

Architectural Concept of Virtual Automation Networks

Peter Neumann, Axel Poeschmann, Ralf Messerschmidt

ifak Magdeburg, Germany (Tel: +49 39203 81077;
 e-mail: peter.neumann|axel.poeschmann|ralf.messerschmidt@ifak.eu).

Abstract: Twenty years ago, fieldbus systems have been developed for the factory floor and are widely
introduced in industrial automation installations in the meantime. In the nineties Ethernet-based
technologies have been successfully introduced to office automation followed by the usage of Internet-
based applications. Today industrial automation is getting penetrated by the same IT technologies used in
office automation. Nevertheless, the factory floor, respectively automation science and practice, has
special requirements that clearly differ from IT-world requirements; this especially concerns safety,
security, real-time, wireless and public network integration aspects. Thus – to make information
technologies applicable in all fields of production industries – these technologies have to be adopted,
extended or even modified. This significant challenge is extensively tackled by the European Integrated
Project “Virtual Automation Networks”. The exchange of the industrial automation network base towards
IT technologies also offers the unique change to build an open network platform providing easy integration
and extendibility capabilities. This paper presents the open system architecture and first implementation
steps for realizing a Virtual Automation Network. The concepts aimed at are characterized by modularity
and intelligence, thus, enabling flexibility and re-configurability focusing on future knowledge-based and
agile manufacturing enterprises. Copyright © 2008 IFAC.

Keywords: Industrial Communications, Distributed Control Systems, Heterogeneous Networks.

1. INTRODUCTION

Digital networking in industrial automation has a long
history. For the last 20 years, digital communications have
been widely introduced in distributed computer control
systems within both the factory and the process domain. The
proprietary communication systems within SCADA systems
have been supplemented and partially displaced by fieldbus
systems and sensor bus systems. The introduction of fieldbus
systems has been associated with a change of paradigm to
deploy industrial automation systems, emphasising the
device’s autonomy and decentralised decision making and
control loops. Nowadays, (wired) fieldbus systems are
standardised. They are the most important communication
systems used in commercial control installations.

Ethernet won the battle at the same time as the most often
used communication technology within the office domain. It
results in low component prices caused by the mass
production of these components. Nowadays, there is a large
community inventing and introducing Ethernet-based
communication systems to be used in the industrial
automation domain, e.g. in the harsh environment, and in a
real-time and safety-critical world. Thus, Ethernet-based
solutions are dominating as a merging technology.

Additionally, wireless communications have been introduced
in the meantime in both the office environment and the
workshop area. Wireless technologies have been increasingly
investigated and standardisation is continuing. Following the

trend to merge the automation as well as the office networks,
heterogeneous networks, consisting of local and wide area as
well as wired and wireless communication systems, are
getting important. But to use communication systems within
the Industrial Automation they have to fulfil special
requirements. The main requirements are (Neumann, 2007):
(1) Guaranty of real-time behaviour; (2) Guaranty of
functional safety; (3) Guaranty of security; (4) Location
awareness.

2. BASIC DECISIONS

The aim of a Virtual Automation Network is to handle
successfully the transfer of data through a heterogeneous
communication network from the point of view of an
automation application. The passed communication systems
are of any technology, which can not be influenced by the
automation expert. Thus, the heterogeneous technologies are
given. VAN does not describe a new communication
protocol. Thus, the aim is to use the greatest amount of
legacy LAN, WAN and industrial communications
mechanisms. From the point of view of an automation
application, the specifics of the heterogeneous network have
to be hidden. Due to this, the following basic design
decisions could be made:

- VAN is an infrastructure for tested standard distributed
industrial automation concepts in an extended
environment. The application functions (productive
automation functions) are described by their object

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 13964 10.3182/20080706-5-KR-1001.1743

models used in existing industrial communications.
The application service elements (ASEs), as they are
specified in the IEC 61158 standard, can additionally
be used. Thus, the results of the VAN development can
be taken over in the further IEC communication
standardisation.

- Web Services will be used for the establishment of the
end-to-end connections between distributed objects
within a heterogeneous network. Once this connection
has been established, the runtime channel between
these objects is equivalent to the runtime channel
within the local area by using IEC 61784-2 CPF 3
runtime mechanisms.

- To avoid the use of IP and MAC addresses during
establishing the end-to-end path between logically
connected applications within a VAN domain, the
VAN addressing scheme is based on names. This
means for the connected application objects, the IP and
MAC addresses remain hidden.

- None new specified application layer is necessary,
since there is no new fieldbus or real-time Ethernet
protocol. Thus, the approved models of industrial
communications can be used. Only the additional
requirements, caused by the influence of Wide Area
Networks, have to be considered and lead to additional
functionality following the mentioned design
guidelines.

An alternative approach could be to develop a new VAN-
specific application layer. It means that the establishment of
the runtime tunnel as well as the establishment of the
connection between the distributed application (automation)
objects are merging. As a consequence, the name-based
addressing will not be available. Furthermore, the application
layer protocols, which are well introduced on the market,
cannot be used further.

3. NETWORK TOPOLOGY

The VAN characteristics are defined for domains (VAN,
2006a, and b). A domain is a logical group of VAN devices.
The expression “domain” addresses areas and devices with
common properties / behaviour and mainly common
application purposes. The aim is to connect different

Wide Area Network

e.g. IEEE802.3

Local Industrial
Domain

Local Industrial
Domain

Network
Type 1AP relationshipsNetwork

Type 2
AP

End-to-end communication path

InterNetwork Link

Wide Area Network

e.g. IEEE802.3

Local Industrial
Domain

Local Industrial
Domain

Network
Type 1AP relationshipsNetwork

Type 2
AP

End-to-end communication path

InterNetwork Link

Fig.1 Communication path (example) (AP – Access Point)

industrial sites by means of different network technologies
with Quality of Service for industrial control. The devices
related to a VAN domain may reside in a homogeneous
network domain (e.g. local industrial domain in Figures 2 and

3). Depending on the application, additional VAN relevant
devices may be only reached by crossing other network types
(e.g. Wide Area Network type communication, Figure 1) or
they even need to use proxy technology to be represented in
the VAN domain view of a complex application.

3.1 VAN domain and addressing concept

A VAN domain covers all devices which shall be grouped
together on a logical or virtual basis to represent a complex
(e.g. industrial) application, e.g. forming a VAN domain by
designing a distributed control application using existing
devices (e.g. PROFINET devices). A domain uses relations
between VAN devices, which are the end points of a
configured communication line, the local domain and the
related other servers (VAN PnP etc.). The type of network
and the location of the devices may be of any kind and
somewhere distributed over a physical environment that shall
be covered by the overall application. All devices that have to
exchange information within the scope of the application
(equals to a VAN domain) must be VAN aware or VAN
enabled devices. Otherwise, they are VAN independent and
are not members of a VAN domain. Figure 2 depicts VAN
domain examples representing three different distributed
applications.

Remark:
All systems are shown generally as a bus. Depending on the real system it may
be any type of topology including a ring.

Industrial Backbone

Industrial Segment

Office domain

Office sub domains

Remote Industrial Domains / subsidiary / customer sites

industrial WLAN domain

Industrial
WLAN domain

Public and Private
Telecommunication
Networks/Internet

Public and Private
Telecommunication
Networks/Internet

Mobile devices

Single device integration
(e.g. tele control)

Mobile devices

Individual industrial sub domains

Domain connected
via radio link

Industrial Domain

Intrinsic safety
domain Real-time domain

Real-time domain

VAN Domain C

VA
N

 D
om

ai
n

A

VAN Domain B

Fig.2: Different VAN domains related to different automation
applications (VAN, 2006a)

local Local application
engineering

VAN VAN engineering
Station

VAN Domain

Telecommunication

Network, InternetVA

VA

VA

VAN-AD

VAN-AD

VAN-AD
VAN AD

VAN AD

VAN-AP
VAN
Access Point

VAN-AD

VAN enabled
Automation
Device

local

VAN -Segment

Non VAN
Segment

VAN

Industrial Domain

VAN-AP

VAN

Industrial Domain
VAN-AP

Complete embedded in
VAN domain

local
Industrial Domain

VAN-AP

partially embedded
in VAN domain

Fig.3: Parts of a domain

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13965

The VAN domain can include given industrial domains
(equipped with automation devices and internally connected
via industrial communications, e.g. fieldbus) completely or
partially. Thus, an industrial domain can consist of segments
related to a VAN domain (VAN segment) and/or of segments
which are not related to a VAN segment (Figure 3).

For a VAN, there are defined various components:
(1) VAN infrastructure components
- VAN Access Point (VAN-AP)
- VAN Server Device (VAN-SVD)
- VAN Security Infrastructure Device (VAN-SID)
- VAN Engineering Station
(2) Automation-specific components
- VAN Automation Device (VAN-AD)
- VAN Proxy Device (VAN-PD)
- VAN Virtual Device (VAN-VD).

Of interest in the context of this contribution are:

- VAN Access Point: It connects VAN network segments,
but it does not contain an automation function or an
automation application process. It can work as a gateway
or a router to automation devices that are members in a
VAN application context (VAN domain). A VAN-AP may
handle different transmission technologies, which contains
all relevant administration functions, necessary for
configuration and parameter setting in connected sub-
networks. It enables the switching between available
communication paths and finds the best route through the
different sub-networks of the heterogeneous VAN
network.

- VAN Automation Device: Containing an automation
function and connecting it through its integrated VAN
communication capabilities.

- VAN Proxy Device: Connecting a network segment (e.g.
connecting automation devices using any industrial
communication system).

They distinguish by their internal structure as shown in
Figure 4.

3.2 Addressing concept

A VAN domain represents a name space of a distributed
automation application following the design decision to use
logical addresses (names). It is independent of the used
technologies in the installed equipment as well as the used
address schemes (e.g. IP and MAC addresses) within the
heterogeneous network. For the establishment of an end-to-
end connection and the management functions, a logical
name addressing is used. It means: The VAN-Domain is a
Name Domain and not an IP Address Domain. Each VAN
device shall have a unique name according to the naming
conventions. To address VAN devices in a VAN domain, a
unique name space is used. If a provider switching to another
provider occurs (automatic change by a VAN-AP internal
event or initiated by an external event), the unique name of a
VAN device within a VAN-Domain shall not be changed. A
VAN-AP object “VAN-switching” is responsible for
handling this. The naming conventions within a VAN-

Domain shall be conform to DNS unique indicator and
conform to IEC 61158 Type 10 naming definitions to avoid
naming conflicts (IEC 61158).

Fieldbus
Network with
several devices

FD1

FD2
FD3

FD5

FD4

FD1

FD2

FD5

FD1, 2, 5 are VAN-Virtual Devices (VAN aware)
FD3, 4 are not visible in VAN (VAN independent)

VAN-VDs

VAN-PD

VAN

V
A

N
 N

et
w

or
k

C
ap

ab
ili

ty

In
du

st
ria

l C
om

m
.

C
ap

ab
ilit

y

A
ut

om
at

io
n

Fu
nc

tio
nVAN

VAN-AD

V
A

N
 N

et
w

or
k

C
ap

ab
ili

ty

Automation
Function

Fig.4: Automation-specific components (AD – Automation
device; PD – Proxy device; VD - Virtual device; FD – Field
device)

Address resolving in a VAN with sub domains and
communication paths with different IP-subnets will be done
by DNS service, following the rules as follows. Each area
with different IP subnet addressing connected via a VAN
access point has to be a unique sub domain. This is necessary
to access the sub domains by using standard DNS
mechanism. Inside a sub domain, additional sub domains can
be defined depending on the physical and logical structure of
the network installation. The name space can be a public
name space or a local (private) name space.

Once a runtime tunnel has been established and the exchange
of productive data takes place, the IP/MAC addresses, which
have been negotiated during the connection establishment
phase, should be used.

4. SYSTEM ARCHITECTURE

4.1 Logic components

The logic components of a system to be implemented within
the distributed equipment of an automation project are
normally not allocated to a single device. To give an
overview, they should be presented in a common system
architecture block scheme (Figures 5 and 6). The blocks have
to be allocated to specific devices partially, related to the
device type and communication profile.

4.2 Functionality

A lot of standard functionality can be used: Standard
Network Technologies; Internet; IEC 61158.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13966

The VAN-specific functionality is related to: VAN Common
Communication Application Service Elements (ASEs)
(VAN, 2006a); Runtime object tunnel and runtime object
dispatcher.

Web services over Virtual Automation Networks

Access Control Layer (ACL)

Internet Protocolsuite

VAN Network Technology Layer

VAN Autom.
App.Proc. 1-n

V
A

N
 D

evice-and
N

etw
ork-M

anagem
ent

VAN Common Communication
Application Service Elements (ASEs)

VAN Heterogeneous Network Technologies Adaptation Layer

VAN Safety
App.Proc.

Security

Safety Layer

VAN
MIB P

R
O

FIBU
S

Runtime
Object Model

A
S-Interface,

ZigBee
.......

VA
N

 com
m

unication stack

V
AN

 specific services
C

om
m

unication
Technology
S

tandards

Address
mapping

Routing VAN Proxy
App. Proc.

VAN System
Management

App.Proc.
VAN

Security
AP 1-n

VAN
PnP
AP

Param
.

C
onfig.

Tim
e

S
ync.

To Virtual Devices
(VD)

To Virtual- or Automation-Devices (VD, AD)

VAN Runtime
Object

Dispatcher

Web
Application
Web Server Runtime

Object Model Runtime
Object Model

VD
Object Model

IN
TER

BU
S

IP Routing
IP Address

mapping

VAN Runtime
Object
Tunnel

native

Tunnel

Standards

VAN-specific

Mainly standards

Fig. 5: VAN Architecture

The object-oriented ASEs are crucial components, since they
contain all the data for the VAN functionality. All attributes
of an ASE can be accessed by uniform defined Get and Set
services. The access rights are defined in the Access Control
List (ACL). Fig. 6 depicts the ASEs defined in VAN.

VAN Common Communication Application Service ElementsVAN Common Communication Application Service Elements

VAN
R

edundancy

VA
N

D
iagnosis

VA
N

R
outing

VAN
 Access

m
anagem

ent

VAN
 update

service

VA
N

Security C
onfig

VA
N

Sw

itching

VA
N

Peer-to-peer

VA
N

Location

VAN
 Tim

e

VA
N

D
om

ain

VA
N

D

ev.C
onfig

VAN
Safety C

onfig

Fig. 6: VAN Common Communication ASEs

Additionally, there are VAN-specific modifications and
extensions of standard functionality: (1) Adaptation of the
network technologies in the lower layers; (2) WEB Services
over VAN (interface between Internet and VAN Common
Communication ASEs with an underlying Access Control
Layer to secure the access); (3) Time Synchronisation; (4)
Security mechanisms (VAN Network and VAN System
management Application Process); (5) Safety mechanisms
(embedded in VAN Safety Application Process).

4.3 End-to-end communication

To prepare the productive data exchange within an end-to-
end communication of application data objects, two phases of
the connection establishment have to be considered:

(1) The establishment of the runtime tunnel, i.e. to organise
the VAN infrastructure, comparable with laying a (virtual)
wired line between the application processes (e.g. automation
application process handling of the automation objects to be
exchanged). For this Web Services are used. As a result of
this phase the runtime tunnel will be activated. After this
follows:

(2) The establishment of the connection between the
application objects itself (e.g. IEC 61784-2 CPF 3 application
objects to be exchanged) using the established runtime

channel. This connection establishment follows the rules of
the protocols which are used to realise the distributed
application processes (e.g. IEC 61784-2 CPF 3), and is
therefore not in the scope of VAN (instead within the scope
of e.g. IEC 61784-2 CPF 3). The VAN architecture allows
the use of any application layer object model. For the VAN
prototyping, the runtime object model of IEC 61784-2 CPF 3
will be used as a common object definition (IEC 61784-2).

4.4 Quality of Service

There are several aspects to guarantee a scalable Quality of
Service:

- Temporal behaviour (real-time performance), see separate
paper (Beran J, Zezulka F, 2008).

- Availability of the end-to-end connection between
distributed application (automation) objects. To guarantee
that, there are introduced VAN-specific switching and
routing mechanisms. VAN switching means: change of
alternative transmission technologies (lines) between VAN
Access Points, or the change of providers. The runtime
tunnel remains open (working). VAN routing means: a
metric based finding of a complete end-to-end VAN route
through the heterogeneous network and also applies in
case of interruption and newly establishment of the
runtime tunnel. Precondition for all these mechanisms is a
QoS monitoring of an actual link.

- Functional Safety has been realised by a specific safety
protocol on top of the application layer.

- Security has been investigated in different facets; see
separate paper (Wolframm M, Adamczyk H, 2008).

5. IMPLEMENTATION ASPECTS

As described before, there are two main communication
principles in VAN: the Web Service based for the connection
establishment, and the Runtime Object Tunnel (e.g. using
openVPN) for the runtime data exchange. The following
chapter deals with the Web Service related implementation
aspects.

5.1 Web Service related Software Architecture

VAN communication is Peer-to-Peer communication, which
means it is not hierarchical; therefore each VAN device
implements a Web Server and a Web Client to be able to
receive and send Web Services.

The Web Service related VAN software architecture of a
VAN device is shown in the next figure. The WS Server,
Broker with Registry, and Client are central instances of any
VAN device. The WS Server terminates each incoming WS,
checks for authorization against the Access Control List
(ACL) and if allowed the broker distributes the WS to the
corresponding object of an ASE (VAN, 2007). For this the
WS broker has an Object Registry where all implemented
VAN ASE object instances shall register to be enabled to

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13967

receive messages via Web Services. The object registry is
dynamic. The respective object will register/unregistered at
the Object registry with its ASE type, Object Instance port
and object reference. Thus the Object Registry of the WS
Broker

Et
he

rn
et

ca

rd

VAN Device

O
pe

ra
tin

g
Sy

st
em

Persistent
Memory (DB)

WS Server
+ Broker

Object registry

ObjA portx ConfASE
ObjB porty ConfASE

Object B

Object A

OpenVPN

p
o
r
t

p
o
r
t

UDP Socket

UDP Socket

TC
P

ht
tp

 P
or

t
U

D
P

ht
tp

 P
or

t

p
o
r
t

WS Client

VAN-Web Services

ASE

Fig. 7: VAN Web Service related Software Architecture of a
VAN device

keeps a list with entries of all objects that have registered
themselves (see figure 8 for an example). Each object
reference within an ASE is defined as unique.

Fig. 8: Example of entries in the VAN Registry for ASE
objects

5.2 Interface Definition

The figures 9 and 10 illustrate the two needed WS related
Software Interfaces:

- one for receiving the WS from the network/OS and

- one for the internal ASE objects which are subject of
finally receiving, processing and replying to the WS
contained messages.

The interaction of components for a request sent by a VAN-
device A to a VAN-device B and the resulting confirmation

is shown in figure 10. The VAN ASE process of Device A
uses its WS Client for sending out the WS Get request.
Device B receives the WS Get request via its External WS
interface. As described above targeted object and via the
internal socket interface the object registry provides the
information how to reach the

Ex
te

rn
al

 W
S

In
te

rf
ac

e
w

ith
 W

S-
Po

rt

Tomcat/WS process

In
te

rn
al

 S
oc

ke
t

In
te

rf
ac

e
w

ith
 A

SE

O
bj

ec
t R

eg
is

tr
at

io
n

Po
rt

 (U
D

P
21

,0
00

)

VAN WS Requests

VAN WS-Responses

Po
rt

 2
1,

00
0

VAN ASE process

VAN-xy Device
OS: Windows XP (optional openBSD)
Java 1.5

Register / Unregister
Request

Register / Unregister
Confirmation

A
SE

 O
bj

ec
t

In
st

an
ce

 x
y

Po
rt

 x
yz

Set / Get
Confirmation

Set / Get
Request

Fig. 9: Illustration of the Web Services related Software
Interfaces

Message, which passed to its destination. The destination
ASE responses with a confirmation, which is send the same
way back.

WS
Client

External WS
Interface

Tomcat/WS process

VAN Diagnosis ASE process

Diagnosis ASE
Instance xz

Port xxz

G
et

C
onfirm

ation

G
et

R
equest

VAN-Device B

External WS
Interface

Tomcat/WS process

VAN ASE process

Internal Socket
Interface

ASE Object
Instance xy

Port xyz

VAN-Device A

GetD
iag

.re
q GetD

iag
.re

s1. 2.

4.
3.

WEB

Internal Socket
Interface

Fig. 10: Get Request handling between two VAN devices

In the following subchapters the two Interfaces are described
more in detail.

5.2.1 External Web-Service Interface

The External Web-Service Interface receives all incoming
WS Requests from the network/OS and sends out the related
WS Responses. Therefore it is bound to the TCP http(s) port.
This interface implements the VAN Web Service server
according to a WSDL File that is valid for all VAN devices.

The nature of a Web Service communication is symmetric,
that means it is expected that a request is followed by a
related response. In case that the Web Server receives a
request from another VAN device and can not distribute it to
the targeted object, the request will be sent back to the
requesting device without any error code.

At the time of sending of the Web request a timer has to be
started in the sending VAN device. This is for the case that a
VAN device’s Web Client sends a Web Service and the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13968

targeted VAN device’s Web Server receives the request and
distributes it to the targeted object, but by any fault the object
does not reply. If the timer runs out (and no related response
is received) the respective thread has to be finished. If a
response is received from the according object, the timer (and
the related process) has to be stopped.

5.2.2 Internal WP2 Socket Interface

The interface between Web Server and ASEs bases on UDP
Sockets. All VAN ASE object instances of a VAN device
shall register at the ASE Object Registration Port - UDP Port:
21,000 - by means of the Register service. The registration
shall contain a parameter set for the unambiguously
allocation consisting of: object reference, ASE type and ASE
Object Instance UDP Port.

Operation
Type

Operation
Code

Additional
Detail

Handle

ASE
Type

Port Add. Port
Information

Object
Reference

File
Length

XML- FileCommon Message Format

Register/Unregister Message Format

0 16

Get/Set Message Format

Fig. 11: Internal WP2 Socket Interface Message Formats

This interface defines two different message types, on the one
hand for Registering and Unregistering of ASE object
instances and on the other hand for the exchange of ASE
related Get and Set messages for the WS based exchange
between ASEs and devices. As shown in Figure 11 the
interface related messages are divided in a common part
(Byte 0-15) accomplished by two special parts (starting from
byte 16), one defining the format used for
Register/Unregister, the other defining the format used for
Get/Set.

The above described Web Services are used to establish the
Runtime Object Tunnel connecting the application objects of
different VAN devices (see Fig. 12, and also chapter 4.3).

5.3 VAN Runtime Object tunnel

The communication of the automation application objects is
referred to as VAN runtime tunnel. If a connection target is
on a VAN device within the local net, native protocols can be
used (see also Fig. 5). For crossing any WAN, private or
public, a tunnel will be established between the end points.
The VAN project decided on using openVPN, it also
provides security features and is firewall friendly. To be able
to transport both MAC and IP based packets TAP devices are
used at the termination points of a tunnel. The tunnel itself
uses the UDP protocol. Usually an end-to-end tunnel will
consist of several cascaded single tunnel segments. The
related tunnel configuration data for a connection are
contained in respective DeviceConfig ASE objects in the end
points; operational parameters are kept in correlated Domain
ASE objects. Latter Domain ASE objects for each connection
also have to be held on all VAN devices which are part of the

path, to be able to interconnect the right tunnel segments.
Since the path is not predefined, but will be defined
dynamically during the tunnel establishment by the VAN
Routing also the distribution of that information has to be
handled by the tunnel establishment.

Inter Subnet; MAC 1:1

Web based

ASE
Objects

IP based

MAC based

Application processes

Web-addressing
by name

Run time
object tunnel

IP-addressing 1:1

select

Web based

ASE
Objects

IP based

MAC based

Application processes

Run time
object tunnel

select

Device 1 Device 2
Communication

Path

Define, establish and manage the
communication path by web services

Inter Subnet; MAC 1:1

Web based

ASE
Objects

IP based

MAC based

Application processes

Web-addressing
by name

Run time
object tunnel

IP-addressing 1:1

select

Web based

ASE
Objects

IP based

MAC based

Application processes

Run time
object tunnel

select

Device 1 Device 2
Communication

Path

Define, establish and manage the
communication path by web services

Fig. 12: Optimised Runtime Communication Stack

Details of the tunnelling and the closely related security items
are described in (Wolframm M, Adamczyk H, 2008);
performance aspects of the VAN Runtime Object tunnel are
discussed in (Beran J, Zezulka F, 2008).

REFERENCES

Neumann, P. (2007). Communication in Industrial
Automation. What is going on? Control Engineering
Practice 15 (2007), pp. 1332-1347.

VAN (2006a). Specification of the Open Platform for
Automation Infrastructure. Deliverable D02.2-1.
Topology Architecture for the VAN virtual Automation
Domain. European Integrated Project VAN
FP6/2004/IST/NMP/2 - 016696 VAN Virtual
Automation Networks.

VAN (2006b). Specification of the Open Platform for
Automation Infrastructure. Deliverable D02.2-2: VAN
Open Platform API-Specification. European Integrated
Project VAN FP6/2004/IST/NMP/2 - 016696 VAN
Virtual Automation Networks.

VAN (2007). Prototype Implementation Integration.
Deliverable D02.4-1: Software Architecture and
Interface Specification. European Integrated Project
VAN FP6/2004/IST/NMP/2 - 016696 VAN Virtual
Automation Networks.

IEC 61784-2, Industrial communication networks Profiles
Part 2: Additional fieldbus profiles for real-time
networks based on ISO/IEC 8802-3.

IEC 61158 (all parts) Industrial communication networks
Fieldbus specifications.

Beran J, Zezulka F (2008). Evaluation of real-time behaviour
in Virtual Automation Networks. Invited Session
“Virtual Automation Networks”. IFAC World Congress
2008, Seoul.

Wolframm M, Adamczyk H (2008). Secure Virtual
Automation Networks based on Generic Procedure
Model. Invited Session “Virtual Automation Networks”.
IFAC World Congress 2008, Seoul.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

13969

