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Abstract: We propose a new guidance law for the problem of wheeled mobile robot (WMR)
navigation towards an unknown target based on Received Signal Strength (RSS) Information.
Given a mobile robot moving with a constant linear velocity, we use the miss-distance derivative
as a measure for the angle at which the robot approaches the target. Miss-distance derivative is
estimated from RSS, using a Robust Extended Kalman Filter (REKF). Having applied the
proposed steering control law, termed Equiangular Navigation Guidance (ENG), the robot
approaches the stationary or maneuvering target along a semi-equiangular spiral and eventually
goes into a circular trajectory around it. In order to avoid circling, the algorithm is modified to
decrease the robot’s linear velocity to that of the target as it approaches the moving target and
follow it in a smooth trajectory while preserving a safety distance from the target. Eventually, the
performance of the guidance law and its effectiveness is confirmed with an extensive simulation
study.

1. INTRODUCTION

The use of radio-signal-based approaches for the problem
of localization or tracking of a target has gained signifi-
cant interest in different applications such as surveillance,
transportation systems, emergency services and so on.
This is because of the distinct advantages of this strategy
over all of the other systems. First, it is an economical
solution to this problem, as wireless networks already exits
as part of the communications infrastructure (e.g. in all
laptop computers, PDAs and mobile phones it can be used
as a positioning system). Second, it covers a large area
compared with other indoor positioning systems. GPS sys-
tems can provide accurate location information in outdoor
settings, however they fail in indoor navigation where GPS
signals can not be reliably received. Video or IR based
systems on the other hand, are restricted to line-of-sight
limitations or poor performance with fluorescent lighting,
direct sunlight and lack of light situations. Furthermore,
in applications where the target is too small to appear in
an image frame, radio-signal-based approaches are most
practical.

There is a huge body of literature on robot navigation,
however, in most of the current methods, target velocity,
position, moving direction or line-of-sight angle (the angle
between the reference line and the imaginary straight line
starts at the robot’s reference point and is directed towards
the target’s position) are considered given which are not
always available in practice.

In this paper, considering dynamic constraints of the mo-
bile robot, i.e. bounded linear and angular velocities, we
propose a new algorithm, termed Equiangular Navigation

⋆ This work was supported by the Australian Research Council

Guidance (ENG), for the problem of robot guidance to-
wards an unknown stationary or maneuvering target based
on received signal power, which can be achieved by mea-
suring the strength of the signal transmitted by the target
and received at the robot position. Using RSS information,
which is a function of miss-distance, we employ a robust
estimator to estimate the miss-distance and its derivative.
Since the target kinematic states are unknown, their effects
are modeled as uncertainties during the estimation. With
a robot moving with constant linear velocity, we use the
estimated miss-distance derivative as a measure for the
angle at which the robot approaches the target. Having
applied the proposed idea, the robot moves towards the
stationary target in a semi-equiangular spiral whose arc-
length and curvature are subjects to change with a control
parameter and eventually goes into a circular trajectory
around the target.

This paper is organized as follows: problem statement and
basic kinematic equation of a WMR are introduced in
section 2. Measurement model of the system is defined in
section 3. Section 4, presents an overview of the steering
logic. Section 5, introduces the basic equations of REKF,
which is emerged from the work of Petersen and Savkin
[1999]. Proposed guidance law and its modification for
smooth following of a maneuvering target is stated in
section 6. REKF formulation for Adhoc system is stated in
section 7. Simulation results for stationary and maneuver-
ing targets are shown in 8. Finally, the paper is concluded
in section 9.

2. PROBLEM STATEMENT

Let us consider a three-wheeled, non-holonomic mobile
robot of Dubin’s car type which moves in a horizontal
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plane and obstacle-free environment. In a two-dimensional
space, the position of the robot can be represented by a
triplet PR = (XR, YR, θR) where (XR, YR) is the location
of the middle of the wheel base and θR is the heading angle
with respect to the reference line. Let VR be the linear
velocity and ωR the angular velocity of mobile robot. A
rolling-without-slippage model is assumed for the robot.
The evolution model is classically given by:

ẊR = VRcos(θR)

ẎR = VRsin(θR)

θ̇R = ωR

(1)

with U = [VR ωR]T as the control vector of the mobile
robot, U = V × [−ωmax ωmax] with V, ωmax > 0.
We consider the target as another nonholonomic vehicle
and represent its position and orientation with PT =
(XT , YT , θT ) which has the same kinematic equation as (1)
with (VT , ωT ) as linear and angular velocities, respectively.

The target may be stationary or moving in any direction.
No information of the target motion is available. We
assume the following conditions are satisfied:
- The robot is faster than target
- The robot has a higher level of maneuverability than
target

Both mobile robot and target are equipped with a RF-
transceiver. The transmitted signal by the target is mea-
sured at the mobile robot. The voltage measured by a
receivers received signal strength indicator circuit, is de-
fined as received signal strength (RSS). Given a model
of radio signal propagation in an environment, received
signal strength (RSS) can be used to estimate the relative
distance between the target and mobile robot.

The objective is to design a guidance law in relative
coordinates which allows the robot to approach the target
and stay on target position or follow it as close as possible
using the RSS measurements, only. We chose the relative
coordinate system due to its simplicity in calculations and
also nonnecessity to other sensors to measure the robot or
target absolute positions.

3. MEASUREMENT MODEL

The received signal can be modeled as a function, com-
posed of two effects: due to pass lost and due to shadow
fading, Liu et al. [1998]. Fast fading is negligible, assuming
a low pass filter is used to attenuate Rayleigh or Rician
fade. The ensemble mean power at distance d from the
target is typically modeled as, Xia [1996]

P (t) = Po − 10εlog10d(t) + v(t) (2)

where Po is a constant determined by the transmitted
power, wavelength, and antenna gain of the mobile robot.
ε is a slope index (typically 2 for highways and 4 for mi-
crocells in the city), v(t) is the logarithm of the shadowing
component, which is considered as an uncertainty in the
measurement, and d(t) represents the distance between the
mobile robot and target. Measurement model is a function
d(t) and ε. To have an accurate estimation of d throughout
the experiment, we consider ε as an unknown constant and
augment a state to the system to estimate this variable
through the following equation:

ε̇ = 0 (3)

Fig. 1. Block diagram of the closed loop control system

Since, the strength of the signal is a function of miss-
distance, we use the received signal as an input to an
estimator to estimate the miss-distance and its deriva-
tive. We consider a stationary target and superimpose
an additional term to the dynamic equation as an input
disturbance to model uncertainty due to target movement.
This assumption plus other noises and uncertainties in the
system, motivate us to apply a robust estimator in the
system.

4. AN OVERVIEW OF THE GUIDANCE LOGIC

Measured in decibels at the mobile robot, RSS can be
used to estimate the distance between the robot and
target. Previously, Kalman filter has been widely used in
localization and tracking problems in wireless networks
(see e.g. Pathirana et al. [2005]. In this paper, we apply
the measured RSS to a robust extended Kalman filter
(REKF). In addition to providing the satisfactory results,
REKF eliminates the necessity of the knowledge of the
measurement noise in standard kalman filter; It is also
considerably more computation and memory efficient than
more adaptive Bayesian filter, Pathirana et al. [2005]. The
output of estimator is the input to a steering control law,
which guides the robot towards the target. Fig. (1) shows
a simplified block diagram of the system. Given the robot
position and orientation with respect to the target posture
in the polar coordinate system, we define the relative
distance between the robot and target, d, and the angle
between the front-direction and the target direction, λ, as
shown in Fig. (2)

d =
√

d2
X + d2

Y

λR = ψR − θR

λT = ψR − θT

(4)

where θR and θT are the robot and target heading angles,
respectively. ψR is the line-of-sight angle and |λR| ≤ π,
|λT | ≤ π. The robot-target motions is expressed by

ḋ = −VRcos(λR) + VT cos(λT ) (5a)

λ̇R = −ωR +
VR

d
sin(λR) −

VT

d
sin(λT ) (5b)

Note that the kinematic equations (5) are only valid for
non-zero values of the miss-distance, since λR is undefined
for d = 0. With constant robot’s linear velocity, consider-
ing (5a), the angle λR has the main role to guide the robot
towards the target. Since d is the only available informa-
tion, we use the miss-distance variation as a measure for
the angle at which the robot approaches the target. With
a fixed ḋ smaller than VR, given (5a), the robot approaches
the stationary target with a fixed λR = λo along the
trajectory, where 0 < |λo| <

π
2 . We propose a new steering
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Fig. 2. Robot position and orientation with respect to the
target

control law which drives the robot towards the target in a
semi-equiangular spiral. However, it is required beforehand
to present a brief explanation of REKF.

5. SET-VALUE STATE ESTIMATION WITH A
NONLINEAR SIGNAL MODEL

Due to the nonlinearity of measurement equation, we con-
sider a nonlinear uncertain system of the form: Petersen
and Savkin [1999]

ẋ = A(x, u) +B2w

z = K(x, u)

y = C(x) + v

(6)

defined on a finite time interval [0, s]. Here x(t) ∈ Rn

denotes the state of the system, y(t) ∈ Rl is the measured
output and z(t) ∈ Rq is uncertainty output. the uncertainty
inputs are w(t) ∈ Rp, v(t) ∈ Rl. Also u(t) ∈ Rm

is the known control input. We assume that all of the
functions appearing in (6) are with continues and bounded
partial derivatives. Additionally, we assume thatK(x, u) is
bounded. This was assumed to simplify the mathematical
derivations and can be removed in practice. The matrix
B2 is assumed to be independent of x, and is of full rank.
The uncertainty in the system is described by nonlinear
integral constraint which has been studied in many papers
and books on robust control, (see e.g. Petersen et al. [2000]
and references therein) :

φ(x(0)) +

∫ s

0

L1(w(t), v(t))dt ≤ a+

∫ s

0

L2(z(t))dt (7)

where a ≥ 0 is a positive real number. Here Φ, L1 and L2

are bounded non-negative functions with continues partial
derivatives satisfying growth conditions of the type

‖φ(x) − φ(x́)‖ ≤ β(1 + ‖x‖ + ‖x́‖)‖x− x́‖ (8)

where ‖.‖ is the euclidian norm with β > 0 and φ =
Φ, L1, L2. Uncertainty inputs w(.), v(.) satisfying this con-
dition are called admissible uncertainties. We consider the
problem of characterizing the set of all possible states χs

of the system (6) at time s ≥ 0 which are consistent with
a given control input u0(.) and a given path y0(.); i.e.,
x ∈ χs if and only if there exist admissible uncertainties
such that if u0(t) is the control input and x(.) and y(.) are
resulting trajectories, then x(s) = x and y(t) = y0(t), for
all 0 ≤ t ≤ s.

5.1 The State Estimator

The state estimation set χs is characterized in terms of
level sets of the solution V (x, s) of the PDE

∂

∂t
V +maxw∈Rm{∇xV.(A(x, u0) +B2w)

− L1(w, y
0 − C(x)) + L2(K(x, u0))} = 0

(9)

V (·, 0) = Φ.

The PDE (9) can be viewed as a filter, taking observations
u0(t), y0(t), 0 ≤ t ≤ s and producing the set χs as an
output. The state of this filter is the function V (., s); thus
V is an information state for the state estimation problem.

Theorem 1.1: Assume the uncertain system (6), (7) satis-
fies the assumptions given above. Then the corresponding
set of possible states is given by

χs = x ∈ Rn : V (x, s) ≤ a (10)

where V (x, t) is the unique viscosity solution of (9) in
C(Rn×[0, s]).(see Petersen and Savkin [1999] for the proof,
originally presented in James and Petersen [1998])

5.2 A Robust Extended Kalman Filter

The aim of REKF is increasing the robustness of the state
estimation process and decreasing the chance that a small
deviation from the Gaussian process in the system noise
causes a significant negative impact on the solution.

We consider an approximation to the PDE (9) which leads
to a Kalman filter like characterization of the set χs.
This was presented in Petersen and Savkin [1999] as an
Extended Kalman filter version of the solution to the set
value state estimation problem for a linear plant with the
uncertainty described by an Integral Quadratic Constraint
(IQC)(see e.g. Moheimani et al. [1998] and Petersen and
Savkin [1999]). This IQC is also presented as a special case
of (7). We consider uncertain system described by (6) and
an integral quadratic constraint of the form

(x(0) − x0)
′X0(x(0) − x0)

+
1

2

∫ s

0

(w(t)′Q(t)w(t)) + (v(t)′R(t)v(t))dt

≤ a+
1

2

∫ s

0

z(t)′z(t)dt

(11)

where N > 0, Q > 0 and R > 0. For the system (6),(11),
the PDE (9) can be written as

∂

∂t
V + ∇xV.A(x, u0) +

1

2
∇xV B2Q

−1B′

2∇xV
′

−
1

2
(y0 − C(x))′R(y0 − C(x)) +

1

2
K(x, u0)′K(x, u0) = 0

(12)

V (x, 0) = (x− x0)
′N(x− x0).

Consider a function x̂(t) defined as x̂(t) ≡ argminxV (x, t),
and the following equations (13),(14) and (15), we define
our approximate solution to the PDE (12):

˙̃x = A(x̃(t), u0) +X−1[∇xC(x̃(t))′R(y0 − C(x̃(t)))

+∇xK(x̃t, u0)′K(x̃(t), u0)], x̃(t) = x0.
(13)

X(t) is defined as the solution to the Riccati Differential
equation(RDE)
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Ẋ + ∇xA(x̃, u0)′X +X∇xA(x̃, u0)

+XB2Q
−1B′

2X −∇xC(x̃(t))′R∇xC(x̃(t))

+∇xK(x̃,u0)′∇xK(x̃, u0) = 0, X(0) = N

(14)

and

φ(t) ≡
1

2

∫ s

0

[(y0 − C(x̃))′R(y0 − C(x̃))

−K(x̃,u0)′K(x̃,u0)]dτ

(15)

The function V(x,t) was approximated by a function of
the form

Ṽ (x, t) =
1

2
(x− x̃(t))′X(t)(x− x̃(t)) + φ(t) (16)

hence, it follows from theorem 1.1 that an approximate
formula for the set χs is given by

χ̃s = {x ∈ Rn :
1

2
(x− x̃(s))′X(s)(x− x̃(s)) ≤ a− φ(s)}

(17)
This amounts to the so called Robust Kalman Fil-
ter(REKF) generalization presented in (Petersen and
Savkin [1999]). In the application of REKF in this
problem, during a corresponding time interval, the sys-
tem (robot-target) is represented by the nonlinear uncer-
tain system in (6) together with the following Integral
Quadratic Constraint (IQC) (from equation (11)):

(x(0) − x0)
′N(x(0) − x0)

+
1

2

∫ s

0

(w(t)′Q(t)w(t)) + (v(t)′R(t)v(t))dt

≤ a+
1

2

∫ s

0

z(t)′z(t)dt

(18)

here Q > 0, R > 0 and N > 0 are the waiting matrices
and the initial state (x0), is the estimated state of system
at startup. With an uncertainty relationship of the form of
(18), the inherent measurement noise (see (2)), unknown
target maneuver and the uncertainty in the initial con-
dition are considered as bounded deterministic uncertain
inputs. In particular, the measurement equation with the
standard norm bounded uncertainty can be written as

y = C(x) + δC(x) + v0 (19)

where |δ| ≤ ξ with ξ, a constant indicating the upper
bound of the norm bounded portion of the noise. By
choosing z = ξC(x) and v = δC(x),

∫ T

0

|v|dt ≤

∫ T

0

źzdt (20)

Considering v0 and the corresponding uncertainty in w as
w0 satisfying the bound

Φ(x(o)) +

∫ s

0

(w0(t)
′Q(t)w0(t)) + (v0(t)

′R(t)v0)(t)dt ≤ a

(21)
It is clear that this uncertain system leads to satisfaction
of condition in inequality (7) and hence (11)(see Petersen
and Savkin [1999]). This more realistic approach removes
any noise model assumption in algorithm development and
guarantees the robustness.

6. EQUIANGULAR NAVIGATION GUIDANCE (ENG)

ENG has derived from geometry of robot movement com-
bined with the kinematic equation of robot-target tracking

Fig. 3. An equiangular spiral

system. Considering the target at the origin, the equian-
gular spiral is a spiral whose polar equation is given by,

d = doe
−bγ (22)

where d and do is the current and the initial miss-distance,
respectively. b = cot(λo), where 0 < |λo| <

π
2 is the

approaching angle, and γ is the angle between the x-axis
and the vector starts at the target position pointing to
the robot position, shown in Fig. (3)(see e.g. Lockwood
[1961]). As λo → π

2 , b → 0 and as a result the spiral
approaches a circle.

With constant robot linear velocity, the miss-distance
derivative can be considered as a measure for the angle
λR at which the robot approaches the target. To approach
a stationary target, ḋ should be negative and using (5a)
we obtain |λR| <

π
2 .

The idea is to approach the target with a fixed λR = λo

along an equiangular spiral where |λo| <
π
2 . Having fixed

the angle λR, from (5a) the value of ḋ fluctuates around
a positive constant L = VRcos(λo), which is bounded to
robot’s linear velocity.

On the other hand, to prevent any dangerous settings of
the controls, which would break the gears of the vehicle,
the low level motor controllers apply a constraint on
robot’s angular velocity as |ω| ≤ ωmax. So, given the
maximum turn rate for the robot and based on the
argument above the ENG’s steering control would be
a bang-bang solution, switching between minimum and
maximum values of ω. Equiangular Navigation Guidance
(ENG), considering the dynamic constraints of the mobile
robot, is introduced as follows:

ωR = −ωmaxsgn(L+ ḋ) (23)

where 0 < L < VR and sgn(·) = +1, 0 or −1 according
as the expression contained in brackets is positive, zero or
negative, respectively.

Remarks: Due to the symmetry properties, the steering
control law

ωR = ωmaxsgn(L+ ḋ) (24)

has similar performance and characteristics as control law
(23).
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6.1 Following A Maneuvering Target

For a moving target, we bound the positive constant L to
difference of the robot and target linear velocities, L <
(VR − VT ). As we mentioned before, along the trajectory
α < |λ| and VR > VT . As a result, with a constant linear
velocity the robot inevitably goes into a circular trajectory
while following a moving target.

The result is acceptable in applications like Unmanned
Arial Vehicles (UAVs) navigation, in which the vehicle’s
velocity should not goes below the stall speed to keep
the altitude constant. However, in other applications like
trajectory tracking or target following by a WMR, it is
more desirable that the mobile robot decreases the linear
velocity to that of the target and follows it in a smooth
trajectory, while preserving a safety distance from the
target. Considering the safety distance ds less than one
meter, we define the robot velocity as a function of miss-
distance as follows

VR =







Vmax d > 1
Vmax

(1−ds)2
(d− ds)

2 ds < d ≤ 1

0 d ≤ ds

(25)

The robot approaches the target with the maximum ve-
locity. When the relative distance between the robot and
target is less than one meter, the robot reduces the speed
in order to avoid circling. To preserve the safety distance,
the speed of the robot converges to zero as the miss-
distance tends to ds. Since the robot velocity decreases
as it approaches the target, to have a smooth tracking
with a constant approaching angle λo, L should change
continuously with VR. We have,

L = 0.95(VR − VT ) (26)

7. APPLICATION OF REKF FOR AD-HOC SYSTEM

By taking the derivative of (5a), we obtain:

d̈ = VRλ̇Rsin(λR) − VT λ̇T sin(λT ) (27)

The first term in the right hand side is the input control,
u, which models the lateral acceleration of the robot. With
no knowledge of target kinematic states, we consider the
second term as input uncertainty to the system. Rewriting
(27) in a compact form and taking into account (3), we

have d̈ = u − w, where w denotes the input uncertainty
and in matrix form, we have

ẋ = Ax +B1u+B2w (28)

with

A =

[

0 1 0
0 0 0
0 0 0

]

, B1 = −B2 =

[

0
1
0

]

(29)

where x(t) = [d(t) ḋ(t) ε]T and u = VRωR is the lateral
acceleration of the mobile robot. We consider the state
space dynamic equations of the system with two input
noises: (i) measurement noise (this is standard with any
measurement), v in (2) and (ii) w which is disturbance due
to unknown target maneuver. The corresponding Riccati
differential equation, obtained from (6), (13) and (14), is
given by

˙̃x = Ax̃(t) + B1u(t) +X−1(t)[∇xC(x̃(t))′R(y(t)

−C(x̃(t))) + ξ2∇xC(x̃(t))′∇xC(x̃(t))]
(30)

Table 1. Simulation parameters 1

Parameter Value Comments

Ts 0.1s Sampling intervals
Po 20w Target transmission power
R 0.01 Measurement noise covariance
Q 220 Process noise covariance
N diag[0.02, 1, 0.2] Inverse of

error covariance matrix
xR(0) (0, 0, 0) Initial robot posture
x0 [2; 0.1; 2] Initial state vector
ωmax 1 rad/s Maximum angular velocity
ξ 0.02 Input uncertainty
VR 0.2 m/s Robot linear velocity
ε 4 Environmental constant

where x̃(0) = x0, the initial state of the system. We have,

Ẋ +A′X +XA+XB2Q
−1B′

2X

−∇xC(x̃(t))′R∇xC(x̃(t)) + ξ2∇xC(x̃(t))′∇xC(x̃(t)) = 0,
(31)

where X(0) = N . In the simulation, we consider the
measurement noise as a white gaussian noise with zero
mean and a standard deviation equal to 0.05‖y(t)‖, in
which y(t) is the noise free measurement. Considering (2)
we have y(t) = C(x̂(t)) = Po − 10x̂3log10x̂1 + v(t), and

∇xC(x̂(t)) = [
−10x̂3

ln(10)x̂1
0 − 10log10x̂1] (32)

where x̂(t) = x̃(t) is the solution to the state equation(30).

8. SIMULATION RESULTS

To study the performance of ENG, we simulate a mobile
robot equipped with a radio transceiver moving in an
obstacle-free area. The target may either be stationary
at an unknown location or moving in a trajectory with
unknown linear and angular velocities. Simulation param-
eters have been shown in Table 1.

Approaching an Unknown Stationary Target with different
values of L: In the first experiment, we consider an
unknown stationary target predefined at (−20m, 0). The
robot linear velocity is 0.2m/s. Applying ENG, the robot
moves towards the target with a nearly constant λR

along a semi-equiangular spiral and eventually goes into
a circular trajectory around the target. We initially let
the robot moves along the initial heading angle for a
short period of time, 5s, to adjust the REKF estimator.
Fig. (4) shows the robot trajectories towards an unknown
stationary target with different values of L. In case of
availability of true miss-distance, L is a positive constant
bounded to robot’s linear velocity. However, due to the
input uncertainties, measurement noise and estimation
error, one should consider smaller values of L depend on
noise and uncertainty levels.

Following a maneuvering target: In this experiment,
the robot is supposed to follow a moving target with a
smaller linear velocity and lower maneuverability. The tar-
get initially moves straight with a constant linear velocity
VT = 0.1 m/s and starts maneuvering after a while with:

ωT =

{

0 t < 250
0.02cos(0.01t+ 1) t > 250
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Fig. 4. Moving towards an unknown stationary target
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(a) Target following with constant linear velocity
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(b) Reducing the speed to avoid circling the target

Fig. 5. Maneuvering target following using ENG

For a moving target, the positive constant L is bounded
to difference of the robot and target linear velocities.
However, in practice, we consider smaller values of L
due to the estimation error, noise and uncertainties in
the system. Having applied ENG for L = 0.09 with a
constant robot linear velocity bigger than target speed,
the robot approaches the target and follows it in a circular
trajectory, shown in Fig. (5(a)).

In order to reduce the speed as the robot moves towards
the target and avoid circling, having applied the modified
ENG, the robot follows the target in a smooth trajectory,
shown in Fig. (5(b)). Fig. (6) depicts the miss-distance and
robot velocity variations with ds = 0.5 m. Throughout
the simulation, except on fast turns, the robot linear
velocity converges to the target speed and hovers around
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Linear velocity

Time(sec)

m
/s

Fig. 6. Robot velocity and miss-distance variation with
modified ENG

it. Furthermore, the miss-distance is often constant and
the safety distance is preserved.

9. CONCLUSION

In this paper, we proposed a guidance law, which drives the
robot towards a stationary or maneuvering target, based
on RSS information and using a REKF. Having applied the
ENG, the robot approaches the stationary target with con-
stant linear velocity along a semi-equiangular spiral with
adjustable arc-length and curvature, and eventually goes
into a circular trajectory around the target. Apart from
simplicity and ease of use for realtime applications, ENG
is also applicable for other nonholonomic vehicles which
in specific situations have the same kinematic equation as
WMR, such as UAVs and space robots.
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