed better on the cohort of the more
glycaemically stable Aalborg patients. This result is ex-
pected given that both models tend to underpredict bigger
changes. Performance was about equal up to 6 hours,
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Fig. 4. RMS prediction error in mmol/l, calculated for
hourly intervals. Smallest prediction time was 30
minutes, maximum prediction time 600 minutes. Solid
lines: CC model. Dashed lines: GS model.
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Patient MPE GS SD GS MPE CC SD CC

A1 1.4 29.3 -.3 27.7
A2 6.1 16.2 .6 18.4
A3 5.0 23.8 3.7 19.3
A4 12.2 33.3 9.7 32.4
A5 2.6 15.7 -13.0 28.5
87 -5.4 18.6 -7.9 19.4
130 9.1 43.7 7.6 41.3
229 4.4 35.8 2.9 34.6
519 4.1 25.5 4.6 32.3
554 -5.3 38.3 -16.8 39.1
847 1.6 32.1 -1.7 37.9

Table 2. Means of percent prediction errors
(MPE) and standard deviations (SD) for in-

dividual patients per applied model.

whereafter the CC model slightly outperformed the GS
model, with a peak difference in RMS of prediction error
of 5% (0.5 mmol/l) at prediction times of 480–540 minutes
ahead.

Means of percent prediction errors (MPE) and standard
deviations (SD) are shown for individual patients per
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model in Table 2. In both models, prediction errors for
the two type 1 diabetic patients from the NZ group
(patients 130 and 554) were largest. In the GS model
positive mean values predominate indicating a skewness
of predictions towards too high or overpredicted values.
Standard deviations in both models are comparable, and
are smaller for the Aalborg patients.

On average, the prediction errors increased approximately
linearly with progressing time. Figures 4 and 5 may be also
used to determine a best prediction time for a cohort. For
example, if a 25% error is the acceptable limit, then the
NZ cohort should be predicted no more than 120 minutes
ahead in either model. Similarly, for the same error level,
the DK cohort can be “safely” predicted whithin 250
minutes for the CC model and 250–300 minutes for the GS
model. This result is indicative of the difference in stability
or level of critical illness between the cohorts with the NZ
cohort being the more critically ill and likely more dynamic
or unstable cohort.

4. DISCUSSION

This research compared two metabolic models with regard
to their ability to make accurate predictions of blood glu-
cose concentrations. Retrospective data of eleven patients
from two different cohorts had been chosen for inclusion in
the test. Short-term (minimum 30 minutes) and long-term
(maximum 600 minutes) predictions were investigated and
the difference in prediction errors was compared.

Across all analyses, both models made substantially better
predictions on the DK group of patients. This result may
be explained by the differences between the two cohorts.
The cumulative measured blood glucose distributions in
Figure 1 showed that the spread in the Christchurch group
was wider than in the Aalborg group. Patients in the Aal-
borg group were more alike in terms of disease condition,
whereas the Christchurch patients represented a broad
cross-sectional mix including two type 1 diabetic patients.
The wider distribution for the Christchurch group also
indicates greater level of critical illness and thus greater
dynamic behaviour, see Chase et. al. [2006].

Another, numerical cause may be the difference in glucose
measurement error, with the DK cohort having much
smaller assay errors. Numerically, smaller errors would
allow more accurate parameter identification, and thus
potentially better prediction (Chase et. al. [2006]). This
assay error difference is clearly evident in the lower y
intercept in Figures 4 and 5.

There was a pronounced tendency to more and larger
outliers among NZ patients. Chase et. al. [2007] and ?]
both indicated that the glucometers used in Christchurch
patients could provide contaminated or significantly erra-
neous measurements. In their SPRINT study, such mea-
surements with changes of over 3–4 mmol/l/hour were
recorded approximately 1.5% of the time, but not evenly
distributed. Hence, some outlying errors in the NZ cohort
may be due to such measurements and are a fact of life in
many intensive care units.

The overall error differences remained quite small. A slight
advantage of the GS model in prediction errors could
be made out for the NZ cohort, whereas the CC model

performed equally good or better for the DK cohort.
However, the maximum differences in RMS of prediction
errors amounted to only 4–5% in both cohorts at long
prediction times of 420–540min.

The analysis of percent prediction errors grouped by mea-
sured blood glucose concentrations showed a tendency of
both models towards underestimating high blood glucose
values in contrast to overestimating values in the lower
band. However, the majority of measurements was be-
tween 6 and 8 mmol/l, and probably many measurements
above or below were preceded by measurements from
within this range. Therefore, and because the models rely
on information about past measurements, the skewed error
distributions show a certain inert anticipation of sudden
changes.

Results for individual patients indicated a more general
bias in GS model predicted values, which tended to be
slightly too high. The reason for this small bias could
be that the a priori population values for the insulin
sensitivity and the endogenous insulin production rate
were set too low. An increase of both values would raise
the effect on simulated blood glucose, possibly yielding
improved predictions. Therefore, further research should
be done to revise the currently used values.

It was mentioned in the results section that for both
models a majority of outlying prediction errors was dom-
inated by single patients. Namely three patients from the
Christchurch cohort, of which two were type 1 diabetic
patients. Of all eleven patients, they had the shortest
sampling intervals. It could have been expected that pre-
dictions on these patients would be even more accurate
for the tighter control they received. However, this was
not the case. The authors showed in a previous study
(Pielmeier et. al. [2008]) how admission type or diabetic
status affect glycaemic predictability. In this research, the
majority of outliers was generated by three-hour-forward
predictions. Therefore doubts can be raised whether the
models in their current shape sufficiently capture such
highly fluctuating patients in such medium to long-term
predictions. The results from this research thus encourage
developing improvements to the models for this particular
patient subgroup.

5. CONCLUSION

Overall, the results show the following salient facts:

(1) Both models predict with similar accuracy.

(2) The CC model could be used for longer predictions
than it is currently.

(3) The GS model has significant prediction capacity and
potential for safe use in a large scale clinical trial.

(4) The predictive power of the two tested models is
restricted by the cohort type. A definition of cohorts
could improve the integration of model-based advice
into clinical routine.

Finally, the approach presented in this work is general
enough to evaluate any similar metabolic model and may
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be used to benchmark such central models and prediction
times.
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