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Rambla de Sant Nebridi, 11, 08222 Terrassa, Spain

(e-mail: vicenc.puig@upc.edu)

Abstract: In this paper, a passive robust fault detection test based on calculating the inverse
image of an interval model (linear or non-linear but linear with respect to the parameters)
expressed in MA form is presented. This relies on a consistency test which uses tools from
interval analysis and zonotope arithmetic to check if there exists a member in the family of
models described by an interval model that can explain the measured data. The proposed
test is compared to the classical robust interval model fault detection approach based on the
direct image. The main features of both tests will be extracted and advantages and drawbacks
discussed using a motivational example. Finally, an application example based on the known
quadruple-tank process is used to assess how the algorithms work.
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1. INTRODUCTION

Model-based fault detection methods rely on the concept
of analytical redundancy. The simplest analytical redun-
dancy schema consists on comparing measurements of a
system with corresponding analytically computed values
that in turn are computed from measurements of other
variables and/or from previous measurements of the same
variable. The resulting differences are called residuals and
are assumed to be indicative of faults in the system. Under
ideal conditions, residuals are zero in the absence of faults
and non-zero when a fault is present. When the resid-
ual becomes non-zero the relations used to calculate the
residual are considered to be invalid. However, modelling
errors and disturbances in complex engineering systems
are inevitable, leading the residuals to non-zero values
even in the absence of faults. Thus, the residual generation
stage is followed by a decision-making stage. A robust
fault detection system invalidates a residual relation only if
model uncertainty and/or disturbances can not explain the
observed data, see Chen and Patton (1999). Approaches
to robust fault detection are divided in two principal
groups. In the first, often referred to as active robust fault
detection, robustness is achieved by generating residuals
from which the effect of model errors and disturbances
have been decoupled. This leads to residuals which are
insensitive to uncertainty and disturbances but at the
same time sensitive to faults. This approach has been
extensively developed the last years (see Chen and Patton
(1999)). The main drawback of this approach is the need
of decoupling, being not always possible. In the second
approach, referred to as passive, the aim is to enhance the
robustness of the fault detection system at the decision-
making stage, mainly by using an adaptive threshold.
A common approach to this problem is to inflate the

allowable interval for the residual, or alternatively, for the
model output prediction. so that false alarms due to model
uncertainty are avoided. A limitation of this approach is
that faults that produce a residual deviation smaller than
the residual uncertainty due to model uncertainty will be
missed.

A manner to represent model uncertainty is to bound
parameter values on intervals. The resulting models are
called interval models and have received a lot of attention
in the context of robust fault detection, see among others
Armengol et al. (2001); Puig et al. (2002); Fagarasan et al.
(2004); Ploix and Adrot (2006). Generally in these publi-
cations the uncertainty interval for residuals (or predicted
outputs) is computed by propagating the effect of the
parameter uncertainty using a direct image of an interval
function. This approach will be referred to as a direct
image test in what follows. The residual relation is inval-
idated if the variable for which the interval is calculated
leaves the interval.

In this paper a passive robust method will be presented
where the inverse image of an interval model (linear or
non-linear but linear with respect to the parameters) ex-
pressed in MA form is used to check wether there exists
a member in the family of models, described by an in-
terval model, that can explain the measured data. This
inverse image test has already been suggested in Puig
et al. (2006); Adrot and Ploix (2006) using subpavings
and SIVIA algorithm (see Jaulin et al. (2001)). However,
such implementation is computationally expensive and it
can be made very efficient using zonotope representation.
This test will be compared with the existing direct image
test and the principal properties of the two tests extracted.
These properties will be demonstrated by using an exam-
ple.
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The paper is organized in the following manner: Section
2 is dedicated to introducing the problem. In Sections 3
and 4, the earlier direct image test and the inverse image
test are described for comparison. In Section 5 zonotopes
and the related operations required for implementing fault
detection tests are presented. An application example is
presented in Section 6 to demonstrate how the algorithms
work. Finally in Section 7 conclusions are drawn.

2. PROBLEM SET-UP

Let us consider that the output of the monitored system
can be described by a (linear or non-linear but linear
with respect to the parameters) MA model that can be
expressed in regressor form as

y(k) = ϕT (k)θ(k) + e(k) (1)

θ(k + 1) = θ(k) + w(k) (2)

θ(k) ∈ Θ (3)

where θ(k) ∈ R
n is the parameter vector whose values

are assumed to be unknown but to belong to a compact
bounded initial set Θ, ϕ(k) ∈ R

n is the regressor vector
which can contain any function of inputs and outputs, the
noise and parameter variations terms are limited as

|e(k)| ≤ σ and |w(k)| ≤ λ (4)

respectively. As the parameter vector is assumed to belong
to R

n so does λ and the last inequality is an element wise
inequality. Notice that this system description includes any
system linear in the parameters. Parameter uncertainty
comes from physical modelling or from the set-membership
parameter estimation algorithms applied in a non-faulty
situation.

Notice that Eq. (2) specifies the allowed temporal variation
of uncertain parameters θ. Depending on the value of λ,
three different cases can be considered:

• Time invariant case, λ = 0
• Time-varying case 1, λ = λ̄
• Time-varying case 2, λ =∞

In the first case, the parameter is unknown within Θ but
it is known that it will not vary. In the second case, the
parameter variation is bounded specifically by a vector λ̄
while in the last case, the variation is implicitly bounded
only by the initial parameter set Θ and can vary at will
within that set.

The first case could represent situations when an initial
variance comes from components specifications that are
known only with a mean and variance in the beginning
of the fault detection. The second case could represent a
system that has been identified over a number of operation
conditions, each with a different θ within Θ, but with the
variance between samples bounded by λ̄.

It is assumed that measurement data is available for N
(≥ n) points, that is, series

ΦN = {ϕ(k)}k=0,...,N−1 YN = {y(k)}k=0,...,N−1 (5)

are available at every time instant k.

Measurement noise can be taken into account by assuming
that the measurements are known to belong to intervals

[y(k)], often created by adding an noise term e(k) to
the actual measurement y(k), that is, [y(k)] = [y(k) −
e(k), y(k) + e(k)]. The corresponding interval vector is

[YN (k)] = [y(k)]× · · · × [y(k −N)] ⊂ R
N

3. PASSIVE ROBUST FAULT DETECTION USING A
DIRECT IMAGE TEST

As already noted in the introduction, fault detection using
interval models has predominantly been based on calcu-
lating the direct image of functions related to trajectory
generation in order to obtain the set which ŷ(k) belongs
to

Ŷ(k) = {ŷ(k) | ŷ(k) = ϕT (k)θ(k), θ(k) ∈ Θ} (6)

In fault detection using the direct image test, the model is
assumed invalidated and fault is indicated if YN (k) /∈ ŶN

or, in the case of measurement noise, if

[YN (k)] ∩ ŶN = ∅ (7)

As the evaluation of the image in Eq. (7) is complex even
in the linear case, approximate envelopes are often used
based on computing the interval hull of Ŷ, denoted as

�Ŷ. Envelopes are characterized as sound and complete
according to how well they approximate �Ŷ. A sound
envelope does not contain any region through which a

trajectory does not cross, that is the envelope [Ŷ ] fulfills

[Ŷ ] ⊆ �Ŷ. A complete envelope [Ŷ ] on the other hand

fulfills �Ŷ ⊆ [Ŷ ].

A general form of the fault detection algorithm using the
direct image test is the following:

Algorithm 1 Fault detection using the direct image test

1: fault← FALSE
2: k ← 1
3: while fault=FALSE do
4: Obtain input-output data {u(k), y(k)} at time in-

stant k and build regressor ϕ(k).

5: Calculate Ŷ(k) as a direct image of Θ according to
Eq. (6)

6: if Ŷ(k) ∩ [y(k)] = ∅
7: fault← TRUE
8: endif
9: k ← k + 1

10: end while

It is known that it could be difficult to detect some
faulty trajectories with the direct image test even when
the envelope is sound and complete Armengol et al.
(2001). This is due to the fact that many combinations
of parameters can explain a set of data, a jump between
these combinations will not be detected. On the other
hand, using the direct image test it is difficult to consider
explicitly the parameter variations presented in Eq. (4).
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4. PASSIVE ROBUST FAULT DETECTION USING A
INVERSE IMAGE TEST

4.1 Intuitive idea

An alternative fault detection test to check the consistency
of the model given by Eqs. (1)-(3) will now be proposed
which is based on the inverse image of the function in
Eq. (1). Assume the measurement data y(k) is available.
Then, the interval [y(k)] created by taking into account
measurement noise e(k). Intuitively, what is proposed now
is a test based on computing the inverse image of [y(k)],
i.e.,

Θ̂(k) = f−1[y(k)] (8)

where Θ̂(k) is the set of parameters consistent with the
measurement data at time instant k. In this case, the
model or parameter set Θ is invalidated if

Θ ∩ Θ̂(k) = ∅ (9)

A failed test means that there does not exist a θ ∈ Θ that
is consistent with the measurements.

4.2 Formalized idea

In order to formalize the inverse image test, the following
definitions are introduced.

Definition 1. Let us consider the model description given
by Eq. (1), for given data sequences ΦN and YN introduced
in 5, the parameter θ is said to belong to the Feasible
Solution Set at time N , (denoted FSSN ), if there exist
θ(0), θ(2), . . . , θ(N − 1) such that:

|y(k)− ϕT (k)θ(k)| ≤ σ k = 0, . . . , N − 1 (10)

|θ(k)− θ(k − 1)| ≤ λ k = 1, . . . , N − 1 (11)

θ(0) ∈ Θ (12)

Using previous definition, a fault is now defined for the
sequences ΦN and YN .

Definition 2. For given data sequences ΦN and YN , a fault
is said to have occurred if the set FSSN is empty.

Each new measurement defines a set of consistent param-
eters defined by

Fk = {θ ∈ R
n : −σ ≤ y(k)− ϕ(k)T θ ≤ σ} (13)

Fk is the region between two hyperplanes. The normalized
form of this strip is written as

Fk = {θ ∈ R
n : |

y(k)

σ
−

ϕ(k)

σ

T

θ| ≤ 1}

= {θ ∈ R
n : |d(k)− c(k)T θ| ≤ 1} (14)

This strip Fk available at time k allows to iteratively detect
the presence of a fault if its intersection with the feasible
parameter set FSSk is empty.

In practice, the computation of FSSN is difficult. The fault
detection algorithm presented in this paper is based on the
use of zonotopes as an approximated feasible solution set,
AFSSN , that fulfills FSSN ⊆ AFSSN for which consistency
is checked. In the case when λ > 0, the set AFSSN is
expanded to take the allowed parameter variance into
account in the next sample. The expanded set is denoted

AFSSN+1.
Algoritm 2 presents a general form of the suggested fault
detection approach.

Algorithm 2 Fault detection using the inverse image test

1: fault← FALSE
2: k ← 1
3: AFSSk ← Θ
4: while fault=FALSE do
5: Obtain input-output data {u(k), y(k)} at time in-

stant k, build regressor ϕ(k) and strip Fk according
to Eq. (14).

6: if AFSSk ∩ Fk = ∅
7: fault← TRUE
8: else Calculate AFSSk that fulfills Fk ∩ AFSSk ⊂

AFSSk and
9: Expand AFSSk taking into account λ to obtain

AFSSk+1.
10: endif
11: k ← k + 1
12: end while

5. ZONOTOPES AND RELATED OPERATIONS

5.1 Zonotopes

In this section, zonotopes and related operations will
be presented as a tool to implement Algorithm 1 and
Algorithm 2.

Definition 3. The Minkowski sum of two sets X and Y

is defined by X⊕ Y = x + y : x ∈ X, y ∈ Y}.

Definition 4. Given a vector p ∈ R
n and a matrix H

∈ R
n×m, the Minkowski sum of the segments defined by

the columns of matrix H, is called a zonotope of order m
and it is represented as:

X = p⊕HBm = {p + Hz : z ∈ Bm}

where: Bm is a unitary box, composed of m unitary
intervals. The order m is a measure for the geometrical
complexity of the zonotopes.

Looking at Algorithm 1, the required zonotope-based op-
erations are: the direct image of a zonotope through a
linear transformation (step 5) and the intersection between
zonotopes (step 6). In case of Algorithm 2, the following
zonotope-based operations are required: checking the con-
sistency of a zonotope with a strip (step 6), intersection
between a zonotope and a strip (step 8) and the expansion
of the parameter set taking into account λ (step 9).

5.2 Image of a zonotope through a linear transformation

Consider a zonotope represented by X = p⊕HBm where
p ∈ R

n is a vector and H ∈ R
n×m is a matrix. The image

of a zonotope through a linear transformation M ∈ R
n×n

is a zonotope Y defined by:

Y = q ⊕NBm (15)

where: q = Mp and N = MH .
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5.3 Intersection between two zonotopes

Given two zonotopes X1 = p1 ⊕ H1B
r1 and X2 = p2 ⊕

H2B
r2 and matrix E, let us define:

p̂(E) = Ep1 + (I− E)p2 (16)

Ĥ(E) = [EH1 (I− E)H2] (17)

then,

X1 ∩ X2 ⊆ X̂(E) (18)

X̂(E) = p̂(E)⊕ Ĥ(E)Br1+r2 (19)

To reduce the size of the intersection zonotope X̂(E),
a convex optimization problem is solved. If H1i and
H2j (with i=1,· · · ,m1, j=1,· · · ,m2) are the columns of
matrices H 1 and H2, the function to be minimized is:

f(E) =

m1∑

i=1

(EH1i)
T (EH1i)

+

m2∑

j=1

(H2j − EH2j)
T (H2j − EH2j) (20)

5.4 Checking consistency of a zonotope with a strip

Given the zonotope X = p⊕HBr, the strip F = {θ ∈ R
n :

|cT (k)θ − d(k)| ≤ σ} and vector α ∈ R
n, we have:

X ∩ F ⊆ Θ = p̂(α) ⊕ Ĥ(α)Br+1 (21)

where:
p̂(α) = p + α(d− cT p) (22)

Ĥ(α) = [(I− αcT )H σ] (23)

It is possible to choose the parameter vector α in such
a way that a size criterion for the obtained bound is
minimized. Here we use the method based in the Frobenius
norm proposed in Alamo et al. (2005).

Given a new data point {y(k)} at time instant k, regressor
ϕ(k) and strip Fk according to Eq. (14) are build. Assum-
ing that FSSk ⊆ X where X = p ⊕ HBm is a zonotope,
consistency can be assessed by checking if

X ∩ Fk = ∅ (24)

This check is very easy to perform using the following
definition:

Definition 5. A hyperplane S = {x : cT x = q} is a
supporting hyperplane of a zonotope X = p⊕HBm if
either cT x ≤ qu, ∀x ∈ X or else cT x ≥ qd, ∀x ∈ X with
equality occurring for some x ∈ X. The two constants
qu and qd characterizing the supporting hyperplanes are
easily calculated as

qu = cT p + ‖HT c‖1 (25)

qd = cT p− ‖HT c‖1 (26)

where ‖ · ‖1 is the 1-norm of a vector.

Then, calculating the supporting hyperplane constant qu

and qd the intersection is empty if and only if

qu <
y(k)

σ
− 1 or qd >

y(k)

σ
+ 1 (27)

This condition of inconsistency was reported in Vicino and
Zappa (1996).

5.5 Intersection between a zonotope and a strip

Definition 6. Given a zonotope Z = p ⊕ HBm and a
strip F = x : qa ≤ cT x ≤ qb, the zonotope tight strip is
obtained by S = F ∩FS , where FS is the zonotope support
strip defined by c and Z.

According to Alamo et al. (2005), given the zonotope
Z = p⊕HBr, the tight strip S = {x ∈ R

n : |cT x− d| ≤ σ}
and vector α ∈ R

n, we have:

Z ∩ S ⊆ Θ = p̂(α) ⊕ Ĥ(α)Br+1 (28)

where:
p̂(α) = p + α(d − cT p) (29)

Ĥ(α) = [(I− αcT )H σ] (30)

Then, it is possible to choose the parameter vector α in
such a way that a size criterion for the obtained bound
is minimized. Here, we use the method based in the
Frobenius norm proposed in Alamo et al. (2005) to select
the optimal value of α:

α∗ =
HHT c

cT HHT c + σ2
(31)

5.6 Expansion of the parameter set

The bound on parameter variation can be expressed as
|θ(k + 1)− θ(k)| < Λ which in turn can be expressed as

θ(k + 1) ∈ θ(k)⊕ ΛBn (32)

where Λ is a square matrix with the diagonal equal to
λ. One of the principal features of zonotopes is that
the Minkowski sum of a box and a zonotope is another
zonotope. Therefore, if at time k it is known that the
parameter belongs to set Xk = p ⊕ HBm then using Eq.
(32) the parameter set at time k + 1 can be expressed as
Xk+1 = p⊕HBm ⊕ ΛBn = p⊕ [H Λ]Bm+n.

Notice that in this step the zonotope order increases at
each time instant. In order to control the domain com-
plexity, a reduction step is thus implemented. Here we use
the method proposed in Combastel (2003) to reduce the
zonotope complexity.

Remark. In the time-varying case (λ = ∞) as the
parameters can vary at will within the initial parameter set
Θ, the update procedure of step 9 of Algorithm 2, consists
on resetting AFSSk+1 equal to the initial parameter set
Θ.

6. APPLICATION EXAMPLE

A quadruple-tank process (see Johansson (2000)) is pro-
posed as the application example to further compare the
two fault detection tests proposed.

The process inputs are v1 and v2 (input voltages to the
pumps). The experiments presented in this section just
considers the analytical redundancy relation coming from
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the first tank assuming that levels h1, h3 and voltage v1

are measured:

d h1

dt
= −

a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

γ1k1

A1

v1 + e1 (33)

where A1 = 28 cm2, k1 = 3.33 cm3/V s and g =
981 cm/s2. Parameters a1 and γ1 are assumed to belong
to the intervals a1 ∈ [0.02, 0.171] and γ1 ∈ [0.55, 0.85]. The
term e1 is a bounded random noise with |e1| ≤ 0.02. The
fault detection algorithm is tested in three different cases
of parametric fault scenarios affecting a1 and γ1. For all
cases the non-faulty system is simulated with parameters
equal to a1 = a3 = 0.071 cm2, a2 = a4 = 0.057 cm2,
γ1 = 0.7 and γ2 = 6.

Equation (33) can be expressed in the form given by Eq.
(1), once Euler discretization with sampling time equal to
1 has been applied:

h1(k + 1) = h1(k)−
a1

A1

√
2gh1(k)

+
a3

A1

√
2gh3(k) +

γ1k1

A1

v1(k) + e1(k) (34)

Note that the results obtained in this section could be
improved using the other three equations of the model.
Considering that the parameter vector θ is composed of:

θ = [a1 a3 γ1]
T
, the regressor vector can be expressed as

follows:

ϕy1
(k) =

[
−

√
2gh1(k)

A1

√
2gh3(k)

A1

k1v1(k)

A1

]T

(35)

Taking into account uncertainty intervals associated to a1

and γ1 given above, the initial parameter uncertainty set
for the fault detection stage is assumed to be:

Θ = {θ : θ = p0 + H0θ̃, ‖θ̃‖∞ ≤ 1}

where:
p0 = [0.071 0.071 0.7]T , H0 = diag

(
[0.1 0 0.15]T

)
.

6.1 Time-invariant parameters

Since uncertain parameters are considered time-invariant,
then λ = 0 in Eq. (4). The fault considered is a variation
in the parameters a1 and γ1 from time instant k =
5. This variation of parameters is inside the allowed
interval of both parameters, that is a1f = a1 + 0.05 and
γ1f = γ1 + 0.1. Figure 1 shows the fault detection test
using the inverse image. The dashed box represents the
allowable parameters a1 and γ1. The solid line represents
the zonotope intersection of the parameters consistent
with the first 4 measurement outputs. The dotted line
represents the band of parameters consistent with the
measurement output for time instant k = 5. As this band
does not intersect with the zonotope, a fault is indicated.
Figure 2 shows the envelopes generated by the direct image
fault detection test and the measurement output [h1]
considering the measurement noise. As the measurement
output never leaves the envelopes, no fault is indicated.
This shows how the inverse image test is able to detect a
fault that consists on a non-allowed time variation of the
parameters, while the direct image test is unable.

6.2 Time-varying parameters case 1

In this case, uncertain parameters are considered time-

varying with: λ =

[
0.01 0
0 0.03

]
, in Eq. (4). The fault

considered is a variation in the parameters a1 and γ1 from
time instant k = 5: a1f = a1 + 0.03 and γ1f = γ1 + 0.05.
Even though with this variation, the parameters are inside
their uncertainty intervals, it is higher than the allowed
value at each time instant given by λ. Figure 3 shows the
fault detection test using the inverse image. The dashed
box represents the valid interval for parameters a1 and
γ1. The solid lines represent the zonotope that bounds
the parameters consistent with the first 4 measurement
outputs. The dotted line represents the band of parameters
consistent with the measurement output for time instant
k = 5. As this band does not intersect with the zonotope, a
fault is indicated. Figure 4 shows the envelopes generated
by the direct image fault detection test and the measure-
ment output [h1] considering the measurement noise. As
the measurement output never leaves the envelops, no fault
is indicated. As in the previous case, this shows how the
inverse image test is able to detect a fault that consists on
a non-allowed time variation of the parameters, while the
direct image test is unable.
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Fig. 1. Inverse image test for time invariant case, a1 vs. γ1
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Fig. 2. Direct image test for time invariant case

6.3 Time-varying parameters case 2

In this case, uncertain parameters are considered time-
varying with λ =∞, in Eq. (4). This means that variation
is bounded only by the initial parameter set Θ, varying
at will within this set. The fault considered is outside
the box of allowed parameters, from time instant k =
5, that is a1f = a1 + 0.15. Figure 5 shows the fault
detection test using the inverse image. The dashed box
represents the allowable parameters region for a1 and
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γ1. The dotted line represents the band of parameters
consistent with the measurement output for time instant
k = 5. As this band does not intersect with the box of
allowed parameters, a fault is indicated. Figure 6 shows
the envelopes generated by the direct image fault detection
test and the measurement output [h1] considering the
measurement noise. As the measurement output leaves the
envelopes from time instant k = 6, a fault is indicated. In
this case, both methods detect the fault, being not clear
the advantage of using the inverse image test.
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Fig. 3. Inverse image test for time-varying case 1, a1 vs.
γ1
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Fig. 4. Direct image test for time-varying case 1

7. CONCLUSIONS

A robust fault detection test based on the inverse image
using zonotopes for systems linear in the parameters has
been introduced. A general algorithm was presented based
on proving that the feasible solution set of parameters for
a series of data is empty. Three distinct cases of allowed
parameter variance have been considered to compare the
inverse test with the traditional interval based fault detec-
tion test based on the direct image. Finally, both methods
were applied to motivational example and to a simulation
model of the known quadruple-tank process, showing the
effectiveness of the inverse image fault detection test when
considering time varying and invariant parameters. As
future work, the method will be extend to the MIMO MA
parity equation case.
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