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Abstract: This paper proposes a recursive method of constructing weak-control-Lyapunov
functions for nonlinear systems. Lyapunov function is one of effective tools to study stability
and stabilization in nonlinear system control design. However, a general way of finding Lyapunov
functions has not been known yet. Our method is introduced by an explicit topological-geometric
assumption for a state space manifold, called a Morse-Smale. The assumption indicates that
there exists a sequence of inclusions of the manifold and its singular structures, called a weak-
Lyapunov filtration. From this structure, we can construct a finite number of iterations to
define weak-control-Lyapunov functions. As a result, the existence of the weak-control-Lyapunov
functions can be specified by the investigation of property of manifolds.
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1. INTRODUCTION

Lyapunov functions play a critical role in stability analysis
and stabilization in nonlinear system control design. How-
ever, it is difficult to find a (strictly negative) Lyapunov
function in nonlinear system in general. Therefore, we use
a weak- (non-positive) Lyapunov function to moderate
the requirement and simultaneously introduce LaSalle’s
theorem and Barbalat’s lemma for technical reasons for
stability discrimination Karil [2002]. On the other hand,
control-Lyapunov functions, which are forced to be nega-
tive by using control inputs, are frequently applied to this
problem Freeman and Kokotović [1996], Sontag [1998]. A
unified approach to the construction of control-Lyapunov
functions is still being developed, especially for global
manifolds that include multi critical points.

The purpose of this study is to specify the condition
for the existence of weak-control-Lyapunov functions by

� This work has been supported by the Ministry of Education,
Science, Sports and Culture Grants-in-Aid for Young Scientists (B)
No.19760298 and Scientific Research (C) No.19560435 and the JSPS
and French Ministry of Foreign Affairs Grant-in-Aid for the Japan-
France Integrated Action Program (SAKURA).

introducing a topological geometric assumption for a state
space manifold. This paper shows a recursive method of
constructing weak-control-Lyapunov functions based on
a Morse-Smale flow Smale [1960], Meyer [1968], Franks
[1979], Robinson [1999] for nonlinear systems. The funda-
mental idea of the method is as follows. First, let us con-
sider a closed (compact and without boundaries) manifold
M as a state space. A system ẋ = f(x, u) is considered as a
vector field on the tangent space TM , where x ∈ M , and
the control input u = k(x) ∈ U is constructed by using
a feedback law k : M → U . We assume that a smooth
global weak-control-Lyapunov function V0 : M → R on M
has been found, the system has already been stabilized by
pre-feedback based on V0 (e.g., universal formula Sontag
[1998]), and all of the invariant sets on M are compact. At
this point, the main problem is the behavior of the system
state that stays on an invariant set Δ1 = {x ∈ M | V̇0 = 0}.
Now we suppose that there exists one compact invariant
set Δ1 on M to simplify this illustration. (1) If a system
state on σ1 ⊂ Δ1 is ‘escapable’ to an adjacent set L��

0 of Δ1

by an appropriate input, a global asymptotically stability
holds by finding a new weak-control-Lyapunov function
V1 : Δ1 → R converging on a point x1 ⊂ σ1 for x ∈ Δ1,
where l0 is the level-set defined by V −1

0 : R[0,m] → M for
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an integer m > 0 and L��
0 is the reachable set of l0 \ Δ1

toward the direction of a positive time evolution. (2) Since
V1 is a weak-control-Lyapunov function, there may exist
an invariant set Δ2 = {x ∈ Δ1 \ x1 | V̇1 = 0}. In this
case, it is not global asymptotically stable. Then, we try to
find another weak-control-Lyapunov function V2 : Δ2 → R

converging on a set Δ1 \Δ2 for x ∈ Δ1. (3) Next, we have
to consider an invariant set Δ3 = {x ∈ Δ2 \ x2 | V̇2 = 0}.
(4) The above procedure called weak-Lyapunov filtration
is repeated over and over again until we obtain a Lyapunov
function.

In the filtration, each dimension of invariant sets Δi (1 ≤
i ≤ m) decreases 1-dimension every iteration and this
situation corresponds with the most strict condition for the
Lyapunov functions. Please note that, actually, there is the
possibility of existence of another set of Lyapunov func-
tions, which is less than the above filtration. However, the
purpose in this paper is to state a topological-geometric
condition of manifolds explicitly for the construction of
weak-control-Lyapunov functions. As a result, we obtain
the fact that weak-Lyapunov filtration can be finished in
a finite number of iterations.

2. MATHEMATICAL PRELIMINARY

In this section, we quote existing results. Let M be a closed
smooth manifold of dimension m with a distance function
d inherited from some Riemannian metric.

2.1 Invariant sets

Let us consider a continuous dynamical system {ϕt}t∈R,
where {ϕt : M → M | t > 0} is a 1-parameter family of
continuous maps. If X is a smooth vector field on M , then
ϕt is the 1-parameter group of diffeomorphisms generated
by X. The state of initial condition x after time t is x(t) =
ϕt(x). In this case, the positive semi-orbit passing through
the point x is defined by O+(x) = {ϕt(x) | t ≥ 0, t ∈ R}.
The set of limit points of O+(x), that is ω(x) = ∩τ≥0∪t≥τ

ϕt(x) is called an ω-limit set. A negative semi-orbit O−(x)
and an α-limit set such that α(x) = ∩τ≤0 ∪t≤τ ϕt(x) are
defined by the inverse time limit t → −∞ in the same
manner.

2.2 Lyapunov functions

A closed invariant set I is called stable in the sense of
Lyapunov if there exists a neighborhood T involved in any
small neighborhood Y such that ∀x ∈ T and O+(x) ⊂ Y .
The C1 function V : M → R is called a weak Lyapunov
function of flow ϕt if V ◦ ϕt(x) ≤ V (x) for ∀x ∈ M

and ∀t ≥ 0. In other words, V̇ (x) ≤ 0 for ∀x ∈ M
if and only if V is a weak Lyapunov function, where
V̇ (x) ≡ d

dtV
(
ϕt(x)

)|t=0. Moreover, if V ◦ ϕt(x) < V (x),
that is V̇ (x) < 0 for ∀x �∈ C(ϕt) and ∀t ≥ 0, then V is
called a Lyapunov function.

We consider a dynamical system ẋ = f(x, u), where
x ∈ M , u ∈ U , and U is an appropriate manifold. If a
proper smooth positive function V : M → R satisfies

inf
u∈U

grad V · f(x, u) < 0 (1)

(or ≤ 0) for ∀x ∈ M \{0}, then V on M is called a control-
Lyapunov function (or a weak-control-Lyapunov function,
respectively), where the function V : M → R is called
proper if a set {x ∈ M |V (x) ≤ a} is compact for any
a > 0.

2.3 Morse theory

The basic concept of the Morse theory is to extract
topological invariant properties of manifolds from the
behavior of critical points of an arbitrary function Milnor
[1963], Matsumoto [2002].

Let f : M → R be a smooth function. If the differential
Df(p) : TpM → R is a zero map, then p is a critical
point of f . The f is called a Morse function if every
critical point p is a non-degenerate detHf(p) �= 0, where
Hf(p) = ∂2f(p)/(∂xi∂xj) is a Hessian. The number of
negative eigenvalues of Hf(p) is called the Morse index
of p. Morse’s lemma, which is one of the most important
results in Morse theory, says that we can take a suitable
local coordinate (x1, · · · , xm) in the neighborhood of p of
index λ so that the function f has a standard form given
by

f(x) = f(p) − x2
1 − · · · − x2

λ

+ x2
λ+1 + · · · + x2

m . (2)
Let us consider a gradient flow ẋ = −∇f(x) on M . Let φt

be the generated invertible 1-parameter family of −∇f .
Now we interpret the flow as a differentiable manifold
itself. For all p ∈ M of f , we define

W s(p) =
{
x ∈ M ; lim

t→+∞φt(x) = p
}

, (3)

Wu(p) =
{
x ∈ M ; lim

t→−∞φt(x) = p
}

(4)

as a stable manifold and an unstable manifold, respectively,
where W s(p) is an (n− λ)-dimensional submanifold of M
and the Wu(p) is a λ-dimensional submanifold of M . All
points on M except for critical points are on one integral
curve. Every integral curve starting from p of index λ
arrives at critical points of index (λ − 1) or less.

2.4 Morse-Smale systems

In contrast with (2), from Thom’s splitting lemma Gilmore
[1993], Thom [1989], the local structure around degenerate
critical points is given by the differentiable function germ:

f(x) = f(p) ± x2
1 ± · · · ± x2

η

+ h(xη+1, · · · , xm) , (5)
where h is a function germ having order over three called
the residual singularity of f and Hh(p) = 0, and the germ,
which is defined by an equivalent class containing f itself,
expresses the behavior of f in the neighborhood of p.

Morse-Smale systems (or flows) are defined by a class of
vector fields on a manifold like gradient fields generated
by Morse functions Smale [1960]. Morse-Smale systems
consist of a finite number of closed orbits and singular
points such as α and ω-limit sets of every trajectory Smale
[1961], Meyer [1968]. Note that the nonsingular quadratic
form (x1, · · · , xη) in (5) corresponds to the regular part of
the coordinate: B

m−1 in the following Definition 3 iii).
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Definition 1. A smooth vector field X is called a Morse-
Smale system provided

i) X has a finite number of singular points: β1, · · ·βk,
and closed orbits: βk+1, · · ·βn.

ii) For any x ∈ M , α(x) = βi and ω(x) = βj for some i
and j.

iii) For a closed orbit βi, there is no x ∈ M \βi such that
α(x) = βi and ω(x) = βi.

iv) The stable and unstable manifolds associated with βi

have transversal intersection.

The set β1, · · ·βn is called the singular elements of the field
X.

Lemma 2. Let X be a Morse-Smale system on M . Let
βi � βj mean that there is a trajectory from βi to βj

whose α-limit set is βi and whose ω-limit set is βj . Then
� satisfies:

i) βi �� βi.
ii) If βi � βj and βj � βl, then βi � βl.
iii) If βi � βj , then dimWu

i ≥ dim Wu
j and equality can

occur only if βj is a closed orbit, where Wu
i is the

unstable manifold associated with βi.

A Morse-Smale system without closed orbits is called
gradient-like. From the previous subsection, there exists a
Lyapunov function (i.e., Morse function) that is decreasing
along trajectories for every gradient-like system. It is
known that for every Morse-Smale system, there exists
a Lyapunov-Morse function, called a ξ-function, that is
decreasing along the trajectories of the system Meyer
[1968].

Let f be a smooth function from M into R and let Δ
denote the set of critical points of f . Let us define a nullity
r with a corank r of f such that r = m− rankHf(p) for a
degenerate singular point (detHf(p) = 0). Let Δr denote
the set of i points δr

i with a nullity r in Δ.

Definition 3. A smooth function f : M → R is called a
ξ-function for M provided

i) Δ = Δ0 ∪ Δ1.
ii) Δ1 is the disjoint union �n

i=k+1δ
1
i of a finite number

of circles such that the index of f is constant on each
circle.

iii) For i = k + 1, · · · , n, there exists an orientable
neighborhood Ni of δ1

i and a diffeomorphism xi such
that xi maps Ni into B

m−1 × S
1 with the local

coordinate consisting of a nonsingular quadratic form
in x1, · · · , xm−1 (the coordinates in B

m−1) and is
periodic with period 1 in xm, the coordinate in S

1,
where B

i is the open unit ball in R
i and S

i is the unit
sphere in R

i+1. Moreover, for each point in S
1, the

quadratic form has an index equal to the index of f
of δ1

i .

The ξ-function decreasing along trajectories is closely
related to the field.

Definition 4. Let X be a smooth vector field on M . Then
a ξ-function f for M is called a ξ-function for X provided
that

i) Xf < 0 for all p ∈ M \ Δ, i.e., f is decreasing
along the trajectories of X or the trajectories of X
are transversal to the level lines of f .

ii) If p is a singular point of X, then p �∈ Δ1.
iii) There exists a constant κ > 0 such that −Xf(p) ≥

κd(p, δi)2 for p ∈ Ni on each Ni.

Theorem 5. If X is a Morse-Smale system, then there
exists a ξ-function for X.

3. MAIN RESULTS

In this section, we introduce a recursive method of con-
structing weak-control-Lyapunov functions based on a
Morse-Smale flow Smale [1960], Meyer [1968], Franks
[1979], Robinson [1999] for nonlinear systems. For this
purpose, some basic concepts in global stability based
on Morse-Smale flows are defined first. Next, we clarify
the requirements of control inputs for global stabilization.
Finally, the precise procedure for constructing a finite set
of weak-control-Lyapunov functions is given.

3.1 Problem statement

Let us consider a closed smooth manifold M as a state
space. Let

ẋ = f(x, u) (6)

be a dynamical system for x ∈ M which can be considered
as a vector field on the tangent space TM . The control
input u = k(x) ∈ U is constructed by using a feedback law
k : M → U . We assume the following:

i) A smooth global weak-control-Lyapunov function V0

on M has been found and the system has already been
stabilized by pre-feedback based on V0 (e.g., universal
formula Sontag [1998]).

ii) All of the invariant sets Δ of V0 consist of Δr, where
r = 0, 1.

iii) Then, the singular point {0} ⊂ Δ0 with index 0 is
equal to the unique global asymptotically stable point
of M .

iv) The system (6) always has a local Carathéodory
solution Bacciotti and Rosier [2005].

Though the above conditions seem a strong limitation at
first glance, actually, these mean a quite wide situation in
comparison with the problem of the conventional nonlinear
system ẋ = f(x) + g(x)u discussing a local system around
one critical point of index 0.

Note that the autonomous vector field (without con-
trol inputs) of the original system (6) might be non-
smooth. However, a weak-Lyapunov function shaped by
pre-feedback control inputs is smooth. Such a situation
frequently appears in practical control problems, e.g., os-
cillating systems, redundant freedom systems, constrained
systems, non-holonomic systems, and homogeneous sys-
tems.
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3.2 Stability

First of all, the main problem on stabilization is the
behavior of the system state that stays on an invariant set
Δr

1 = {x ∈ M | V̇0(x) = 0} except for {0}, where r = 0, 1.

Definition 6. Consider Δ′ = Δ\{0}. Let S|ε = ∪i W s(δi)|ε
be a union of stable manifolds restricted on a closed
neighborhood within a radius of ε around ∀δi ∈ Δ′.
S|ε is called a locally invariant singular structure. S|∞
(we denote by S simply) is called an invariant singular
structure if ε → ∞. In other words, any x ∈ S is
asymptotically stable to Δ′.

Theorem 7. Consider a Morse-Smale system X on M . Let
R be a submanifold of M such that R = cl(M \S), where S
is an invariant singular structure for Δ′ of M . A restricted
flow X|R on R is semi-global asymptotically stable with
respect to {0} for ∀x ∈ R.

Proof. The solutions on S arrive at some point x ∈ Δ′
along a positive time evolution. Then, such a solution
remains in Δ′ and never converges into {0}. On the other
hand, there exists a ξ-function that is decreasing along the
trajectories on the submanifold R = cl(M \ S) containing
only regular points on M according to Theorem 5. Thus,
all of the solutions on R converge to {0}. �

Theorem 8. Consider a Morse-Smale system X on M .
There exists a weak-Lyapunov function V0 for {0}.
Proof. M consists of a union of the submanifold R of
regular points and the invariant singular structure S for
Δ′. V0 on R and S\Δ′ are decreasing along the trajectories.
Thus, the singular points Δ′ in S correspond to a set of
V̇0 = 0. �

Remark 9. Since M is compact, there always exist a maxi-
mum and a minimum on M from maximum value theorem.
In this case, the maximum corresponds to singular points
with index m and the minimum corresponds to singular
points with index 0. Then, the image of V0 exists in
the interval [0, m]. The critical points pi and pj can be
arranged in such a way that V0(pj) � V0(pi) implies that
ind(pi) ≥ ind(pj) while keeping the topological property
of M Matsumoto [2002], where ind(p) is an index of p.
That is, suppose that V0(p) = ind(p) for all critical points
p. We call V0 self-indexed if V0 = ind(p) whenever p is a
critical point or a closed orbit. Thus, the ξ-function can
be considered as a self-indexed Lyapunov-Morse function.

3.3 Controllability

Definition 10. Let N be the closed neighborhood within
a radius of ε around a critical point δi ∈ Δ for any i. Let
R(δi, T ) be the reachability set of the local system around
δi for some T . Consider the submanifold Ri = cl

(
N \

W s(δi)|ε
)
. If R(δi, T )∩Ri �= ∅, we call δi locally escapable.

The above condition can be stated using the limited
version of the locally accessible sufficient condition Isidori
[1995]. That is, now we only have to find 1 degree of
freedom, at least for unstabilization of critical points δi.

Proposition 11. Consider a Morse-Smale system X on M .
Let N be the closed neighborhood within a radius of ε
around a critical point δi ⊂ Δ for any i, where x ∈
N ⊂ M . Let C(δi) be the distribution of the local system
ẋ = gi,0(x) +

∑
j gi,j(x)ui,j on N , which corresponds

to the regular part of the local coordinates which is
expressed as a quadratic form in (2) and (5). Consider the
restricted distribution C(δi)|Ri

on Ri = cl
(
N \ W s(δi)|ε

)
.

If dim C(δi)|Ri
�= 0, then δi is locally escapable at x.

Proof. There exist canonical local coordinates (2) and (5)
around Δ. Then, we can define the local system. If there
exists a control that can drive the system to Ri, the state
will never return to δi because δi is isolated; that is there
exists a gradient-like flow decreasing along trajectories in
the neighborhood of δi from Theorem 5. �

Corollary 12. The singular points δi ⊂ Δ0 of V0 with the
index 0 are non-escapable.

Proof. Since N ∼= W s(δi)|ε, Ri = ∅. �

In the same way as for δi, we have to consider the
attracting orbits S \ δi to δi.

Proposition 13. Consider a Morse-Smale system X on M .
Let N be the closed neighborhood within a radius of ε
around a regular point x0 on a stable manifold W s(δi) of
δi ⊂ Δ for any i, where N ⊂ M . Let Xx0 ∈ Tx0W

s(δi) be
the vector field tangent to W s(δi) at x0. Let C(x0) be the
distribution of Xx0 . Consider the restricted distribution
C(x0)|Ri

on Ri = cl
(
N \ W s(δi)

)
. If dim C(x0)|Ri

�= 0,
then W s(δi) is locally escapable at x0.

Proof. The proof is given in the same manner as for
Proposition 11. �

Theorem 14. Consider a Morse-Smale system X on M . If
S is escapable, then the system is global asymptotically
stable to {0}.
Proof. Since S is escapable, all the solution on S can be
converged into R by using a control input. On the other
hand, R is semi-global asymptotically stable to {0}. Since
M = R ∪ S, the global stable point of the system is equal
to {0}. �

As a result, if we can find a smooth global weak-control-
Lyapunov function V0 on M satisfying Definition 3, the
controlled system by pre-feedback can behave as a Morse-
Smale system. Moreover, if the invariant singular structure
S is escapable, the system is global asymptotically stable.

3.4 Stabilization

In the case of degenerate critical points, the escapability
condition in the previous section is quite strict for a
practical situation because the control is required to be
available on all of the attracting orbits S \ δi to δi or all
of the closed orbits δ1. In the first case, usually S|ε is
considered as an escapable region. This section is devoted
to the last case, that is the relaxation of Theorem 14 in a
constructive way.
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Definition 15. Consider a Morse-Smale system X on M .
Let us define a level-set l0 := {p ∈ M | V0(p) = V0(x), x ∈ Δ′},
where we denote level-sets for each δi by l0,i.

In other words, l0 is equivalent to the level-set defined
by the inverse of self-indexed Lyapunov-Morse function
V −1

0 (y) : R[0,m] → M for an integer y ∈ R[0,m].

Definition 16. Let us define a finite disjoint union L0 :=
�n′

i l0,i of level-sets l0,i, where n′ < n, because we removed
singular points of index 0.

Lemma 17. Each level-set l0 is compact.

Proof. By the implicit function theorem, V −1
0 is a sub-

manifold of M . �

Lemma 18. Let l̄0 be a closure cl(l0 \Δ) of regular subset
of l0. There exists a collar neighborhood l��0 of l̄0 with a
diffeomorphism h : l̄0 × [0, 1) → l��0 on M , where [0, 1) is
a half-open interval toward a positive time direction and
h(l̄0, 0) = l̄0.

Proof. Since l0 = V −1
0 (x) is compact from Lemma 17,

l0 \ Δ is an open set. Then, l̄0 = cl(l0 \ Δ) is compact.
V ′

0 : M \ Δ → R has no critical values in [0, ε) for a
small enough positive number ε. The restriction of V ′

0 to
T[0,ε) = V ′ −1

0 × [0, ε) can be considered as a ξ-function on
T[0,ε). Let X be a gradient-like vector field for V ′

0 on T[0,ε).
If we define Y = (1/X · V ′

0)X, then the integral curve cx(t)
of Y starting at x ∈ l̄0 flows down with constant speed 1
with respect to the height defined by V ′

0 because
d

dt
V ′

0

(
cx(t)

)
=

dcx

dt
(t) · V ′

0 = Y · V ′
0 = 1 . (7)

Define a map h : l̄0×[0, ε) → T[0,ε) by using h(x, t) = cx(t).

For the collar neighborhood l��0 , we can take T[0,ε),
h|T[0,ε) = h|V ′ −1

0 ×[0,ε), and we have

l̄0 × [0, 1)
∼=−→ T[0,ε)

h|T[0,ε)−−−−→ l��0 (8)
for the diffeomorphism. �

Definition 19. Consider L̄0 := �n′
i l̄0,i for n′ < n. Then,

the collar neighborhood of all level-sets l0 on M for the
positive time direction such as L̄0 × [0, 1) is defined by
L��

0 .

From the above preparations, at last, we can define a set
of weak-Lyapunov functions on L��

0 and its submanifolds.

Definition 20. Let V0 : M → R be a weak-control-
Lyapunov function for a global asymptotically stable point
{0} for any x ∈ R. Consider Δ1 := {x ∈ M | V̇0 =
0}. Then, let V1 : Δ1 → R be a weak-control-Lyapunov
function for any point x1 ∈ σ1 in an escapable region
σ1 ⊂ Δ1 to L��

0 for any x ∈ Δ1. Next, Δi := {x ∈ Δi−1 \
{xi−1} | V̇i−1 = 0}, where 2 ≤ i ≤ m. In the same manner,
let Vi : Δi → R be a weak-control-Lyapunov function for
any point xi ∈ σi in an escapable region σi ⊂ Δi to a point
in Δi−1 \ Δi.

The following is the procedure of stabilization by using the
sequence of weak-control-Lyapunov functions Vi (0 ≤ i ≤

m). From here on, we assume that the system R = M \ S
has been already stabilized to a global asymptotical stable
point {0} by pre-feedback based on V0. At this point, we
concentrate on the behavior of the system state that stays
on an invariant set Δ1 = {x ∈ M | V̇0 = 0}. Then, we
attempt to find a new weak-control-Lyapunov function V1

converging on an escapable point x1 ∈ σ1 ⊂ Δ1 to the
set L��

0 for x ∈ Δ1. If the state moves to L��
0 once, then

it flows along the monotone decreasing direction of V0,
because L��

0 consists of regular points. However, there may
exist an invariant set Δ2 = {x ∈ Δ1 \ x1 | V̇1 = 0} in Δ1,
because of non-positiveness of V1. Next, we try to find
another weak-control-Lyapunov function V2 converging
on an escapable point to Δ1 \ Δ2 for x ∈ Δ2. In the
same manner, we have to consider on an invariant set
Δ3 = {x ∈ Δ2 \x2 | V̇2 = 0}. Finally, if we obtain Vi for all
x ∈ R, the global asymptotical stability holds. A sequence
M ⊃ Δ1 ⊃ Δ2 ⊃ · · · ⊃ Δm ⊃ ∅ of inclusions regarding
the manifold and its singular structures that is defined by
the above procedure repeated over and over again until
we obtain the set of weak-control-Lyapunov functions is
called weak-Lyapunov filtration.

Theorem 21. Consider a sequence of filtered invariant sets
M ⊃ Δ1 ⊃ Δ2 ⊃ · · · ⊃ Δm ⊃ ∅. The filtration is a finite
degree.

Proof. The intersection between the level-set generated
by V0 and an m-dimensional closed manifold is an (m−1)-
dimensional closed surface. Thus, the intersection between
an (m − 1)-dimensional closed manifold and the level-
set generated by V1 is an (m − 2)-dimensional surface
in the same manner. Finally, we obtain a 0-dimensional
intersection for Vm−1. �

Corollary 22. Consider a Morse-Smale system X on M .
The weak Lyapunov filtration is 2 degrees: Δ0 ⊃ Δ1 ⊃ Δ2.

Proof. The closed orbits δ1 created by V0 have two critical
points δ2,0 and δ2,1 whose indexes 0 and 1, respectively for
a new negative gradient flow of a Morse function that can
be considered as a V1. Thus, for δ2,0 and δ2,1, V2 should be
constructed to escape themselves at least. Here, the facts:
V2 is defined on the critical point δ2,1 and the existence of
V2 indicate that there exists inputs to be escapable form
the critical point to Δ1 \ Δ2. �

4. EXAMPLE

Let us consider the following system on (x, y)-plane:[
ẋ
ẏ

]
= {1 − (x2 + y2)}

[
cos θ
sin θ

]
u1 +

[− sin θ
cos θ

]
u2

+ a(θ)
[

cos θ
sin θ

]
u3 , (9)

where θ is an angle to the positive direction of x-axis at
the origin

a(θ) is the function defined as follows:
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a(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sin θ −

√
3

2

(
sin θ >

√
3

2

)

0

(
sin θ ≤

√
3

2

) . (10)

We define V0 = x2 + y2 as a weak-control-Lyapunov
function for the global asymptotical point 0. Δ1 is a circle
with a radius 1 at the origin. If we select u1 based on
V0, after a enough long time, any states starting from the
outside of Δ1 converge to Δ1 and any states starting from
the inside of Δ1 converge to 0.

Now, to simplify a problem, we consider only the situation
that the system state exists on Δ1 in the first case. In the
case, a controllable region on Δ1 toward radial directions
to the origin is in the range sin θ >

√
3/2 in which u3 is

effective. Furthermore, we can use u2 to drive the state
into the region. Thus, we should find a new weak-control-
Lyapunov function V1 for any x1 ∈ σ1 = sin θ >

√
3/2.

For example, we set V1 = x1 + (y − 1)2. V1 generate
Δ2 = (0,−1), however Δ2 is escapable to Δ1.

Form the above, the design of weak-control-Lyapunov
functions has been completed.

5. CONCLUSION AND FUTURE WORK

In this paper, a recursive method of constructing weak-
control-Lyapunov functions based on a Morse-Smale flow
for nonlinear systems was presented by limiting the topo-
logical situation to weak-control-Lyapunov functions.

The presented recursive procedure still holds in the general
case of the nullity r ≤ n, leaving aside the development of
definite calculations. In this study, we took notice of the
condition of the nullity r ≤ 1. As a result, we found that
the procedure could be finished in a finite number of steps.

The stability and the controllability were defined on the
assumption that the state-space manifold is closed. The
assumption can be relaxed on the boundary of M . That
is, in the case that M has a boundary, we can carry out the
same discussion by considering the flow on the boundary.

We consider detailed discussion regarding the following
advanced topic to be a future work. On the residual
singularity of the local structure around degenerate critical
points in Thom’s splitting lemma, for example, the case of
r = 1, the singular point p of f is called Ak-type if f ′(p) =
· · · = f (k)(p) = 0 and f (k+1)(p) �= 0. For such an Ak-type
singular point, there exists a formal local coordinate such
that f(x) = f(p)±xk+1 for p. The classification of residual
singularity has been moved ahead by Arnol’d Arnol’d
[Ed.]. The simple singular points, which do not have
moduli, are classified by the series of simple Lie algebras:
Ak, (k > 1), Dk, (k > 4) and E6, E7, E8 through a
Dynkin diagram. Such a classification has the capability
of dealing with a more unified definition of stability of
degenerate critical points. On the other hand, it is known
from Hironaka’s resolution of the singularity theorem that
there exists a resolution ϕ : X̃ → X of singularity for
any algebraic variety X. Then, ϕ is obtained by making
several blowing-ups on the submanifold Hironaka [1984].

This method may be used for changing the degenerate
cases into Morse-type regular problems.
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