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Abstract: Usually grey-box modeling has better accuracy than black-box identification. The
grey-box can be regarded as combination of mechanistic modelling and intelligent identification.
But in many cases, mechanistic models are not available, for example the production quality of
the shaft furnace which will be discussed in this paper, we can use fuzzy technique to obtain the
mechanistic models that can be checked by the physical meanings. In this paper, we propose a
novel modeling approach for complex nonlinear systems, it has a fuzzy mechanistic model and
a neural compensator. For the training of the neural network, we propose a new fast and stable
algorithm. Finally, the above method is successfully applied on estimation of the production
quality of the shaft furnace.

1. INTRODUCTION

Over the past decades, a large number of soft comput-
ing models based on intelligent methods such as neural
networks by Mitra et al. [2006], case-based reasoning
by Fernandez et al. [2007], fuzzy logic by Zhang [2005],
are extensively applied in modeling industrial processes.
They are low-cost compared with the expensive hardware
realization, see Lin et al. [2007]. The most used intelligent
method, neural modeling, is black-box method. Sometime,
when we have some prior knowledge, grey box identifica-
tion may have better results. The grey box modeling can
be regarded as combination of mechanistic modelling and
intelligent identification, see Krishnaswamy et al. [2004],
Boulvin et al. [2003] and Yang et al. [2003]. The mechanis-
tic models usually represent the physical properties, which
can be described by nonlinear functions or nonlinear dy-
namic equations. While the residual uncertainties between
the mechanistic models and the plant can be modeled by
black-box approach, for example neural networks.

It is well known that normal identification algorithms are
stable for ideal plants (Ioannou et al. [1996]). In the
presence of disturbance or unmodeled dynamics, these
adaptive procedures can go to instability easily. Generally,
we have to make some modifications to the normal gradi-
ent algorithm or backpropagation such that the learning
process is stable see Jagannathan et al. [1996] and Suykens
et al. [1997]. By using passivity theory, a time-varying

This work was supported by the State Key Program of Na-
tional Natural Science of China (No. 60534010), the National Fun-
damental Research Program of China (No. 2002CB312201), the
Funds for Creative Research Groups of China (No. 60521003),
the 111 project(B08015), and the National High-tech Pro-
gram(2006AA040307).

learning rate is also stable without robust modification
(Yu et al. [2003]). These algorithms can assure stability
of neural identification, but the optimal properties are lost,
sometimes they cannot arrive local minima. Gradient de-
scent is a general algorithm that includes least-square and
backpropagation as special cases. However the fixed learn-
ing rate yields poor performance. In contrast, time-varying
rate as η (k) = c

k can give optimally fast convergence in the
sense of the misjudgment going to zero proportional to 1

k ,
see Ljung et al. [1983]. But it results in slow convergence to
bad solutions when c and k are small. So the "search then
converge" approach is proposed by Darken et al. [1992],
η (k) = η0

1

1+a1
c
k+a2(

c
k )

2 . But these two kinds of algorithms

cannot guarantee stability. In this paper we propose a new
learning rate as η (k) = η0

1+a1
c
k+kG(xk)k

, which takes the
advantages of Yu et al. [2003] and Darken et al. [1992]
and assure stable and faster learning.

Magnetic separation is a general method for low-graded
hematite iron ore, it is very popular in China because the
majority of the China’s iron ore is low-graded hematite.
But it can hardly concentrate ores with standard grade.
In light of this, an effective method is to employ a shaft
furnace to give a kind of deoxidizing-magnetized roasting
to the crude ores under a high temperature, see Yan et al.
[2005].

The production quality of the shaft furnace is estimated
by the technical index of magnetic tube recovery rate
(MTRR), which is assayed off-line in long and irregular
time intervals. Consequently, it is hard to give a good
control for the production quality because the feedback
signal MTRR cannot be obtained on-line, see Chai et
al. [2006]. Therefore, the key problem of the production
quality control is to model MTRR, or to give an effective
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Fig. 1. Roasting process of shaft furnace

model for the shaft furnace process. But this process
is extremely complex, it is a multiple variables, strong
coupling, intensive nonlinear system. Until now there is
not a mechanistic model for MTRR based on measurable
signals. While the measurable signals represents the online
in-time exterior status of the shaft furnace, the MTRR is
obtained by assaying the samples from a small portion of
the product of the shaft furnace after a batch of production
has finished. As the shaft furnace roasting is a long-cycle
process, the time consumption from the ores feed-in to
they turning into the products varies from about 4 to
8 hours. Thereby the time delay from the measurable
signals to the sampled point of MTRR is difficult to be
determined. Moreover, another complexity lies in that the
ores, after fed into the furnace, will move around and
take part in certain chemical reactions simultaneously.
Therefore, the exact status of these ores, such as the ore’s
temperature, position and the degree of their reactions, are
unknown and difficult to be described by those measurable
signals. All these uncertainties make it impossible to
define the mechanistic relationship between MTRR and
the measurable signals.

Although we cannot obtain the mechanistic model for the
shaft furnace, but we can use fuzzy logic technique to
analyze the experimental data, and obtain a fuzzy model
by prior knowledge and fuzzy rules. We call it as fuzzy
mechanistic model. Fuzzy modelling has many prominent
advantages (Li et al. [2007]), including independent of the
plant’s mathematical models, reflecting the human’s intel-
lection, and relatively being intuitionists. The remaining
unmodeled dynamic will be modeled by neural networks
to improve modeling precision, which use the good ap-
proximation ability of neural modeling, see Scardovi et al.
[2007], Lan et al. [2007] and Mangasarian et al. [2007].
This hybrid modelling strategy integrates fuzzy logic with
neural networks approach, and has some advantages over
fuzzy logic, neural networks and fuzzy neural networks for
complex nonlinear system identification, such as MTRR
modeling.

2. SHAFT FURNACE PROCESS

The shaft furnace roasting process is shown in Fig 1, its
basic process consists the following units:

Ore feeding : The raw hematite ores are fed into the furnace
through an ore-store slot and a square funnel at its top;

Preheating : in the preheating zone those ores contact-
ing the ascending hot gas, their temperature rises to
100~150◦C;

Heating : then in the heating zone, the ores’ temperature
comes up to 700~850◦C, when attaining the heat produced
by the inflammation of air-mixed heat gas in the combus-
tion chamber;

Deoxidizing : the hot low magnetic ores flow down into the
deoxidizing zone and are deoxidized to high magnetic ones;

Cooling and moving out : finally the ores are laid down
into the water-sealed pool by two ore ejection rollers to be
cooled and are consequentially moved out of the furnace
by two carrier machines who running synchronously with
their corresponding rollers.

During the process operation, a proper temperature range
of the combustion chamber is needed (e.g. [1000◦C, 1200◦C]).
The running-stop shift of the carrier machine and the flow
rate of deoxidations gas may offer the temperature range
as 570◦C± 20◦C. The reactions are

3Fe2O3 + CO570◦C−−−−→2Fe3O4 + CO2
3Fe2O3 +H2570

◦C−−−−→2Fe3O4 +H2O
(1)

where the produced Fe3O4 contains intensive magnetism,
which is required to achieve high grade extracted ores
after the final mineral process. When the temperature of
combustion chamber is relatively low or the flow rate of
deoxidation gas is small, or the ores moving time quite
long, the reactions are inadequate as they result in the
production ores under deoxidation.

On the other hand, when the temperature is too high, and
the flow rate of deoxidation gas is over abundant or the
moving time is excessively short, it may lead to an over
deoxidation reaction as follows:

Fe3O4 + CO≥ 570◦C−−−−−→3FeO + CO2
Fe3O4 +H2≥ 570◦C−−−−−→3FeO +H2O

(2)

Here the production FeO is another type of low magnetic
ores. The relationship between MTRR and the ingredients
in the ore can be described as follows:

MTRR = f [Fe2O3, Fe3O4, FeO,Θ] (3)
where f represents a certain function with unknown pa-

rameters; Θ is the other inert gradients in the ore, such
as the gangue. From the foregoing analysis, the highest
and most desirable MTRR happens when there are no
contents of Fe2O3 and FeO in the ore, except for the
Θ, but only contents of Fe3O4. In other words, it is most
ideal position that the ore is carried out of the furnace
when it has thoroughly completed the reaction (1), but
has not start the reaction (2).

As is mentioned above, the production quality of the shaft
furnace is examined by the magnetic tube recovery rate
(MTRR), whose value is within [0, 1], the higher of the
MTRR, the better ores grades is. Normally, MTRR is
controlled within the target range.

3. FUZZY MECHANISTIC MODEL FOR MTRR

We want to generate fuzzy rules from data set, the stan-
dard clustering method is applied. Let us formulate the
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fuzzy clustering problem. Consider a finite set of elements
X = {x1, x 2, . . . , xn} as being elements of the p− dimen-
sional Euclidian space Rp, that is, xi ∈ Rp. The problem
is to perform a partition of this data set into l fuzzy sets.
The criterion is usually to optimize an objective function.
The final result of fuzzy clustering can be expressed by
a partition matrix U such that U = [uij ] , i = 1 . . . n,
j = 1 . . . l, uij is a numeric value in [0, 1]. There are two
constraints on the value of uij . Firstly, a total membership
of the element xi ∈ X in all classes is equal to 1. Secondly,
every constructed cluster is non-empty. That isXl

j=1
uij = 1, for all i = 1, 2, . . . , n

0 <
Xn

i=1
uij < n, for all j = 1, 2, . . . l

(4)

A standard form of the objective function is

J (uij ,vk) =
lX

j=1

nX
i=1

lX
k=1

g [w(xj), uij ] d (xi, vk) ,

where w(xj) is the a prior weight for each xj , d (xi, vk)
is the degree of dissimilarity between the data xi and
the supplemental element vk, which can be considered
as the central vector of the k-th cluster. The degree of
dissimilarity is defined as a measure that satisfies two
axioms: 1) d (xi, vk) ≥ 0, 2) d (xi, vk) = d (xk, vi). So
the fuzzy clustering can be formulated as an optimization
problem:

min J (uij , vk) ,

Subject:
lX

j=1

uij = 1, 0 <
nX
i=1

uij < n
(5)

where i, k = 1, 2 . . . l, i = 1, 2 . . . n. The objective function
of the fuzzy C-means (FCM) is

J (uij , vk) =
lX

j=1

nX
i=1

umij kxi, vjk
2 (6)

where umij denotes the membership grade of xi in the
cluster Ak, vj denotes the center of Ak, and kxi, vjk is
the distance of xi to center vj , xi and vj are p−dimension
vectors,m > 1, is called an exponential weight which influ-
ences the degree of fuzziness of the membership function,
m influences the degree of fuzziness of the membership
function. Note that the total membership of the element

xi in all classes is 1, i.e.,
Xl

k=1
uki = 1, i = 1 · · ·n.

To solve the minimization problem (5) with respect to the
objective function (6), we can fix uij and vi and apply the
conditions (4), that is

vj =
1Xn

i=1
(uij)

m

nX
i=1

(uij)
m
xi

uij =

³
1/ kxi, vik2

´1/m−1
Xc

k=1

³
1/ kxi − vkk2

´1/m−1
(7)

Although the system described by (7) cannot be solved an-
alytically, a fast FCM algorithm for MTRR is summarized
as follows:

Step 1: Select a number of clusters l (2 ≤ l ≤ n) and
exponential weight m (1 < m <∞) , choose an initial
partition matrix U (0) and a termination criterion �.

Step 2: Calculate the fuzzy cluster centers
n
v
(k)
j | j = 1, 2, . . . , l

o
using U (k) and (7).

Step 3: Calculate the new partition matrix U (k+1) usingn
v
(k)
j | j = 1, 2, . . . , l

o
and (7).

Step 4: Calculate∆ =
°°U (k+1) − U (k)

°° = maxi,j ¯̄̄uk+1ij − u
(k)
ij

¯̄̄
.

If ∆ > �, then k = k + 1 and go to Step 2. If ∆ ≤ �, then
stop.

We start from a state-space discrete-time multivariable
NARMA model

y(k) = h [x (k)] = Ψ [X (k)] (8)
where

X (k) = [y (k − 1) , y (k − 2) , · · ·u (k − d) ,
u (k − d− 1) , · · · ]T (9)

Ψ (·) is an unknown nonlinear function representing the
plant dynamics, u (k) and y (k) are measurable scalar input
and output, d is time delay.

A generic fuzzy model is presented as a collection of fuzzy
rules in the following form (Mamdani type, see Mamdani
[1976])

Rj : IF x1 is A
j
1 and x2 is A

j
2 and · · · xn is Aj

n

THEN by is Bj (10)

We use l(j = 1, 2 · · · l) fuzzy IF-THEN rules to perform a
mapping from the input linguistic vector X = [x1 · · ·xn] ∈
<n to the output linguistic scalar by (k) . Aj

1 , · · ·Aj
n and B

j

is standard fuzzy sets. Each input variable xj has lj fuzzy
sets. In the case of full connection, l = l1× l2×· · · ln. From
Wang et al. [1992] we know, by using product inference,
center-average and singleton fuzzifier, the output of the
fuzzy logic system can be expressed as

by =
⎛⎝ lX

j=1

wj

"
nY
i=1

μAj
i

#⎞⎠ /

⎛⎝ lX
j=1

"
nY
i=1

μAj
i

#⎞⎠ (11)

where μAj
i
is the membership functions of the fuzzy sets

Aj
i , wj is the point at which μBj = 1.

For MTRR modeling, by = MTRR, X = {x1, x 2, x3} =
{t, h, c}
Takagi [1985] gave the Takagi-Sugeno-Kang fuzzy model
,
Ri: IF x1 is A1i and x2 is A2i and · · · xn is Ani

THEN byj = pij0 + pij1x1 + · · · pijnxn
(12)

where j = 1 · · ·m. The qth output of the fuzzy logic system
can be expressed as

byq = lX
i=1

¡
piq0 + piq1x1 + · · · piqnxn

¢
φi (13)

where φi is defined as in (8). (13) can be also expressed in
the form of the Mamdani type (14),bY (k) =W (k)Φ [X (k)] (14)

where bY (k) = [by1 · · · bym]T
W (k) =

⎡⎢⎣ p110 · · · pl10 p111 · · · pl11 · · · p11n · · · pl1n
...

...
...

p1m0 · · · plm0 p1m1 · · · plm1 · · · p1mn · · · plmn

⎤⎥⎦
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Φ [X (k)] = [ φ1 · · ·φl x1φ1 · · ·x1φl · · · xnφ1 · · ·xnφl ]
T

At the beginning of modelling, the process parameters that
impose the greatest impact on the MTRR should be picked
out from a variety of parameters. In previous work by
Chai et al. [2006], this has been fulfilled by combining
the PCA method with mechanistic analysis. As a result,
the temperature of the combination chamber T, the flow
of reducing gas H and the moving time C are selected as
the main parameters influencing the MTRR(M).

4. NEURAL COMPENSATION

The structure of the hybrid approach is illustrated in
Fig.2. Here, M 0 is the output of the fuzzy mechanistic
model; 4M means the compensation value of the RBF-
NN compensation model; and M = M 0 +4M gives the
final predicted value of the MTRR.

Radial Basis Function (RBF) neural networks have re-
cently gained considerable attention, which can be used to
compensate the errors of the fuzzy mechanistic model. The
advantages of the RBF approach, such as the linearity in
the parameters and the availability of the fast and efficient
training methods, have been noted in several publications,
see Constantinopoulos et al. [2006]. RBF neural networks
has one hidden layer and a linear output layer. The output
of neural networks may be presented as

byn = NX
i=1

ωiGi(X (k)) + b (15)

where N is hidden nodes number, ωi is the weight con-
necting Gaussian function and output layer, X (k) is input
vector is defined in (9), b is the threshold. The significance
of the threshold is that the output values have nonzero
mean. It can be combined with the first term as w0 = b,

Gi(x) = 1, so byn = NP
i=0

ωiGi(x). Gi(V x) is radial basis

function which we select it as Gaussian function

Gi(x) = exp

½
kx− cik
2σ2i

¾
where ci and σ2i represent the center and spread of the
basis function. Finally, the RBF neural compensator isbyn (k) = ΩkG [X (k)] (16)

where Ωk = [ω1 · · ·ωN ] , G is n−dimension vector func-
tion.

We use this RBF neural networks to compensate the mod-
eling error of the fuzzy mechanistic model (11). According
to the Stone-Weierstrass theorem, see Cybenko [1989],

this general nonlinear smooth function (8) can be written
as

y (k)− bym = Ω∗G [X (k)]− μ (k) (17)
where Ω∗ is optimal weight, μ (k) is the modeling error.
Since G is bounded function and the output of the plant is
assumed bounded, μ (k) is bounded as μ2 (k) ≤ μ, μ is an
unknown positive constant. The neuro compensation error
is defined as

e (k) = by (k)− (y (k)− bym) (18)

The dynamic can be represented as
e (k) = ΩkG [X (k)]−Ω∗G [X (k)]− bym + μ (k) + bym
= eΩkG [X (k)] + μ (k)

(19)
where eΩk = Ωk−Ω∗. The following theorem gives a stable
fast learning algorithm of the RBF compensator.
Theorem 1. If we use the RBF neural networks (16) to
compensate fuzzy mechanistic model error y (k)− bym, the
following gradient updating with time-varying rate can
make identification error e (k) bounded (stable in an L∞
sense)

Ωk+1 = Ωk − ηkG [X (k)] e (k) (20)

where ηk =
η0

1 + kG [X (k)]k2 + c
k

, 0 < η0 ≤ 1, c > 0. The

average of the identification error satisfies

J = lim sup
T→∞

1

T

TX
k=1

e2 (k) ≤ 2 + c

1− η0
μ (21)

where μ = max
k

£
μ2 (k)

¤
Remark 1. (20) is the gradient descent algorithm, which
the normalizing learning rate ηk is time-varying in order
to assure the identification process is stable. This learning
law is simpler to use, because we do not need to care about
how to select a better learning rate to assure both fast
convergence and stability. No any previous information is
required.

5. INDUSTRIAL APPLICATIONS

5.1 Algorithm realization

The fast FCM algorithm mentioned in Section 3 is adopted
to obtain the fuzzy reasoning rules. For T,H,C, and M ,
the parameters are chosen as number of clusters l = 5,
expediential weight m = 2,initial partition matrix U (0) ="
0.5 1 0.5 0 0
0 0.5 1 0.5 0
0 0 0.5 1 0.5

#
,termination criterion � = 0.1. By

the end of the iteration, the fuzzy rules are obtained and
some of them are listed in the following table:

Cases Fuzzy Rules
MTRR values Temperature Flow Time

-0.31 1050 2400 4 R1
-0.32 1100 2400 3 R2
-0.31 1200 2000 2 R3

R1:IF t is T2 and h is H5 and c is C3 THEN m is −Ml

R2:IF t is T3 and h is H5 and c is C2 THEN m is −Ml

R3:IF t is T5 and h is H1 and c is C1 THEN m is −Ml
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Fig. 3. Membership functions of MTRR

Through this method, 35 rules are produced and added
into the fuzzy mechanistic model to produce a generic
fuzzy model which is presented as a collection of fuzzy
rules in the following form (Mamdani type fuzzy model)

Ri: IF t is Ti and h is Hi and c is Ci THEN m is Mi

(22)
We use 35(i = 1, 2 · · · 35) fuzzy IF-THEN rules to perform
a mapping from an input linguistic vector X = [t, h, c] ∈
<3 to an output linguistic vector cM (k) = [bm]T ∈ R. Ti,Hi

and Ciare standard fuzzy sets. Each input variable t, h,
and c has 5 fuzzy sets as shown in Fig 3.

From Wang et al. [1992] we know, by using product in-
ference, center-average and singleton fuzzifier, the outputbm of the fuzzy logic system can be expressed as

bm =

⎛⎝ 35X
i=1

wi

⎡⎣ 3Y
j=1

μAji

⎤⎦⎞⎠ /

⎛⎝ 35X
i=1

⎡⎣ 3Y
j=1

μAji

⎤⎦⎞⎠ =
35X
i=1

wiφi

(23)
where μAji is the membership functions of the fuzzy sets
Aji = [Ti,Hi, Ci], wi is the point at which μMi

= 1.

The neural compensation value 4M is calculated by:

4M =
P13

i=1 ωiGi, where Gi = exp
³
−ky−ξik

2

2σ2i

´
, i =

1, 2, . . . , 13

5.2 Experimental results

The biggest hematite ore concentrator of China owns
22 shaft furnaces. In the past, the MTRR can not be
obtained on-line in real time and it is difficult to realize
the closed loop control for the shaft furnace. Along with
the development of the proposed hybrid intelligent MTRR
prediction model, the DCS system is built up to collect all
the measurable parameters, involving the three controlled
variables (temperature T , flow H and moving time C,
control variables u (consisting of the frequency of fan
u1, the opening percentage of heating gas valve u2, and
the opening percentage of heating gas valve u3), process
parameters p (comprising of the temperature of waste gas
p1, the inner negative pressure p2, the heat gas composition
p3, the heating air pressure p4, and the flow rate of heating
gas p5), and some boundary conditions B (i.e. the Ore size
B1, the ore grade B2, and ore flow quantity B3).

The solutions of the proposed MTRR prediction model
serve as the basis for decision-making of optimal setting
model that accepts the operating condition of the fur-
nace and handles questions before producing the optimal
setting value of the controlled parameters based on pro-
duction indices. Thereby the intelligent optimal control
system can adapt to outside conditions in real time, and
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technical indices, namely the production quality, is ensured
as reliably as possible.

The follow case is a real-world application of the proposed
hybrid intelligent MTRR prediction model. 24 groups of
data, contrasting the varying tendency of the temperature,
the flow and the moving time to MTRR, are used to test
the results of these models as shown in Fig 4.

From Fig.4, the curve of the RBF-NN compensated results
(the red line) is more consistent to the real curve of the
MTRR (the dark blue line) than the fuzzy logic model
predicted one (the light blue line). For further survey, the
errors of the fuzzy mechanistic model (e1) and those of the
RBF_NN compensated model (e2) are compared in Fig 5.

The square sums of the two groups of errors in Fig 5 are

calculated by: Ei =
24X
j=1

e2ij , where e is the error of each
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point, i = 1, 2; E is the square sum of the errors. The
calculation results is:E1 = 4.80 and E2 = 2.82 which
indicate that the prediction accuracy of the BRF-NN
compensated fuzzy mechanistic model is superior to the
single fuzzy model.

6. CONCLUSIONS

The main contributions of the paper includes three parts:
1) a novel high accuracy modeling approach is proposed
which has a fuzzy mechanistic model and a neural compen-
sator. 2) A fast learning algorithm for the neural compen-
sator is proven to be stable. 3) This identification method
is successfully applied to estimate the production quality of
shaft furnace (MTRR). The experimental results indicate
that the grey-box model is superior to black-box model.
This modelling strategy can be extended to many other
complex industrial modelling.
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