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Abstract: This paper presents the problem of robust fault detection using unknown-input interval
observers. These observers face the robustness problem using two complementary strategies. First,
disturbances considered as unknown inputs are decoupled. Second, process/measurement noise and
modeling uncertainty are considered unknown but bounded by intervals. Their effect is addressed using
an interval state observation method based on zonotope representation of the set of possible states.
Finally, an example based on a linearized model of a flight control system is proposed to show the
effectiveness of the proposed approach. Copyright c©2008 IFAC

1. INTRODUCTION

Model-based fault detection is based on the use of mathematical
models of the monitored system. The better the model used
to represent the dynamic behavior of the system, the better
is the chance of improving the reliability and performance in
detecting faults. However, modeling errors and disturbances in
complex engineering systems are inevitable, and hence there
is a need to develop robust fault detection algorithms. The
most common approach to deal with the robustness problem
in the Fault Detection and Isolation (FDI) community is based
on the decoupling principle. Using this approach, the residual
is designed to be insensitive to unknown disturbances, whilst
sensitive to faults using the unknown input observer, eigen-
structure assignment proposed by Chen and Patton (1999) or
structured parity equations proposed by Gertler (1998). How-
ever, the robustness problem with respect to modeling errors
is more difficult to solve, because its distribution matrix is
normally unknown and should be estimated, being many times
time varying. Moreover, there might be too many disturbances
to be decoupled due to the lack of freedom degrees. An al-
ternative strategy is to consider modeling errors as unknown
disturbances, and to propagate and bound their effect on the
residual, using for example interval methods as in Puig et al.
(2002). This will be the approach followed in this paper to
handle modeling uncertainties. On the other hand, process and
measurement noises are usually modeled stochastically using
restrictive assumptions concerning the distribution law (the
typical assumption is a zero mean white noise). However, in
many practical situations only bounds on the noise signals are
available as in Milanese et al. (1996). This approach is used
to describe noise signals in this paper. Unfortunately, the set
of states obtained propagating parametric and noise bounded
uncertainty may become extremely complex. In the literature
several approximating sets and related operations have been
proposed to enclose and propagate the set of possible states. In
Witczak (2007), a state estimator based on enclosing the set of
states by the smallest ellipsoid is proposed using the algorithms

proposed by Maksarov and Norton (1996). However, in this
approach only additive uncertainty is considered, but not the
multiplicative uncertainty introduced by modeling uncertainty
located in the parameters. Here, both types of uncertainties
are considered as in Rinner and U. Weiss (2004), but there
only system trajectories obtained from the uncertain parameter
interval vertices are considered, assuming that the monotonic-
ity property holds. In this paper, interval observers based on
enclosing the set of states by zonotopes are presented without
assuming any monotonicity property and considering the whole
set of possible trajectories. The paper is organized as follows:
In Section 2, interval observers are introduced altogether with
the unknown input decoupling principle to handle unknown
disturbances. In Section 3 interval observers are applied to fault
detection. And, Section 4 presents the implementation of the
fault detection approach using zonotopes. Finally, in Section 5
an application example based on a linearised model of a flight
control system is presented to illustrate the effectiveness of the
proposed approach.

2. INTERVAL OBSERVERS

2.1 System set-up

Let us consider the following discrete-time linear system:

xk+1 = A(θk)xk + B(θk)uk + Edk + wk (1)

yk = Cxk + vk (2)

where:

• xk ∈ Rnx, uk ∈ Rnu, yk ∈ Rny and dk ∈ Rnd, are state,
input, output and unknown input, vectors of dimension nx,
nu, ny and nd respectively;
• vk ∈ Rnv and wk ∈ Rnw are measurement and process

noise of dimension nv=ny and nw=nx respectively; that
are considered unknown but bounded, i.e. vk ∈ Vk, and
wk ∈Wk, where Vk and Wk are interval boxes:
Vk = {vk ∈ Rnv|vk ≤ vk ≤ vk} ,
Wk = {wk ∈ Rnw|wk ≤ wk ≤ wk}
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• A(θk) and B(θk) are the state space matrices and θk is a
vector of uncertain time-varying parameters of dimension
p with their values bounded by an interval box 1 :

Θ = {θ ∈ Rp|θ ≤ θ ≤ θ}.
• C is the output equation matrix;
• E stands for the "unknown input" distribution matrix and

represents the influence of the unknown disturbances on
the system. In this paper as a first approach, it is assumed
to be a known matrix. It is let as a future work considering
the associated modelling errors, i.e. E(θk).

2.2 Decoupling the unknown input

The effect of unknown inputs can be tackled using several
methods, as for example by introducing an additional matrix
into the state estimation equation, which is then used for de-
coupling the unknown inputs effect on the state estimation
error according to Chen and Patton (1999), or transforming
adequately the system (1) into a system without the unknown
input as in Keller (1999). See Hui and Zak (2005) for a more in
depth study of design methods for unknown input observers. In
any case, the necessary condition for the existence of a solution
to the unknown input decoupling problem (See Chen and Patton
(1999)):

rank(CE) = rank(E) = nd (3)

If the condition (3) is satisfied, then it is possible to calculate

O = (CE)
+

= [(CE)
T

CE]−1(CE)T , where (·)+ stands for
the pseudoinverse of its argument. Then, by multiplying (2) by
O, it is straightforward to show that

dk = O[yk+1−C(A(θk)xk +B(θk)uk +wk)−vk+1] (4)

Substituting (4) into (1) gives

xk+1 = Ā(θk)xk + B̄(θk)uk + Ēyk+1 + w̄k (5)

where:

Ā(θk) = (I−EOC)A(θk)

B̄(θk) = (I−EOC)B(θk), Ē = EO

w̄k = (I− EOC)wk − Ēvk+1

2.3 The interval observation principle

Let the model for the state estimator of the system given by
(5), once the unknown input is decoupled, be a Luenberger
observer formulated as

x̂k+1 = Ā(θk)x̂k + B̄(θk)uk + Ēyk+1 + w̄k

+K(yk − ŷk)
ŷk = Cx̂k + vk

(6)

where K is the observer gain that has to be designed in order to
stabilize the observer given by Eq. (6) for all θk ∈ Θ.

Definition 1. Consider the state estimator given by Eq. (6),
an initial compact set X0 and a sequence of measured inputs

1 This type of model is known, in the literature, as interval model. See, for

example, Puig et al. (2002) or Rinner and U. Weiss (2004)

(uj)
k−1
0 and outputs (yj)

k
0 . The exact uncertain estimated

state set at time k is expressed by

Xk =
{

x̂k : (x̂j = Ā(θj−1)x̂j−1 + B̄(θj−1)uj−1

+w̄j−1 + Ēyj + K(yj−1 − ŷj−1))
k
j=1,

(ŷj−1 = Cx̂j−1 + vj−1)
k
j=1| x0, x̂0 ∈ X0,

(θj−1 ∈ Θ, w̄j−1 ∈Wj−1,vj−1 ∈ Vj−1)
k
j=1

}

(7)

The uncertain state set described in Definition 1 at time k
can be computed approximately by admitting the rupture of
the existing relations between variables of consecutive time
instants. 2 This makes possible to compute an approximation
of this set from the approximate uncertain state set at time
k − 1. Because the exact set of estimated states would be
difficult to compute, one straightforward way to bound this
set is using a box (interval hull) as in Puig et al. (2002), a
zonotope as in Alamo et al. (2005), an ellipsoid as in Maksarov
and Norton (1996) or other geometric regions easy to compute.
Before introducing such algorithm an additional definition is
introduced.

Definition 2. Consider a system given by Eq. (6), the set of
uncertain states at time k-1, Xk−1 and the input/ouput values
(uk−1,yk−1,yk). Then, the approximated set of estimated
states at time k based on the measurements up to time k-1 is
defined as

X
e
k =

{

x̂k : Ā(θk−1)x̂k−1 + B̄(θk−1)uk−1 + w̄k−1

+Ēyk + K(yk−1 − ŷk−1), ŷk−1 = Cx̂k−1 + vk−1

| x̂k−1 ∈ Xk−1, θk−1 ∈ Θ, w̄k−1 ∈Wk−1,vk−1 ∈ Vk−1}
(8)

Analogously, considering measurement equation in Eq. (6) the
approximated set of estimated outputs Y

e
k can be determined.

Using previous definition, the set of estimated states (or out-
puts) introduced in Definition 1 will be approximated iteratively
using zonotopes. From these zonotopes, an interval for each
state variable can also be obtained by computing the interval
hull of the zonotope. The sequence of interval hulls 2X

e
k with

k ∈ [0, N ] will be called the interval observer estimation
of the system given by Eq. (6). Analogously, the sequence of
interval hulls 2Y

e
k can be obtained. Following previous idea,

Algortihm 1 is proposed to determine an approximation of set
of uncertain estimated states.

Algorithm 1 Interval Observer using Set Computations

1: k ← 1
2: X

e
k ⇐ X0

3: while N ≤ k do
4: Obtain and store input-output data {uk,yk}
5: Compute the approximated set of estimated states, X

e
k

6: Compute the approximated set of estimated outputs, Y
e
k

7: Compute the interval hull of the approximated set of
estimated states, 2X

e
k = [xk,xk]

8: Compute the interval hull of the approximated set of

estimated outputs, 2Y
e
k =

[

y
k
,yk

]

9: k ← k + 1
10: end while

2 However, the problem of uncertainty propagation (wrapping effect) could

appear when this set is approximated in this way because of the accumulation

of overestimation along the simulation time and deriving in an explosion of

uncertainty.
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3. FAULT DETECTION USING INTERVAL OBSERVERS

The application of observers to fault detection consists in test-
ing whether the measured output is consistent with the one
by an observer using a faultless model. If an inconsistency
is detected, the existence of a fault is proved. In the case of
assuming bounded noise, the measurement can be considered
to be in the interval [yk]. Then, the fault detection test can be
stated as

[yk] ∩ Y
e
k 6= ∅ (9)

where Y
e
k is set of predicted outputs that can be obtained using

Algorithm 1.

Algorithm 2 implements fault detection using interval observers
and the fault detection test presented in (9).

Algorithm 2 Fault Detection using Interval Observers

1: fault← FALSE
2: k ← 0
3: X

e
k ⇐ X0

4: while fault = FALSE do
5: Obtain input-output data {uk,yk}
6: Compute the set of estimated outputs, Y

e
k using Algo-

rithm 1
7: if [yk] ∩Y

e
k = ∅ then

8: fault← TRUE
9: end if

10: k ← k + 1
11: end while

4. IMPLEMENTATION USING ZONOTOPES

4.1 Introduction

In this paper, zonotopes are used to bound the set of uncertain
estimated sets. Let us introduce zonotopes.

Definition 3. The Minkowski sum of two sets X and Y is defined
by X⊕ Y = {x + y : x ∈ X,y ∈ Y}.

Definition 4. Given a center vector p ∈ R
n and a matrix H

∈ R
n×m the Minkowski sum of the segments defined by the

columns of matrix H, is called a zonotope of order m. This set
is represented as:

X = p⊕HBm = {p + Hz : z ∈ Bm}

where: Bm is a unitary box, composed by m unitary intervals.

Then, a zonotope X of order m can be viewed as the Minkowski
sum of m segments. The order m is a measure for the geomet-
rical complexity of the zonotopes.

Definition 5. The interval hull 2X of a closed set X is the
smallest interval box that contains X.

Given a zonotope X = p ⊕ HBm, its interval hull can be
easily computed by evaluating p ⊕ HBm, for all i = 1..n:
2X = {x : |xi − pi| ≤ ‖Hi‖1} where Hi is ith-row of H,

and xi and pi are ith components of x and p, respectively.

4.2 Implementation of interval observers using zonotopes

To implement interval observers using zonotopes, it should be
noticed that using Eq. (6) as the expression of the estimator
model, it can be viewed as a discrete-time system with one input
that can be reorganized as:

x̂k+1 = Ā(θk)ox̂k + B̄o(θk)uo
k (10)

where:
Āo = Ā(θk) − KC, B̄o =

[

B̄(θk) Ē I K K
]

and u0
k =

[ uk yk+1 w̄k yk vk ]
t
.

Then, the problem of interval observation can be formulated as
a problem of interval simulation and requires characterizing the
set X

e
k. This set can be viewed as the direct image evaluation of

Eq. (10) and can be implemented using zonotopes.

According to Algorithm 1, interval observers involves a bound-
ing operation applied to the set of estimated states X

e
k.

4.3 Implementation of prediction set step

The prediction set step requires characterizing the set X
e
k.

This set can be viewed as the direct image evaluation of
f(xk, θk, w̄k) = Āo(θk)x̂k + B̄(θk)uo

k + w̄k. There are
different algorithms to bound such an image using ellipsoids
(see Maksarov and Norton (1996)) or zonotopes (see Kühn
(1998)). To bound such image using zonotopes the following
result is used:

Theorem 1. "Zonotope Inclusion" (see Alamo et al. (2005)).
Consider a family of zonotopes represented by X = p⊕MBm

where p ∈ R
n is a real vector and M ∈ I

n×m is an interval
matrix. A zonotope inclusion ⋄(X) is defined by:

⋄(X) = p⊕ [mid(M G)]

[

Bm

Bn

]

= p⊕ JBn+m

where G ∈ R
n×n is a diagonal matrix that satisfies: Gii =

m
∑

j=1

diam(Mij)
2 , i = 1, 2 . . . n. with mid denotes the center and

diam the diameter of the interval according to Moore (1966).
Under this definition, X ⊆ ⋄(X).

This prediction step aims at computing the zonotope X
e
k+1 that

bounds the trajectory of the system at instant k+1, from the
previous approximating zonotope at time instant k, Xk, using
the natural interval extension of Eq. (10) as suggested by Moore
(1966) and the zonotope inclusion operator, as a generalization
of Kühn’s method (see Kühn (1998)):

X
e
k+1 = pk+1 ⊕Hk+1B

r (11)

where:

pk+1 = mid(Āo(θk))pk + mid(B̄o(θk))uo

k

and
Hk+1 = [J1 J2 J3]

J1 = ⋄(Āo(θk)Hk)

J2 = pk(diam(Āo(θk))/2)

J3 = uo

k(diam(B̄o(θk))/2)

J1 is calculated using the zonotope inclusion operator.

It is important to notice that the set of estimated states has an
increasing number of segments generating the zonotope X

e
k+1

using this method. In order to control the domain complexity,
a reduction step is thus implemented. Here we use the method
proposed in Combastel (2003) to reduce the zonotope complex-
ity.

4.4 Checking for intersection emptiness

The step 6 of Algorithm 2 requires to check if the intersection
of [yk] ∩ Y

e
k, is not the empty set, before introducing such
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operation, an additional definition is introduced.
Definition 6. Given the zonotope Y

e
k = p ⊕ HBr, the strip

[yk] = {x ∈ R
n|cTx-d| ≤ σ}, a hyperplane S = {x :

cTx = q} is a supporting hyperplane of a zonotope Y
e
k if either

cTx ≤ q, ∀x ∈ Y
e
k or else cTx ≥ q, ∀x ∈ Y

e
k with equality

occurring for some x ∈ Y
e
k. The two constants qu and qd

characterizing the supporting hyperplanes are easily calculated
as:

qu = cTp +
∥

∥HTc
∥

∥

1
(12)

qd = cTp−
∥

∥HTc
∥

∥

1
(13)

where ‖.‖1 is the 1-norm of a vector. Then the intersection
check is very easy to perform considering that each new mea-
surement defines a set of consistent states defined by

Fk = {xk ∈ R
n : −σ ≤ yk −Cxk ≤ σ} (14)

where Fk is the region between two hyperplanes and the output
yk is considered component-wise. The normalized form of this
strip is written as

F̄k = {xk ∈ R
n : |

yk

σ
− cTxk| ≤ 1} (15)

Calculating the supporting hyperplane constant qu and qd the
intersection is empty if and only if:

qu <
yk

σ
− 1 or qd >

yk

σ
+ 1 (16)

This condition of inconsistency for a SISO model was reported
in Vicino and Zappa (1996).

5. CASE STUDY

5.1 Description

A modified version of the benchmark problem proposed in
Chen and Patton (1996) is considered. It consists of a linearized
discrete-time model of a simplified longitudinal flight control
system given by:

xk+1 = A(θk)xk + B(θk)uk + Edk + wk (17)

yk = Ckxk + vk

with:

A(θk) =

[

a11 ±∆a11 a12 ±∆a12 a13 ±∆a13

a21 ±∆a21 a22 ±∆a22 a23 ±∆a23

0 0.8187 0

]

B(θk) =

[

b1 ±∆b1

b2 ±∆b2

0.1813

]

, Ck = I3x3, Ek =

[

0 0
1 0
0 1

]

where: a11 = 0.994 ± ∆a11, a12 = −0.120 ± ∆a12, a13 =
−0.430 ± ∆a13, a21 = 0.002 ± ∆a21, a22 = 0.990 ±
∆a22, a23 = −0.074 ± ∆a23, b1 = 0.4252 ± ∆b1 and b2 =
−0.0082±∆b2

The states variables x = [ηy ωz δz]
T represent the normal ve-

locity, pitch rate and pitch angle, respectively. The control input
is an elevator control signal. The system has been simulated
using uk=10. The covariance matrices for process and mea-
surement noise sequences are Qk = diag{0.12, 0.12, 0.012}
and Rk = 0.012I3×3. The process wk and measurement vk

noises are normally distributed. The aerodynamic coefficients
are randomly perturbed by ±20%, i.e., ∆aij = −0.2aij . The

initial state vector used in the simulation was xo = [0 0 0]T .
The unknown input vector is dk = [d1 d2]

T , where d1 and d2

are pulse trains of aperiodic rectangles.

To implement the interval observer based on zonotopes, pro-
cess/measurement noise only the bound are required (see Eq.
(1)). Then, since statistical distribution of noise is given, these
bounds will be obtained from the covariances matrices taking
3 times the standard deviation: wk = [[−0.3, 0.3],[−0.3, 0.3],
[−0.03, 0.03]] and vk = [[−0.03, 0.03], [−0.03, 0.03], [−0.03,
0.03]]. On the other hand, parameter uncertainty is obtained
by considering that all parameter values in A matrix are in-
tervals whose center is the nominal value and the radius is
∆aij = −0.2aij . The gain K of the interval observer estimator
will be designed taking into account statistical distribution of
noise. In particular, observer gain K is determined using co-
variance matrices for process and measurement noise, Q and
R respectively, and making use of Kalman filter theory as in
Chen and Patton (1996) using steady state approximation:

K =

[

0.9899 −0.1203 −0.4302
0 0.9901 −0.0747
0 0.0079 0

]

Then, an optimal Luenberger observer is built using this gain
and the system model (17). The interval observer based fault
detection method in this application example is initialized using

as initial zonotope Xo with: po = [0.1 0.1 0.1]
T

and Ho =
I3×3 and the zonotope order m is limited to 27.

5.2 Decoupling the unknown inputs

Figure 1 shows the three components of the output measure-
ments and their envelopes (+ marks) obtained with the approach
presented in this paper without decoupling the unknown in-
puts and considering a faultless scenario using Algorithm 2.
Notice that two components of the output measurement are
outside of their envelopes in several time instants. This fact
leads to indicate the presence of a fault even in its absence,
see Figure 2. This figure shows the fault indication obtained in
the faultless scenario without decoupling the unknown inputs:
value 0 means no fault while 1 means fault. Using the method
described in Section 2, the effect of the unknown input dk is
decoupled. Figure 3 shows the three components of the output
measurements and their envelopes obtained with the method
after decoupling the unknown inputs and considering a faultless
scenario. All components of the output measurement are inside
their envelopes at every time instants. Therefore, in this case
no fault is indicated. Figure 4 shows the fault signal obtained
in the faultless scenario after decoupling the unknown inputs.
Since all fault signals are 0, no fault is indicated. This proves
the effectiveness of the method for decoupling the effect of the
unknown inputs presented in this paper.

5.3 Fault detection

After decoupling the unknown inputs, using the method de-
scribed in Section 2.2, two different types of fault were studied
to evaluate the behavior of the fault detection approach pro-
posed following Algorithm 2: an additive fault and a multiplica-
tive fault.

Additive fault. In this scenario, an additive fault of size
0.5 is introduced in the pitch angle output measurement, i.e.
yk,3 = yk,3 + 0.5 from time instant k = 10. Figure 5 shows
the three components of the output measurements and their
envelopes obtained with the interval observed method based on
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Fig. 1. System output measurements and envelopes (faultless
scenario) without decoupling the unknown inputs

5 10 15 20 25

−0.2

0

0.2

5 10 15 20 25 30

−0.5

0

0.5

1

1.5

5 10 15 20 25 30
−1

0

1

0 30 

0 

0 

N
o
rm

a
l 
V

e
lo

c
it
y

P
it
c
h
 r

a
te

P
it
c
h
 a

n
g
le

Time instant, k

Fig. 2. Faults detected without decoupling the unknown inputs
in a faultless scenario
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Fig. 3. System output measurements and envelopes (faultless
scenario) after decoupling the unknown inputs
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Fig. 4. Fault detection after decoupling the unknown inputs in
a faultless scenario

zonotopes. Even though the first two components of the output
measurement are inside their envelopes, the third component
(the pitch angle) goes outside the envelopes for several time
instants from k = 10. Thus, fault is detected. Figure 6 shows
the fault signals obtained in this case. In Figure 7, the projec-
tion of the approximated set of estimated outputs Y

e
10 in two

components and the measurement output interval considering
the measurement noise at time instant k = 10 are shown.
Since these two sets do not intersect, according to the step 7
of Algorithm 2 a fault is indicated.
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Fig. 5. System output measurements and envelopes (additive
fault)
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Fig. 6. Interval observer fault detection for an additive fault
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Fig. 7. Approximated set of estimated output and measurement
output with noise (additive fault)

Multiplicative fault. In this scenario, a multiplicative fault
of size 0.2 is introduced by modifying the parameter a23 of
the system matrix Ak from time instant k = 10 as follows:
a23 + 0.2. Figure 8 shows the evolution of the three output
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measurements and their envelopes obtained with the interval
observer fault detection test based on zonotopes presented in
this paper. In this case, all measurements go outside of their
envelopes in different time instant since k = 10, so fault is
indicated. Figure 9 shows the fault signals obtained for each
component of the measurement outputs. Faults are indicated
in all fault signal components. In Figure 10, the projection of
the approximated set of estimated outputs and the measurement
outputs for pitch rate and pitch angle are presented for time
instant k = 10. Again as these two sets do not intersect, a fault
is indicated.
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Fig. 8. System output measurements and envelopes (multiplica-
tive fault)
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Fig. 9. Interval observer fault detection for a multiplicative fault
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Fig. 10. Approximated set of estimated output and measure-
ment output with noise (multiplicative fault)

6. CONCLUSIONS

In this paper, a method for robust fault detection based on in-
terval observation using zonotopes considering the effect of un-
known inputs is presented. This approach use interval models to

describe parameter uncertainty and assume a bounded descrip-
tion of process and measurement noise. The method presented
in this paper computes the worst-case estimation for each state
variable considering the effect of parameter uncertainty and
noise. The method was successfully tested in an application
example based on simplified longitudinal flight control system.
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