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Abstract: This paper presents an intelligent control scheme that uses a cerebellar model articulation con-
troller (CMAC) and genetic algorithms (GA) in aircraft automatic landing control and to make automatic 
landing systems (ALS) more intelligent. The proposed intelligent controller can act as an experienced pilot 
and guide the aircraft to a safe landing in severe turbulence environment. Current flight control law is 
adopted in the intelligent design. Tracking performance and adaptive capability are demonstrated through 
software simulation. 

 
1. INTRODUCTION 

 
Conventional automatic landing system is enabled only under 
limited conditions. If severe wind disturbance is encountered, 
the pilot must handle the aircraft based on the limits of the 
automatic landing system. Aircraft pilots must not only be 
acquainted with the operation of instrument boards but also 
need flight sensitivity to the ever-changing environment, es-
pecially in the landing phase when turbulence is encountered. 
An inexperienced pilot may not be able to guide the aircraft to 
a safe landing at the airport. According to the National 
Transportation Safety Board report (NASDAC Review, 2004), 
between 1994 and 2003, there were 19562 aircraft accidents. 
Weather was a contributing factor in 4159 of these accidents 
and involved 4167 aircraft. Of the 4159 weather-related ac-
cidents, 2726 were due to wind conditions. In addition, a sin-
gle accident may involve multiple weather conditions. Ac-
cording to the statistics of Flight International 10-16, January 
2006 issue, there were 23 accidents/incidents affected by 
weather, causing total 324 (34 crew and 290 passengers) fa-
talities. The average accident fatality caused by weather is 14 
people. It was apparent that most of cases were in the landing 
phase. It is therefore desirable to develop an intelligent ALS 
that expands the operational envelope to include safer re-
sponses under a wider range of conditions. The goal of this 
paper is to show that the proposed intelligent control system 
can relieve human operators and guide the aircraft to a safe 
landing in a severe turbulence environment.  
 
In recent years, intelligent control is more and more popular in 
the control fields. Many intelligent concepts have been applied 
into various scientific and engineering researches, such as 
fuzzy system, neural network, cerebellar model articulation 
controller (CMAC), genetic algorithms (GA), and hybrid 
systems etc., for example. There are also obvious achieve-
ments in flight control domain (Jorgensen et al., 1991; Cooper, 
1995; Iiguni et al., 1998; Chaturvedi et al., 2002; Izadi et al., 
2003; Malaek et al., 2004; Juang et al., 2005). In the corre-
sponding period of neural networks, the CMAC was devel-
oped by Albus in 1975. It imitates the structure of human 
cerebellum, which is a kind of associative memory neural 
network. Unlike the back-propagation based neural network 

which is using the global weight updating rule, CMAC is dis-
tinguished by the local weight updating rule. CMAC not only 
combines the advantages of rapid convergence speed and low 
computation but can also be realized easily by hardware. With 
increasing interest in neural networks, CMAC has attracted 
many investigators into this field. The applications of CMAC 
can be found such as robot control, unknown nonlinear sys-
tems, image and signal processing (Lin et al., 2004; Hu et al., 
1999).  
 
In this study, we introduce a hybrid fuzzy-CMAC-GA con-
troller to automatic landing system. Because fuzzy set theory 
has been successfully employed in various fields, more and 
more researchers integrated the fuzzy concept into the con-
ventional CMAC, such as Nie et al.,1993; Zhao et al.,2000; 
Hu et al.,2005; Su et al.,2006. The performance of the intel-
ligent ALS under severe environment can be improved by the 
advantages of the fuzzy-CMAC which include local gener-
alization, rapid learning convergence, and fuzzy interpretation 
capability. Besides, GA is utilized to the selection of optimal 
control gains, which are used to make the controller adaptive 
to different flight conditions. Robustness is obtained by 
choosing optimal control gains that allows wide range of 
disturbances to the controller. GA is search and optimization 
method based on the principle of natural evolution and 
population genetics. The basic principles of GA were first 
proposed by Holland (1975). GA presumes that the potential 
solution of any problem is an individual and can be repre-
sented by a set of parameters. These parameters are regarded 
as the genes of a chromosome and can be structured by a string 
of values in binary or real-value form. A positive value, gen-
erally known as a fitness value, is used to reflect the degree of 
“goodness” of the chromosome for the problem which would 
be highly related with its objective value. In this paper, a 
real-value GA using Adewuya crossover rule is applied to 
search optimal control parameters (Adewuya, 1996).  
 

2. SYSTEM MODEL 
 
At the aircraft landing phase, the pilot descends from the 
cruise altitude to an altitude of approximately 1200 ft above 
the ground. The pilot then positions the aircraft so that the 
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aircraft is on a heading towards the runway centerline. When 
the aircraft approaches the outer airport marker, which is 
about 4 nautical miles from the runway, the glide path signal is 
intercepted, as shown in Fig. 1. As the airplane descends along 
the glide path, its pitch, attitude, and speed must be controlled. 
The descent rate is about 10 ft/sec and the pitch angle is be-
tween -5 to +5degrees. Finally, as the airplane descends 20 to 
70 feet above the ground, the glide path control system is 
disengaged and a flare maneuver is executed. The vertical 
descent rate is decreased to 2 ft/sec so that the landing gear 
may be able to dissipate the energy of the impact at landing. 
The pitch angle of the airplane is then adjusted, between 0 to 5 
degrees for most aircraft, which allows a soft touchdown on 
the runway surface. 
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Fig. 1. Glide path and flare path 

 
A simplified model of a commercial aircraft that moves only 
in the longitudinal and vertical plane is used in the simulations 
for implementation ease (Jorgensen et al.,1991). The motion 
equations of the aircraft are given as follows: 
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where u  is the aircraft longitudinal velocity  (ft/sec), w  is the 
aircraft vertical velocity (ft/sec), q  is the pitch rate (rate/sec), 
θ  is the pitch angle (deg), h  is the aircraft altitude (ft), Eδ  is 
the incremental elevator angle (deg), Tδ  is the throttle setting 
(ft/sec), oγ  is the flight path angle (-3deg), and g  is the 
gravity (32.2 ft/sec2). The parameters ii ZX , and iM  are the 
stability and control derivatives. 
 

Reliable wind profiles are needed in this study. Two spectral 
turbulence forms models by von Karman and Dryden are 
mostly used for aircraft response studies. In this study the 
Dryden form (Jorgensen et al., 1991) was used for its dem-
onstration ease. The model is given by : 
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The parameters are: gu  is the horizontal wind velocity (ft/sec), 

gw  is the vertical wind velocity (ft/sec), 0U is the nominal 

aircraft speed (ft/sec), 510windu  is the wind speed at 510 ft al-
titude, uL  and wL  are scale lengths (ft), uσ  and wσ  are RMS 
values of turbulence velocity (ft/sec), tΔ  is the simulation 
time step (sec), N(0,1) is the Gaussian white noise with zero 
mean and unity standards deviation,  gcu is the constant 
component of gu , and h  is the aircraft altitude (ft). Fig. 2 
shows a turbulence profile with a wind speed of 30 ft/sec at 
510 ft altitude. 
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Fig. 2. Turbulence profile 

 
3. INTELLIGENT CONTROL 

 
PID controller is a simplified structure of an aircraft landing 
controller as shown in Fig. 3. Its inputs consist of altitude and 
altitude rate commands along with aircraft altitude and altitude 
rate. Via aircraft landing controller we can obtain the pitch 
command cθ . Then, the pitch autopilot is controlled by pitch 
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command. The pitch autopilot is shown in Fig. 4. Detail de-
scriptions can be found in (Jorgensen et al.,1991). In order to 
enable aircraft to land more steady when an aircraft arrives to 
the flare path, a constant pitch angle will be added to the con-
troller. In general, the PID controller is simple and effective 
but there are some drawbacks such as apparent overshoot and 
sensitive to external noise and disturbance. When severe tur-
bulence is encountered the PID controller may not be able to 
guide the aircraft to land safely. With a fuzzy-CMAC com-
pensator the proposed controller can overcome these disad-
vantages. The control scheme that we used was a combination 
design from Shi et al. (2006), Juang et al. (2005), and Miller et 
al. (1990). It uses a traditional PID controller to stabilize the 
plant and train the fuzzy-CMAC to provide precise control. 
The gains of PID controller are adjusted based on experiences, 
what it provides are tolerable solutions, not desired solutions. 
The fuzzy-CMAC can effectively improve these conditions. 
The overall control scheme is described in Fig. 5, in which the 
control signal U is the sum of the PID controller output and the 
fuzzy-CMAC output. The inputs for the fuzzy-CMAC and 
PID controller are: altitude, altitude command, altitude rate, 
and altitude rate command. The PID controller provides tol-
erable solutions. In each time step k, the fuzzy-CMAC in-
volves a recall process and a learning process. In the recall 
process, it uses the desired system output of the next time step 
and the actual system output as the address to generate the 
control signal FCMACU . In the learning process, the control 
signal of the pitch autopilot, U, is treated as a desired output. It 
is used to modify the weights of fuzzy-CMAC stored at loca-
tion which is addressed by the actual system output and the 
system output of the next time step. The output of the 
fuzzy-CMAC is the compensation for pitch command.  
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Fig. 3. PID-controller 
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Fig. 4. Pitch autopilot 

   
Fig. 5. The fuzzy-CMAC control scheme 

 
CMAC is a kind of associative memory network. Not only it 
has faster self learning rate than normal neural network by 
quantities with a few adjustments of memory weights, but also 
it has good local generalization ability. The function of 
CMAC is similar to a look-up table, and the output of CMAC 
is figured from a linear combination of weights which are 
stored in memory. The concept of CMAC is to store data 
(knowledge) into overlapped storage hypercubes (remem-
bering region) in an associative manner such that the stored 
data can easily be recalled. Two kinds of operations are in-
cluded in the CMAC, one is calculating the output result and 
the other is learning and adjusting the weight. The output of 
CMAC can be obtained by the mapping process U→A→Y, 
which the input is NRUx ⊂∈  with a corresponding function 

MRYy ⊂∈ , and A stands for the M dimensioned storage 

space, MRAa ⊂∈ is the binary associative vector. Let the 
input x  address N (N < M) storage hypercubes; the mapping 
A→Y is to compute the output as 

1
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where jw is the weight of the j-th storage hypercube and 
)(xa j is a binary factor indicating whether the j-th storage 

hypercube is addressed by the input x. In the stage of network 
learning in CMAC, it is to modify the weight of storage hy-
percubes according to the error between the desired output and 
the real output. Its weight updating rule is 
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where dy  is the desired output, m is the number of addressed 
hypercubes,α is the learning rate. At first, the input vector of 
CMAC is divided into certain blocks. The relation between 
input vector with these blocks is simply a crisp relation. The 
relation between the input condition and the association in-
tensity is simply “activated” or “not activated”. In order to 
improve the shortcoming of conventional CMAC on the crisp 
relation, fuzzy set theory is introduced while processing divi-
sion of the input and activating association intensity. Then it 
can well reflect the fuzziness and the continuity of human 
brain’s cognition. Manifold fuzzy-CMAC approaches have 
been proposed in the literatures (Nie et al.,1993; Zhao et 
al.,2000; Su et al.,2006). The approach proposed in Su et al. 
(2006) is adopted in our intelligent ALS. In this study, mem-
bership functions are adopted and the equations in (8) and (9) 
are modified to  
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where ( )jC x  is the firing strength of j-th rule for an input x. The 
firing strengths are considered as the learning strengths. They 
are the weighting factors in the distribution of the forward 
mapping as in (9). The structure of fuzzy-CMAC is shown in 
Fig. 6. The fuzzy-CMAC is utilized to quantize input with 
fuzzy rules and the defuzzification is to sum weighted outputs 
of the fired rules.    
 

 
Fig. 6. The structure of fuzzy-CMAC 

 
A real-value GA is utilized to parameter search of the hybrid 
fuzzy-CMAC-GA system. Unlike binary-coded genetic algo-
rithm, the real-value GA does not require coding and decoding. 
In recent years most researches adopt real-value GA for its 
ability of exemption of coding and decoding operation time 
and enhancement of systematic accuracy. Therefore, in this 
paper we adopted a real-value GA to search the control pa-
rameters of the autopilot. The purpose of this procedure is to 
search more suitable control parameters for kө and kq in glide 
path and flare path. Feedforward and feedback control pa-
rameters of the pitch autopilot are selected by the GA with 
different strength of disturbances. The wind disturbance 
strength increases progressively during the process of pa-
rameter search. The control parameters, kө and kq, of the glide 
and flare paths are the chromosomes that need to be searched. 
The design of fitness function is to consider numbers of suc-
cessful landing with different disturbance strengths as fitness 
function values. This method makes the aircraft adapt itself to 
wider range of wind disturbances. Figure 7 shows the flow 
chart of parameter search of the fuzzy-CMAC-GA control 
system. We utilized roulette wheel selection to choose better 
parents, which is according to the fitness function of popula-
tions. For each generation, the reproduction operator chooses 
populations that are placed into a mating pool, which is used 
as the basis for creating the next generation. Then, enter the 
next stage, crossover. The crossover process is divided into 
three steps, as shown below. 
Step 1：Randomly choose a gene from each individual of a 
matching pair in parent generation, αmP  and αnP , as cross-
over site. 

[ ]msmmm pppppattern ..........211 α=   (12) 
[ ]nsnnn pppppattern ..........212 α=   (13) 

Step 2：Calculate new values of these selected genes as fol-
lows, where β  is a random number and 10 ≤≤ β . 

( ) αα ββ nmnew ppp ⋅+⋅−= 11                           (14) 
( ) αα ββ nmnew ppp ⋅−+⋅= 12                (15) 

Step 3：Replace αmP  and αnP  with 1newP  and 2newP , respec-
tively. The genes in the right side of the crossover site ex-
change with each other, which will obtain new offspring. 

[ ]nsnewmm ppppNewpattern .......... 1211 =  (16) 
[ ]msnewnn ppppNewpattern .......... 2212 =  (17) 

Finally an important process is the mutation, which permits 
the introduction of extra variability into the population. We 
pick out a population randomly, and change their gene in-
formation, but the new offspring must be in the range estab-
lished after adding gene information. We use real number 
mutation process as follow 

noiserandsxx oldnew _⋅+=       (18) 
where s is the random value between 0 to 1. 
 

 
Fig. 7. Parameters search of the fuzzy-CMAC-GA scheme 
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4. SIMULATIONS 
 
The aircraft starts the initial states of the ALS as follows: the 
flight height is 500 ft, the horizontal position before touching 
the ground is 9240 ft, the flight angle is -3 degrees, the speed 
of the aircraft is 234.7 ft/sec. Successful touchdown landing 
conditions are defined as follows: 

-3 )(Th≤ ft/sec≤ 0,     200 )(Tx≤ ft/sec≤ 270, 
-300 )(Tx≤ ft≤ 1000,   -10 )(Tθ≤ degree≤ 5, 

where T is the time at touchdown, )(Th  is vertical speed of 
the aircraft at touchdown, )(Tx  is the horizontal position at 
touchdown, )(Tx is the horizontal speed, )(Tθ is the pitch 
angle at touchdown. 
 
Table 1 shows the results from using PID controller with 
different turbulence speeds. The conventional controller with 
original control gains can only successfully guide an aircraft 
flying through wind speeds of 0 ft/sec to 30 ft/sec. The 
situations at turbulence 30 ft/sec are that the pitch angle is 
-0.17 degrees, vertical speed is -2.19 ft/sec, horizontal velocity 
is 234.7 ft/sec, and horizontal position at touchdown is 844 ft. 
If the wind speed is higher than 30 ft/sec, the ALS will be 
unable to guide an aircraft to land safely. Table 2 shows the 
results from using CMAC controller with different turbulence 
speeds. This controller can guide the aircraft to land safely 
through wind speed at 0 ft/sec to 58 ft/sec. Table 3 shows the 
results from using fuzzy-CMAC controller. Simulations are 
done by using original control parameters of pitch autopilot. 
The learning rate α  is 0.8, and the number of blocks m is 12 
as well as the amount of membership functions. This con-
troller can successfully guide the aircraft flying through wind 
speeds to 90 ft/sec. 

 
Table 1. Results from using conventional controller 

Wind 
speed 

Landing 
point 
(ft) 

Aircraft  
vertical 
speed  

（ft/sec） 

Pitch angle
（degree）

0 797 -2.83 -1.41 
10 910 -2.55 -0.85 
20 809 -2.38 -0.59 
30 844 -2.19 -0.17 
40 1020 -1.72 0.44 

 
Table 2. Results from using CMAC controller 

Wind 
speed 

Landing 
point 
(ft) 

Aircraft  
vertical 
speed  

（ft/sec） 

Pitch angle
（degree）

0 854 -2.55 -0.96 
10 762 -2.76 -0.93 
20 774 -2.51 -0.61 
30 844 -2.72 -0.41 
40 691 -1.93 0.21 
50 586 -2.26 0.87 
58 844 -2.58 0.98 

Table 3. Results from using fuzzy-CMAC controller 

Wind 
speed

Landing
point 
(ft) 

Aircraft  
vertical 
speed  

（ft/sec） 

Pitch angle
（degree）

10 797 -2.83 -1.41 
30 938 -1.54 -0.58 
50 891 -2.13 0.47 
70 691 -2.21 1.41 
90 926 -1.99 1.34 

 
In order to further improve the performance of ALS, we utilize 
a GA to search the control parameters such that the 
fuzzy-CMAC is more robust to turbulence environment. The 
purpose of this procedure is to find the optimal control pa-
rameters qk  and kθ  in glide phase and flare phase. And then, 
the intelligent ALS can successfully guide the aircraft flying 
against turbulence strength to 120 ft/sec. Table 4 shows the 
results from different turbulence speeds, where K1 and K2 
represent qk  and θk  in the glide phase, K3 and K4 represent 

qk  and θk  in the flare phase, respectively. The situations at 
wind turbulence 120 ft/sec are that the pitch angle is 4.23 
degrees, vertical speed is -2.06 ft/sec, horizontal velocity is 
234.7 ft/sec, and horizontal position at touchdown is 398 ft, as 
shown in Fig. 8 to Fig. 10. 

 
Table 4. Results from using fuzzy-CMAC-GA controller 

(K1=2.5409; K2=6.8029; K3=10.7398; K4=13.4932 ) 

Wind 
speed

Landing
point 
(ft) 

Aircraft  
vertical 
speed  

（ft/sec） 

Pitch angle
（degree）

30 738 -2.28 -0.16 
50 598 -2.41 0.74 
70 480 -2.94 1.15 
90 644 -2.45 1.83 

110 938 -1.90 1.51 
120 398 -2.06 4.23 
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Fig. 8. Aircraft pitch and pitch command 
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Fig. 9. Aircraft vertical velocity and command 
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Fig. 10. Aircraft altitude and command 

 
5. CONCLUSIONS 

 
The purpose of this paper is to investigate the use of intelligent 
control techniques, which includes the conventional CMAC, 
the novel fuzzy-type CMAC, and a real-valued GA in the 
automatic landing system. Tracking performance and envi-
ronment adaptive capability are demonstrated through soft-
ware simulations. The conventional CMAC has better adap-
tive capability than conventional PID type controller; it can 
tolerate the turbulence strength to 58 ft/sec. The fuzzy inter-
pretation raises the accuracy of the representation of the 
memory knowledge, the performance of the fuzzy-CMAC is 
more robust than CMAC, and it can guide the aircraft safely 
under the turbulence strength up to 90 ft/sec. Moreover, the 
accomplishment of fuzzy-CMAC with GA enhances obvi-
ously, it can reach the turbulence strength to 120 ft/sec. 
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