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Abstract:
Genetic regulatory networks are families of biochemically interacting genes that regulate most
functions of a living cell via the synthesis of proteins and other essential molecules. In this
paper we introduce a piecewise deterministic model of genetic network and devise a systematic
procedure for the identification of the model parameters from experimental observations of the
protein concentration dynamics. Numerical results on simulated data are presented to show the
effectiveness of our method.

Keywords: Biological systems, Jump Markov systems, Parameter estimation, Uncertainty
descriptions, Complex systems, Application of nonlinear analysis and design

1. INTRODUCTION

Genetic regulatory networks govern the synthesis of pro-
teins and other essential molecules in the living cell, and
are thus responsible for fundamental cell functions such as
metabolism, development and replication. Thorough un-
derstanding of genetic networks is fundamental in that it
determines our ability to interact with the basic biological
mechanisms and to reproduce them.

Different approaches to genetic network modelling have
been proposed in the literature and are conventionally
classified into models with purely continuous dynamics
and discrete event models de Jong (2002). However, it
appears that certain systems are more naturally described
by hybrid models that explicitly account for both contin-
uous and discrete phenomena. This is witnessed by the
number of researchers (Alur et al. (2001); de Jong et al.
(2003); Drulhe et al. (2006); Batt et al. (2005); Ghosh and
Tomlin (2004), among others) who recently applied hybrid
systems tools in this context. In addition, the fundamental
role of uncertainty in gene expression is being recognized,
see for instance the work by Kaern et al. (2005); Vilar et al.
(2002); McAdams and Arkin (1997, 1999).

Most recently, a number of researchers — Cinquemani
et al. (2007); Drulhe et al. (2006); Perkins et al. (2004);
Fujarewicz et al. (2005); Dunlop et al. (2007) — started
to address the problem of learning genetic network models
from data. The problem may be seen as a loop of three
steps: 1) description of the interactions; 2) parameter iden-
tification; 3) validation. First step defines the structure of
the network and typically provides a parametric model of
gene expression dynamics. In step two, unknown parame-
ters are estimated on the basis of experimental observa-
tions of gene expression. Finally, validation must evaluate
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the relevance of the resulting model to the observed system
behavior, possibly providing hints on how to refine the
network structure defined in step 1. In all of these steps,
full exploitation of the experimental data is fundamental
but very challenging. Gene expression levels are often
observed at sparse, perhaps irregularly spaced observation
times. In addition, different profiles are observed in sev-
eral experiments of the same kind. This provides a large
amount of information that requires careful processing.

The aim of this paper is to address parameter identification
for genetic regulatory networks in a stochastic hybrid
modelling framework. We introduce a class of piecewise
deterministic models where protein concentrations follow
first-order kinetics with synthesis rates that depend on
the random activation of gene expression. In turn, gene
expression follows the laws of a finite state Markov chain
whose transition rates depend on the current protein con-
centration levels. For a given network of interactions, we
consider the problem of estimating the unknown para-
meters of the model from protein concentration profiles.
That is, we assume that step 1 above has been completed
within our modelling framework and address step 2. We
take advantage of the structure of the model to devise an
algorithm that allows separate estimation of the parame-
ters pertaining to different dynamical equations from con-
venient subsets of the observation data, with clear benefits
in terms of computational complexity. In this procedure,
the availability of multiple observations from independent
experiments is explicitly taken into account.

In Section 2 we shall briefly discuss genetic interaction
networks from a dynamic modelling perspective. A general
stochastic hybrid model is introduced in Section 3. In
Section 4 we state the parameter identification problem
and derive the identification algorithm. The performance
of the method is evaluated numerically on two simple case
studies in Section 5. Concluding remarks and perspectives
of our work are reported in Section 6.
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2. GENETIC NETWORKS

A genetic regulatory network consists of n interacting
genes. A gene is a portion of the DNA that encodes
one protein. Expression of a gene is activated (inhibited)
by a certain activator (inhibitor) complex binding to a
specific DNA motif. When a gene is expressed, several
molecules of the encoded protein are synthesized through a
process that includes several steps (e.g. transcription into
mRNA and translation). On the other hand, the formation
of the activation (inhibition) complex depends on the
concentration of certain proteins of the network. Gene
activation is a discrete event that involves the interaction
of few molecules. Therefore it can be seen as a random
event whose probability depends on the concentration of
the proteins needed for the formation of the activation
(inhibition) complex. On the other hand, the synthesis of
several new molecules of a protein induces a modification
in the protein concentration that can be described by
simple synthesis/degradation laws. Note that the steps
between the expression of one gene and the synthesis of the
corresponding protein are implicitly lumped together. For
the purpose of identification, this is not critical provided
the experimental data consist of, or can be easily related
to, protein concentration levels.

3. STOCHASTIC HYBRID MODEL

For convenience, we shall consider discrete-time dynamics.
An equivalent continuous-time model may be set up along
the lines of Kouretas et al. (2006). Let x = [x1, . . . xn]T ∈
R

n
+ be the vector of protein concentrations. For i =

1, . . . , n, the dynamics of concentration xi is affine and
described by a first-order linear equation: for t ∈ N,

xi(t + 1) = aixi(t) + fi(t) + b̄i, (1)

where ai ∈ (0, 1] is the degradation rate and b̄i ≥ 0 is a
fixed synthesis rate. Process fi(t) ≥ 0 is a variable synthe-
sis rate that is expressed as a finite weighted combination
of binary random processes:

fi(t) =
∑

j

bi,j

∏

k

ui,j,k(t). (2)

In turn, each process ui,j,k follows the laws of a first-order
Markov chain whose transition probabilities depend on xk:

P[ui,j,k(t + 1) = 1|ui,j,k(t) = 0] =pi,j,k

(

xk(t)
)

,

P[ui,j,k(t + 1) = 0|ui,j,k(t) = 1] =qi,j,k

(

xk(t)
)

.

It is assumed that, for (i, j, k) �= (i′, j′, k′) and all
t, ui,j,k(t) and ui′,j′,k′(t) are conditionally independent
given xk(t) and xk′ (t). Typically, not all components of
x(t) affect the laws of (2). We shall denote by ℓ(i) =
[ℓ1, . . . , ℓl(i)]

T ∈ {1, . . . , n}l(i) the vector (with l(i) ≤ n
distinct entries) containing the indexes of states that affect
state i through (2). This is precisely the set of values taken
on by k in (2). Thus, the laws of (2) are determined by

xℓ(i) � [xℓ1 , . . . , xℓl(i)
]T . We consider sigmoidal transition

probabilities; that is, functions p and q take either of the
following forms:

s+(xk; η, d) =
xd

k

ηd + xd
k

, s−(xk; η, d) =
ηd

ηd + xd
k

.

Constant η determines the point xk where the value of
the sigmoid is 0.5 (hence we shall also call it threshold

value), while the exponent d determines the steepness of
the sigmoid. In general, constants η and d depend on the
particular process ui,j,k. Therefore, whenever essential we
shall use the extensive notation ηi,j,k and di,j,k. The case
where qi,j,k = 1 − pi,j,k, for all i, j and k, appears to be
relevant to the biological context, see Hu et al. (2004),
and turns the Markov chain ui,j,k(t) into an independent
process, cf. Cinquemani et al. (2007). From now on, we
shall stick to this case. Extensions of our methods to the
general case are rather straightforward and will not be
discussed here. This model can be seen as a stochastic
generalization of the piecewise affine model considered
in Drulhe et al. (2006), and relates to the nonlinear model
with sigmoidal regulation functions reviewed in de Jong
(2002) when the expected evolution of the state is consid-
ered.

4. PARAMETER IDENTIFICATION

We assume that noisy observations of state x are taken at
times τ ∈ NN ,where NN � {N, 2N, 3N, . . .} (i.e. every N
time steps) : for i = 1, . . . , n,

yi(τ) = xi(τ) + ei(τ), (3)

where measurement error ei is an i.i.d. process with
mean zero and variance σ2

i . Multiple statistically inde-
pendent experiments will be considered. Therefore, for
m = 1, 2, . . . , M we shall write

ym
i (τ) = xm

i (τ) + em
i (τ) (4)

to denote the m-th of M experimental outcomes. As will be
clarified later, for identification purposes, the assumption
that all elements xi of x are observed simultaneously in
every experiment can be relaxed.

4.1 Problem statement

Suppose that the order n and the structure of the model
(i.e. the specific form of (2), for i = 1, . . . , n) are given.
Suppose in addition that parameters ai, b̄i and bi,j are
known. We consider the following problem.

Problem 1. Given data from multiple experiments (4),
estimate the unknown parameters θi,j,k = (ηi,j,k, di,j,k).

That is, we assume that the interaction paths as well
as the protein synthesis and degradation rate constants
are known, and wish to learn the probability functions
that govern the activation of gene expression. In fact, the
identification method that we shall introduce can be ex-
tended to the problem of estimating all model parameters,
including rate constants. Due to space limitations, though,
this problem will not be addressed here.

4.2 Local approximate decoupling

Our aim is to devise an identification strategy that exploits
the structure of the system to reduce the problem com-
plexity. In particular, we wish to split identification into
subproblems, each relying on a subset of the observation
data and addressing estimation of a subset of the unknown
coefficients. The starting point is the “quasi-diagonal”
structure of the system:






x1(t + 1)
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xn(t + 1)






=
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where coupling between the n scalar equations is intro-
duced indirectly by the rightmost term through the state-
dependent laws of the ui,j,k. Consider a point x̄ in the state
space. For any fixed i, let us define a stationary process

f̄i(t) =
∑

j

bi,j

∏

k

ūi,j,k(t), (5)

with the same structure of (2), but governed by the time-
invariant transition probabilities:

P[ūi,j,k(t + 1) = 1|ūi,j,k(t) = 0] = pi,j,k

(

x̄k

)

,

P[ūi,j,k(t + 1) = 0|ūi,j,k(t) = 1] = qi,j,k

(

x̄k

)

(with qi,j,k = 1 − pi,j,k). Now consider a time interval T

such that
xℓ(i)(t) ≃ x̄ℓ(i), ∀t ∈ T (6)

(recall that ℓ(i) encodes the entries of x that affect fi).
Then we make the following approximation.

Approximation 1. Over the time interval T ,

fi(t) ≃ f̄i(t) (7)

in the sense of probability distribution.

Under (7), the dynamics of xi are decoupled from the
remaining components of the state vector, and are deter-
mined by the (entries ℓ(i) of the) approximation point x̄.
We shall rely on this local approximation to treat every
equation i = 1, . . . , n separately.

Proposition 1. Under Approximation 1, for t ∈ T , the
following recursion holds:

E[xi(t + 1)] = aiE[xi(t)] + b̄i +
∑

j

bi,j

∏

k

pi,j,k(x̄k). (8)

4.3 Estimation algorithm

Fix i. In light of the previous discussion, the idea is
to estimate parameters θi � {θi,j,k, ∀j, k} by matching
local statistics of xi around x̄ to empirical local statistics
drawn from data collected “near” x̄ (i.e. such that yℓ(i) ≃
x̄ℓ(i)). In fact, the behavior of the system at several
different locations of the state space will be considered
simultaneously. For NL = L ·N , with L ∈ N, and τ ∈ NN ,
consider the (L-steps) expected variation of xi:

E[xi(τ + NL) − aNL

i xi(τ)]/GNL
(ai), (9)

where GNL
(ai) = (1 − aNL

i )/(1 − ai).

Proposition 2. Let T = [τ, τ + NL]. Under Approxima-
tion 1, the expected variation (9) is given by the formula:

vi(x̄; θi) � b̄i +
∑

j

bi,j

∏

k

s(x̄k; θi,j,k), (10)

where s = s+ or s = s− depending on i, j, k.

Proposition 2 shows us how to compute (9) as an explicit
function of the unknown parameters θi in the case where
xℓ(i)(t) is close to x̄ℓ(i) over a time interval spanning L
subsequent observation times. An empirical counterpart
of the expected variation of xi about x̄ may be computed
from the data as follows. For a given tolerance vector
δ ∈ R

n
+, consider a hyperrectangular neighborhood of x̄:

Xi(x̄, δ) � {x ∈ R
n
+ : |xℓ(i) − x̄ℓ(i)| ≤ δℓ(i)},

where δℓ(i) = [δℓ1 , . . . δℓl(i)
]T and the inequality is inter-

preted componentwise. Let Mi(x̄, δ) ⊂ {1, . . . , M} be the

set of (indexes of) the observed trajectories such that
∃τ ∈ NN , ∃λ ≥ 1 for which

{ym(τ), ym(τ + N), . . . , ym(τ + λN)} ⊂ Xi(x̄, δ).

For every m ∈ Mi(x̄, δ) let

Lm = max
τ

max
{

λ | {ym(τ), ym(τ + N), . . .

. . . , ym(τ + λN)} ⊂ Xi(x̄, δ)
}

(11)

and let the maximum be attained at τ = τm. That is,
τm and Lm together define the maximal piece of the m-th
trajectory that lies in Xi(x̄, δ), provided λ ≥ 1. Finally,
let Mi = card(Mi). Then, empirical variations of xi about
x̄ are computed by the formula

v̂i(x̄) �
1

Mi

∑

m∈Mi

ym
i (τm + NLm

) − a
NLm

i ym
i (τm)

GNLm
(ai)

(12)

(compare this to (9) and observe that E[yi] = E[xi]). We
are now ready to state our identification procedure. The
algorithm below applies separately to all i = 1, . . . , n.

Algorithm 1. (Local Approximate Decoupling).

• choose a positive integer H ;
• choose points in the state space x̄(h) and tolerance

vectors δ(h) ∈ R
n
+, with h = 1, . . . , H;

• for h = 1, . . . , H do
· compute set Mi(x̄

(h), δ(h)) and the values of τm

and Lm, ∀m ∈ Mi(x̄
(h), δ(h));

· compute v̂i(x̄
(h)) as in (12);

• solve

θ̂i = arg min
θi

H
∑

h=1

[v̂i(x̄
(h)) − vi(x̄

(h); θi)]
2, (13)

where the vi(x̄
(h); θi) are evaluated by way of (10).

In practice, the empirical estimates v̂i(x̄
(h)) at several

points in the state space are regarded as noisy measure-
ments of the underlying function vi(x̄

(h); θ∗i ), where θ∗i
denotes the putative true values of the parameters. This
leads to turning parameter estimation into the nonlinear
regression expressed by (13). The choice of the approxi-
mation points x̄(h) is fundamental, and should be driven
by the structure of the system (which is assumed to be
known). In particular, a sufficient number of points H
should be considered to guarantee that optimization (13)
is well defined.

The accuracy of the procedure depends on several factors.
Noise variance σ2

i determines the uncertainty of estimates
v̂i and the probability that data sequences lying in the
Xi correspond to state sequences within the same set.
In principle, larger values of L reduce the variance of
v̂i. Larger values of M generally increase the amount of
data available per approximation point, i.e. the size of the
Mi, which in turn leads to a reduction of the uncertainty
of v̂i. Finally, the validity of approximation (7) depends
on the steepness on the sigmoidal transition probabilities:
the steeper the functions, the smaller the regions of the
state space where local approximation holds with given
accuracy. Note that this factor cannot be quantified ahead
of identification, in that steepness is determined by the
unknown parameters themselves. A rigorous theoretical
analysis of the performance of the method is currently
being developed.
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Fig. 1. A bistable switch. Expression of gene a (b) leads to
synthesis of protein A (B) (arrow), which inhibits the
expression of gene b (a) (dash).

The computational complexity of the identification of the
whole system depends on the dimension n and on the
number of approximation points. In our current imple-
mentation, for every fixed index i, the x̄(h) and the δ(h)

are chosen so that sets Xi form a uniform partition of
the (finite) domain of xℓ(i). However, we make this par-
titioning implicit and keep track only of those sets Xi

that are “visited” by the data. The resulting procedure has
complexity O(n×max{l(i)}×Ny), where Ny denotes the
total number of data points. As a consequence, the worst-
case complexity for the identification of the whole system
is polynomial, namely O(n2×Ny). This remarkable feature
was achieved by exploiting the quasi-diagonal structure of
the model. As a matter of comparison, methods that do
not exploit this structure — for instance, the clustering
method presented in Drulhe et al. (2006) — typically have
exponential complexity. As a final remark, note that the
application of the algorithm to the i-th equation does not
require the simultaneous observation of the whole state
vector; it is only required that yi and yℓ(i) be simultane-
ously available.

5. EXAMPLES

We will now demonstrate our identification procedure on
two benchmark examples of genetic regulatory networks.

5.1 Bistable switch

This network is often found as a subsystem of actual
regulatory networks (Farcot and Gouze (2006)), though
here we take this as a standalone example without referring
to any real system. The network is composed of two
genes, say a and b, that both inhibit the expression of
the other via the synthesis of the corresponding proteins
A and B. A schematic view of the system is given in
Figure 1. On a qualitative basis, depending on the initial
concentrations and on perturbations (inputs), this system
has two possible stable equilibria: high A and low B
concentration, or low A and high B concentration. Let
x1 and x2 denote the concentration of proteins A and B.
The equations of this system with simplified notation are:

x1(t + 1) =a1x1(t) + b1u1(t) + b̄1,

x2(t + 1) =a2x2(t) + b2u2(t) + b̄2,

where p1(x2) = s−(x2; η1, d1) and p2(x1) = s−(x1; η2, d2).
Figure 2 shows the evolution of the state starting from
different initial conditions. The trajectories were generated
at random according to the model with the parameter
values reported in Table 1. These values are somehow
arbitrary and will be regarded as the true values of the
system.

0 0.5 1 1.5 2 2.5 3 3.5 4
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Fig. 2. Random evolution of the system from different
initial conditions.

a1 b1 b̄
1

η1 d1

0.998 0.0025 0 2 5

a2 b2 b̄
2

η2 d2

0.999 0.0037 0 1 5

Table 1. Parameter values for the bistable
switch model.
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4.4
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5.6

η
1

d

Fig. 3. Scatter plots of 100 parameter estimates, for N = 1
(black dots) and N = 10 (red crosses). Solid lines:
true parameter values. Black dashed (N = 1) and red
dash-dotted (N = 10) lines: mean estimate values.

We shall now consider identification of parameters η1 and
d1 pertaining to the dynamics of x1. Given the symme-
try of the system, the procedure for the identification
of parameters η2 and d2 is identical. We consider the
observations of 60 simulated state trajectories starting
from the point (x1, x2) = (0.1, 0.2) (where both genes are
on with high probability). The standard deviation of the
Gaussian measurement noise was set to σ1 = σ2 = 0.04.
We considered equally spaced observations for the two
different observation rates N = 1 and N = 10, for a total
number of observations per trajectory equal to 3000 and
300, respectively. The approximation domains X1 were
chosen so as to partition the state space into stripes of

width δ
(h)
2 = 0.125. In order to improve the robustness of

the estimation, we discarded those partitions which were
explored by less than 15 trajectories.

Scatter plots of the results from 100 repetitions of the
estimation procedure are reported in Figure 3. Mean and
variance of the estimates are reported in Table 2. The
agreement of the parameter estimates with the true pa-
rameters is fairly good, however a small bias is present
and becomes larger as the observations become sparser.
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mean
var

η̂1(2) d̂(5)

1.9913 4.9829
0.0002 0.0341

η̂1(2) d̂(5)

1.9788 5.0477
0.0001 0.0209

Table 2. Mean and variance of the parameter
estimates. Left: N = 1; Right: N = 10. True

parameter values are reported in brackets.

Fig. 4. Bistable system with autoregulation. Expression
of gene a (b) leads to synthesis of protein A (B)
(horizontal arrow), which promotes the expression of
gene b (a) (vertical arrow) and inhibits the expression
of gene a (b) (dash).

a1 b1 b̄
1

η1,1 d1,1 η1,2 d1,2

0.998 0.02 0 8 4 4 4

a2 b2 b̄
2

η2,1 d2,1 η2,2 d2,2

0.998 0.02 0 8 4 4 4

Table 3. Parameter values for the bistable
system with autoregulation.

This is possibly due to the effects of noise, which may
alter the assignment of data points to the correct par-
titions of the state space. Bias could also be due to a
systematically unbalanced spreading of the observations
within the partitions, leading to empirical estimates v̂i(x̄)
that are effectively computed about a point x ∈ Xi(x̄, δ)
away from x̄. This raises a tradeoff in the choice of the
tolerance vector δ; smaller tolerance guarantees better
localization but reduces the amount of observations in the
approximation region.

5.2 A bistable two-state system with autoregulation

This system consists of two genes, each of which upregu-
lates the expression of the other and downregulates its own
expression. Since both thresholds related to self-repression
are higher than the thresholds related to cross-activation,
the system comprises a positive feedback circuit with two
possible steady states: both genes on, and both genes
off (Thomas and Kaufman (2001)). The structure of the
network is reported in Figure 4. Let x1 and x2 denote the
concentration of proteins A and B. The equations of the
system are:

x1(t + 1) =a1x1(t) + b1u1,1(t)u1,2(t) + b̄1,

x2(t + 1) =a2x2(t) + b2u2,1(t)u2,2(t) + b̄2,

with transition probabilities

p1,1(x1) =s−(x1; η1,1, d1,1), p1,2(x2) =s+(x2; η1,2, d1,2),

p2,1(x1) =s+(x1; η2,1, d2,1), p2,2(x2) =s−(x2; η2,2, d2,2).

Figure 5 shows the evolution of the state starting from
different initial conditions. The trajectories were generated
at random according to the model and the parameter
values reported in Table 3. These values will be regarded
as the true values of the system.
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Fig. 5. Random evolution of the system from different
initial conditions.
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Fig. 6. Scatter plots of 100 parameter estimates, for N = 1
(black dots) and N = 10 (red crosses). Solid lines:
true parameter values. Black dashed (N = 1) and red
dash-dotted (N = 10) lines: mean estimate values.

mean
var

η̂1,2(4) η̂1,1(8) d̂(4)

3.924 8.094 3.765
0.002 0.002 0.003

η̂1,2(4) η̂1,1(8) d̂(4)

3.923 8.061 3.875
0.003 0.002 0.004

Table 4. Mean and variance of the parameter
estimates. Left: N = 1; Right: N = 10. True

parameter values are reported in brackets.

As in the previous example, the system is symmetric,
therefore we will limit ourselves to the identification of
the parameters η1,1, d1,1, η1,2 and d1,2 relevant to the first
state equation. In this example, we assume that d1,1 =
d1,2 = d and consider estimation of d, η1,1 and η1,2 given
the observations of 60 simulated state trajectories starting
from (x1, x2) = (12, 10) and of additional 60 starting
from (x1, x2) = (9, 2). The standard deviation of the
Gaussian measurement noise was set to σ1 = σ2 = 0.02.
We considered equally spaced observations for the two
different observation rates N = 1 and N = 10, for a total
number of observations per trajectory equal to 5000 and
500, respectively. The approximation domains X1 were
chosen so as to partition the state space into squares with
edge size 0.8. To improve robustness of estimation, we
discarded those partitions which were explored by less than
30 trajectories.

Scatter plots of the results from 100 repetitions of the
estimation procedure are reported in Figure 6 (for better
visualization, estimates of d were not included in the plot).
Mean and variance of the estimates are reported in Table 4.
The parameter estimates are more biased than in the
previous example, but there is no significant difference
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between the results for N = 1 and N = 10. Therefore
we argue that, in this case, the limiting factors are the
observation noise and the distribution of the data in the
state space. In particular, the greater complexity of this
system (because of the autoregulation mechanisms both
equations depend on both states) makes the estimation
procedure more sensitive to the initial values of the state of
the observed trajectories. Intuitively speaking, depending
on the initial state, the observed trajectories most likely
cross two, one, or none of the thresholds that characterize
the stochastic laws of the product u1,1u1,2, with clear
impact on the richness of the data set. Although we did
not investigate optimal experimental design, we discovered
that the use of two appropriately placed initial conditions
significantly improves the estimation quality (note that, in
our method, the initial conditions for the various experi-
ments need not be the same). As a general guideline, we
suggest that diversifying the data (e.g. by starting biolog-
ical experiments from several different initial conditions),
is an effective way to improve the estimation accuracy.

6. CONCLUDING REMARKS

We presented a stochastic hybrid framework for the de-
scription of genetic regulatory networks that is a natural
extension of the well-known sigmoidal and piecewise affine
models. Based on this framework, we have devised a pro-
cedure for the identification of some key parameters of
the model that can be generalized to the identification
of all parameters. The procedure exploits the structure
of the model by means of local approximations of the
stochastic dynamics. It does not demand that all observed
trajectories start from the same initial conditions. In addi-
tion, not all components of the state need to be observed
simultaneously. The estimation performance was demon-
strated on simple benchmark systems. Several refinements
of the identification procedure are already envisioned: 1)
the adaptive choice of x̄(h) and δh on the basis of the
distribution of the observations over the state space; 2)
the use, for every given point x̄(h) and index i, of several
non-overlapping data portions from the same observed
trajectory; 3) the development of ad-hoc methods for the
solution of the optimization problem (13); 4) the exten-
sion of the estimation procedure to all model parameters.
Finally, application of our identification procedure to a
stochastic hybrid model of Escherichia Coli carbon star-
vation response is being considered.
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