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Abstract: This paper presents a new approach for stability analysis of Takagi-Sugeno (TS) models. The 
analysis considers information derived from existing or induced order relations among the membership 
functions. Partitioning of the state-space and the use of piecewise Lyapunov functions (PWLF) arise 
naturally as a consequence of induced order relations. Conditions under the novel approach can be 
expressed as linear matrix inequalities (LMIs) so they can be efficiently solved. Examples are provided to 
show the advantages over the classical quadratic approach. 

 

1. INTRODUCTION 

In recent years, Takagi-Sugeno (TS) models (Takagi and 
Sugeno, 1985) have been the subject of an intensive research 
by virtue of their approximation capabilities. They can 
represent exactly a nonlinear model in a compact set of the 
state variables (Taniguchi et.al., 2001). TS models are 
constructed by a set of linear models blended together with 
nonlinear functions holding the convex-sum property 
(Tanaka and Wang, 2001). The stabilization problem is 
usually addressed via the so-called PDC (Parallel Distributed 
Compensation) control law (Wang et.al., 1996). It consists in 
a set of linear state feedbacks blended together using the 
same nonlinear functions as the TS model. 

Stability and stabilization of TS models are usually 
investigated through the direct Lyapunov method. An LMI 
(Linear Matrix Inequality) formulation (Boyd et.al., 1994) of 
these problems is preferred, since LMIs can be easily solved 
by convex optimization techniques. This formulation is 
directly achieved by quadratic Lyapunov functions (Tanaka 
and Wang, 2001) and many results concerning robustness and 
performance under this approach have been developed (see 
Sala et.al., 2005, and references therein). Nevertheless, 
quadratic-stability-based results have nearly reached their 
limits since they are very particular cases of stability which 
main drawback is the conservative behaviour of their 
solutions.  

In order to reduce conservativeness, different Lyapunov 
functions have been proposed in the literature. Piecewise 
Lyapunov functions have been investigated (Johansson et.al., 
1999; Feng, 2003) as a natural option for those TS models 
which do not have all linear models activated at once. State 
space is partitioned according to linear models activation 
allowing the Lyapunov function to change from one region to 
another. Unfortunately, this assumption generally does not 
hold for TS models built using the sector nonlinearity 
approach. On the other hand, different non-quadratic 

Lyapunov functions have been also employed, though results 
in the continuous-time domain (Rhee and Won, 2006) have 
not been as powerful as those of the discrete case (Guerra and 
Vermeiren, 2004; Ding et.al., 2006; Kruszewski and Guerra, 
2005). Most of these Lyapunov functions depend on the same 
nonlinear functions of the model (membership functions), 
hereby taking into account structural information otherwise 
ignored by the quadratic approach. 

Other relaxations have been successfully employed, though 
they are focused on stabilization (Liu and Zhang, 2003; Tuan 
et.al., 2001). Therefore, they are inapplicable on stability 
issues. 

This paper presents a novel approach to cope with stability 
issues for TS models. By investigating the properties of TS 
models with order relations among different membership 
functions, relaxed conditions are found for TS models. The 
new approach allows incorporating piecewise analysis for 
any kind of TS fuzzy system since state-space partition is 
induced by the aforementioned order relations. Therefore, 
piecewise approach is not longer excluded for TS models 
obtained via sector nonlinearity. 

This paper is organized as follows: Section II introduces TS 
models and notation. MF-dependent stability analysis is 
developed in Section III along with an example. Section IV 
shows the piecewise analysis extension of MF-dependent 
approach, providing examples to illustrate the advantages of 
the proposed method. Finally, Section V gives some 
conclusions and perspectives. 

2. TAKAGI-SUGENO MODELS AND NOTATION 

Consider a nonlinear model given by the expression: 

( ) ( )( ) ( )x t f z t x t=�  (1) 

with ( )f ⋅  being a nonlinear function and ( ) nx t ∈\  the state 
vector. Using the sector nonlinearity approach with bounded 
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nonlinearities (Tanaka and Wang, 2001), a TS model can be 
derived from (1) as follows: 

( ) ( )( ) ( )
1

r

i i
i

x t h z t A x t
=

=∑�  (2) 

where n n
iA ×∈\ , ( ) pz t ∈\  is the premise vector, r ∈`  is 

the number of linear models blended together by nonlinear 
scalar functions ( )ih ⋅ , which satisfy the convex sum 

property: ( )1
1r

ii
h

=
⋅ =∑ , ( ) 0ih ⋅ ≥ . 

Consider an order relation between two MFs such that 
( )z t∀ : ( )( ) ( )( )i jh z t h z t≤ . A set of ordered indexes can be 

used to represent this relationship as follows { },iC i j= , 
where sub-index i represents the lowest end of the order 
relation. In the same way, a large order relation beginning in 
membership ( )ih ⋅  can be represented with a set of ordered 

indexes { }1 2, ,i i iC c c= "  representing ( )z t∀ : 1 2
i ic c

h h≤ ≤"  

where 1
ic i= . In case there is more than one order relation 

beginning in ( )ih ⋅  they are distinguished by another index j, 

like { }1 2, ,j
i ij ijC c c= " .  

By means of the previous notation, the following sets can be 
defined for a given TS model (2) in order to facilitate proof 
construction:  

Definition 1: { }1 2, ,j
i ij ijC c c= " , 1, ,i r= " , 1, , ij v= "  

represents the different longest order relation chains  
1 2
ij ijc c

h h≤ ≤"  beginning in ih  where 1
ijc i= . 

Definition 2: { }1
1

, ,
i

i

v
j i i

i i r
j

S C s s
=

= = "∪  represents all the 

elements which are equal or greater than ih . It is not an 
ordered set. 

Definition 3: j
iC⎡ ⎤⎣ ⎦  is the set of all pairs in j

iC  with two 
consecutive elements.  

Definition 4: ( ){ }: : , l kl k z t h h= ∃ ∀ >/A  is the set of all 
lower-end elements. 

Example: For the sake of clarity, consider the following 
graph representing a possible order relation among MFs of an 
8-rules TS model, where upper elements are greater than 
lower ones. For element 5i =  it is clear that { }1

5 5,1, 2C = ,  

{ }2
5 5,3, 2C = , { } { }{ }1

5 5,1 , 1,2C⎡ ⎤ =⎣ ⎦ , { } { }{ }2
5 5,3 , 3, 2C⎡ ⎤ =⎣ ⎦  

and { }5 5,3,1, 2S =  while { }4,7,8=A . Note that there could 
be independent graphs for non-related order relation chains. 
Note also that isolated terms represent membership functions 
that have no order relation with any other (for example 8h ).  

 

Fig. 1.Graph of MFs’ order relations. 

3. MF-DEPENDENT STABILITY ANALYSIS 

3.1 Main result 

A sufficient condition for stability of a TS model (2) is the 
existence of a common matrix 0P >  such that for 

T
i i iL A P PA= +  the following holds  

1 1 2 2 0r rh L h L h L+ + + <"   (3) 

Classical quadratic stability consists in finding a common 
matrix 0P >  such that 0T

i i iL A P PA= + < , so condition (3) 
is guaranteed since i∀ , 0ih ≥ . Nevertheless, no structural 
information is taken into account, i.e., quadratic stability 
discards MFs’ information, thereby constituting a source of 
conservativeness. 

The key idea of this paper consists in exploiting order 
relations among the membership functions in a TS model (2) 
by rewriting condition (3). For example, if i jh h≤ , then 

i i j jh L h L+  can be rewritten as follows: 

 ( ) ( )i i j j i i j j i jh L h L h L L h h L+ = + + −  

allowing to write less-conservative conditions 0i jL L+ < , 
0jL <  instead of classical 0iL < , 0jL <  since it is known 

that 0ih ≥  and 0j ih h− ≥ . 

As multiple order relations can appear among MFs of a TS 
model, the previous idea can be generalized as follows. 

Theorem 1: TS model (2) under order relations described by 
sets in Definitions 1–4 is globally asymptotically stable if 
there exists a common matrix 0P >  such that the following 
LMIs hold for T

i i iL A P PA= + : 

1 2

1 2

1 2

0, 1, ,
ii i
ri

i i i
rii i i

ri

ss s

s s s
s s s

nn n
L L L i r

d d d
+ + + < =" "  (4) 

where { } { }
1

i

k
i

v
k j k

i i i is
i i j

d card C s card C s
∈ ∈ =

= ∩ = ∩∑ ∑∑
A A

 and 

{ } { }
1

i

i
k

v
i j i

i k i ks
j

n card C s card C s
=

= ∩ = ∩∑ . 

Proof: Taking into account the order relations for model (2)
described in Definitions 1-4, i.e, sets j

iC , iS , j
iC⎡ ⎤⎣ ⎦  and A , 

h2 
h1 h3 

 h5 

h4 

 h6 

h7 
 h8 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5612



 
 

     

 

sufficient stability condition (3) can be rewritten as follows: 

1 2

1 2

1 2

1 1 2 2

1
0

qi ij
ij ij ij

qij
ij ij ij qij

ij ij ij

r r

v
cc c

c c c
i j c c c

h L h L h L

LL L
h h h

d d d∈ =

+ + +

⎛ ⎞
⎜ ⎟= + + + <
⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑
A

"

"
, 

where { } { }
1

i

k
ij

v
k j k

i ij i ijc
i i j

d card C c card C c
∈ ∈ =

= ∩ = ∩∑ ∑∑
A A

.  

The latter coefficients arise since i ∈ A  implies that all the 
index-sequences (even one-element ones) beginning in a low-
end element are taken into account; i.e., every i ih L  is 
included, but it may be repeated as many times as id . Note 
that for a given low-end element i there are iv  index-
sequences beginning at it. The latter expression can be thus 
rewritten as: 

( ) ( )

1 2

1

1 2

2

2 1 1
2

1

0

qi ij
ij ij ij

ij
qij

ij ij ij

q qij ij
ij ij ij

q qij ij
ij ij ij ijq qij ij

ij ij ij

v
cc c

c
i j c c c

c cc

c c c c
c c c

LL L
h

d d d

L LL
h h h h

d d d−

∈ =

⎡⎛ ⎞
⎢⎜ ⎟+ + + +⎢⎜ ⎟⎜ ⎟⎢⎝ ⎠⎣

⎤⎛ ⎞ ⎛ ⎞
⎥⎜ ⎟ ⎜ ⎟+ − + + + + − <⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎥⎝ ⎠ ⎝ ⎠⎦

∑∑
A

" "

" "

where every left-factor of each summand is positive. Adding 
terms with identical left-side factors and recalling that 

j
i i

j

C S=∪  gives: 

( )

1 2

1 2

1 2

1 2

1 2

1 2
, [ ]

0

ii i
ri

i i i
rii i i

ri

ii i
ri

i i i
rij i i ii ri

ss s
i s s s

i s s s

ss s
i j s s s

i i j C s s s

nn n
h L L L

d d d

nn n
h h L L L

d d d

∈

∉ ∈

⎛ ⎞
⎜ ⎟+ + + +
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟+ − + + + <
⎜ ⎟
⎝ ⎠

∑

∑ ∑

A

A

" "

"

 

where 1, ,l r∀ = " , 
,

1: 1i
ks c

c l c

d d
dγ

αβ γ γαβ αβ
α= ∈

= =∑
A

, 

 { } { }
1

i

i
k

v
i j i

i k i ks
j

n card C s card C s
=

= ∩ = ∩∑ . 

The previous hold if (4) does so, which concludes the proof. 

Remark 1: Results in Theorem 1 reduce to quadratic stability 
if no order relation among the membership functions is taken 
into account. 

Remark 2: Scalars i
ks

d  can be chosen in another way as long 

as they hold the property 1, ,l r∀ = " , 
,

1 1
k kij ij

c l i c
d= ∈

=∑
A

, via a 

two-steps algorithm:  

Step 1: Fix scalars i
ks

d  to some initial value and solve 

problem (5) for P. 

Step 2: Fix matrix P to the value found in Step 1 and solve 
the same problem (5) for scalars i

ks
d . If 0λ <  then a solution 

has been found; otherwise, take the new values of scalars i
ks

d  

and go to Step 1. Stop if λ  does not decrease significantly. 

min λ : 1 2

1 2

1 2

, 1, ,
ii i
ri

i i i
rii i i

ri

ss s
s s s

s s s

nn n
L L L I i r

d d d
λ+ + + < =" "    (5) 

under definitions of Theorem 1. 

3.2 Example. 

Consider the following nonlinear model: 

1 11 12 1

2 21 22 2

x S S x
x S S x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�

, where  

1 111 1

1 1 2
1 1x xS

e e− − −
⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠

 

1 112 1

1 13 2 1
1 1x xS

e e− − −
⎛ ⎞= − − − −⎜ ⎟+ +⎝ ⎠

 

1 1 121 1

1 1 18 15 1
1 1 1x x xS

e e e− − −
⎛ ⎞⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟+ + +⎝ ⎠⎝ ⎠⎝ ⎠

 

1 122 1
1 110 1 9 0.1cos

1 1x xS x
e e−

⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
 

Consider also 
1

1
0

1
1 xw

e−=
+

, 
1

2
0 1

1
1 xw

e− −=
+

, 
1

3
0

1
1 xw

e
=

+
, 

4 1
0

1 cos
2

x
w

+
= , 1 1

1 01w w= − , 2 2
1 01w w= − , 3 3

1 01w w= −  and 

4 4
1 01w w= −  to define 1 2 3 4

1 0 0 0 1h w w w w= , 1 2 3 4
2 0 0 1 1h w w w w= , 

1 2 3 4
3 0 1 0 1h w w w w= , 1 2 3 4

4 0 1 1 1h w w w w= , 1 2 3 4
5 1 0 0 1h w w w w= , 

1 2 3 4
6 1 0 1 1h w w w w= , 1 2 3 4

7 1 1 0 1h w w w w= , 1 2 3 4
8 1 1 1 1h w w w w= , 

1 2 3 4
9 0 0 0 0h w w w w= , 1 2 3 4

10 0 0 1 0h w w w w= , 1 2 3 4
11 0 1 0 0h w w w w= , 

1 2 3 4
12 0 1 1 0h w w w w= , 1 2 3 4

13 1 0 0 0h w w w w= , 1 2 3 4
14 1 0 1 0h w w w w= , 

1 2 3 4
15 1 1 0 0h w w w w= , 1 2 3 4

16 1 1 1 0h w w w w= , in order to construct the 
following Takagi-Sugeno representation of the original 
model via sector nonlinearity:  

( ) ( ) ( )( )
16

1
( )z i i

i
x t A x t h z t A x t

=

= =∑� , (6) 

1

1 4
8 9.1

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

1 4
8 19.1

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 3

2 3
7 9.1

A
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 

4

2 3
8 19.1

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 5

2 6
8 0.1

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 6

2 6
8 10.1

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

7

2 5
8 0.1

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 8

2 5
8 10.1

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 9

1 4
8 8.9

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

10

1 4
8 18.9

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 11

2 3
7 8.9

A
− −⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 12

2 3
8 18.9

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 
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13

2 6
8 0.1

A
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 14

2 6
8 9.9

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 15

2 5
8 0.1

A
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

16

2 5
8 9.9

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. 

 

Fig. 2. Order relations of model (6) 

Ordinary stability analysis fails for this model since 3A  is 
unstable. Nevertheless, taking into account that 4 1h h≤ , 

4 6h h≤ , 3 5h h≤ , 8 5h h≤ , 12 14h h≤ , 12 9h h≤ , 11 13h h≤  and 

16 13h h≤  (see Fig. 2), the following sets can be defined 

{ }2,3,4,7,8,10,11,12,15,16=A , { }1
1 1C = , { }1

2 2C = , 

{ }1
3 3,5C = , { }1

4 4,6C = , { }2
4 4,1C = , { }1

5 5C = , { }1
6 6C = , 

{ }1
7 7C = , { }1

8 8,5C = , { }1
9 9C = , { }1

10 10C = , { }1
11 11,13C = , 

{ }1
12 12,14C = , { }2

12 12,9C = , { }1
13 13C = , { }1

14 14C = , 

{ }1
15 15C = , { }1

16 16,13C =  to express conditions (4) in 
Theorem 1 as follows: 

1 0L < , 2 0L < , 3 5
1 0
2

L L+ < , 4 6 1 0L L L+ + < , 5
1 0
2

L < , 

6 0L < , 7 0L < , 8 5
1 0
2

L L+ < , 9 0L < , 10 0L < , 

11 13
1 0
2

L L+ < , 12 14 9 0L L L+ + < , 13
1 0
2

L < , 14 0L < , 

15 0L < , 16 13
1 0
2

L L+ < .  

LMI conditions above have a feasible solution with matrix  

0.2352 0.0093
0.0093 0.1594

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

which proves stability for TS model (6). 

4. PIECEWISE ANALYSIS 

4.1 Main result. 

When there are no order relations among the membership 
functions of a TS model (2), results in Theorem 1 can not be 
directly applied. Nevertheless, a suitable partition of the state 
space could adapt them to this case. Stability analysis based 
in piecewise Lyapunov functions comes at hand since it 
allows partitioning the state space in compliance with some 
criteria. These criteria can be MF-dependent, i.e., state space 
can be partitioned in as many regions as different order 
relations exist among the membership functions. At each 

region, Theorem 1 analysis will hold since a particular order 
relation among membership functions will be locally valid. 

Consider then a partition of the state space as a collection of 
regions { } n

q q I
X

∈
⊆ \ , where I  is the set of region indexes. 

At each region qX  some particular order relations among the 

MFs will hold, i.e., specific sets j
iC , iS , j

iC⎡ ⎤⎣ ⎦  and A   from 

Definitions 1-4 will be defined ( ) qx t X∀ ∈  in order to 
describe those relationships. Then, another index will be 
added to those sets to distinguish them from sets of another 
region, i.e., jq

iC , q
iS , jq

iC⎡ ⎤⎣ ⎦  and qA  for q I∈ . A transition 
from one region to another means at least one order relation 
between two MFs has changed.  

The best way to partition the state space is to define each 
region qX  such that ( ) qx t X∀ ∈ : ( ) ( ) ( )1 2q q q rh h h≤ ≤ ≤" . 
Unfortunately, though theoretically possible, this partitioning 
could be hard to obtain and lead to complicated regions if 
MFs depend on more than one state. Moreover, complicated 
regions could be non-expressible as LMIs. 

In order to deal with this problem, a polyhedral partition of 
the state space is suggested. This is always possible if MFs 
are expressible as the product of functions which depend at 
most of one state variable, i.e., ( )( ) ( ) ( )1

1
n

i i i nh z t w x w x= " . 

In this case, order relations among functions ( )j
i jw x , 

1, ,i r= "  induce partitions in each state variable jx , 
1, ,j n= "  and, therefore, in the overall state space. Order 

relations among functions ( )j
i jw x  will naturally induce 

order relations among MFs ( )( )ih z t , 1, ,i r= "  in each 

region or cell qX . These induced order relations will allow to 

define sets jq
iC , q

iS , jq
iC⎡ ⎤⎣ ⎦  and qA  for each region qX , 

q I∈ . 

Definition 5: jq
iC , q

iS , jq
iC⎡ ⎤⎣ ⎦  and qA  are equivalent to sets 

j
iC , iS , j

iC⎡ ⎤⎣ ⎦  and A  from Definitions 1–4, though locally 

valid ( ) qx t X∀ ∈ . 

Example: To better illustrate the partitioning described 
above, consider a four-rules two-states TS model with MFs 

( ) ( )1 1 1 3 2h w x w x= , ( ) ( )2 1 1 4 2h w x w x= , ( ) ( )3 2 1 3 2h w x w x=  

and ( ) ( )4 2 1 4 2h w x w x=  where 1w  and 2w  (depending on 1x ) 
and 3w  and 4w  (depending on 2x ) are shown in Fig. 3. 

Two possible order relations in 1x  ( 1 2w w>  or 2 1w w> ) and 
other two in 2x  ( 3 4w w>  and 4 3w w> ) induce the four-
regions partitioning shown in Fig. 3. In region 2, for example, 
where 1 2w w>  and 3 4w w> , two order relations are induced 
among MFs: 1 2 4h h h> > , 1 3 4h h h> > . 

h5 
h3  h8 

h9  h14 
h12 

h1  h6 
 h4 

h13 
h11  h16 
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Fig. 3. State space partitioning. 

As in (Johansson et.al., 1999) piecewise Lyapunov function 
candidates ( ) ,T

q qV x x P x x X= ∈  are parameterized to be 
continuous across cell boundaries. Continuity is fulfilled by 
means of constraint matrices qF  satisfying  

i jF x F x= , i jx X X∈ ∩  (7) 

so Lyapunov functions are parameterized as T
q q qP F TF= , 

where free parameters are collected in symmetric matrix T, 
allowing an LMI formulation. Moreover, since matrix qP  is 
only used to describe the Lyapunov function in cell qX  then 
it can be restricted to that cell by means of matrices qE  
satisfying  

0qE x ; , qx X∈  (8)  

where the vector inequality ;  means that each entry of the 
vector is nonnegative. 

Theorem 2: TS model (2) under order relations described by 
sets in Definition 5 for regions qX , q I∈ , tends to zero 

exponentially for any continuous 1C  piecewise trajectory in 
qq I X∈∪  if there exists symmetric matrices T , qU  and qW , 

qU  and qW  with nonnegative entries, such that the following 

LMIs hold for T
q q qP F TF=  and q T T

i i q q i q q qL A P P A E W E= + +  
for each q I∈ : 

1 2

1 2

1 2

0

0, 1, ,
ii i
ri

i i i
rii i i

ri

T
q q q q

qq q
ss sq q q

q q qs s s
s s s

P E U E

nn n
L L L i r

d d d

− >

+ + + < =" "
 (9)  

where { } { }
1

q
i

k
i q q

v
q q kq jq kq

i i i is
ji i

d card C s card C s
=∈ ∈

= ∩ = ∩∑ ∑∑
A A

 and 

{ } { }
1

q
i

i
k

v
q q iq jq iq

i k i ks
j

n card C s card C s
=

= ∩ = ∩∑ . 

Proof: It follows immediately from proofs in Appendix A of 
(Johansson et.al., 1999) and Theorem’s 1 proof. 

Remark 3: A systematic procedure to construct non-unique 
matrices qE  and qF  can be found in (Johansson et.al., 1999). 

Remark 4: The results here provided can be applied to affine 
TS models straightforwardly, with proper modifications of 
the Lyapunov function and partitioning matrices. Details can 
be found also in (Johansson et.al., 1999). 

Remark 5: As in Section 3, a two-step algorithm can be used 
to determine coefficients i

k

q
s

d  in another way. 

4.2 Example. 

Consider the following TS model: 

( ) ( ) ( )( )
4

1

( )z i i
i

x t A x t h z t A x t
=

= =∑�  (10) 

1

10 11
0 1

A
− −⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2

1 2
2 8

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 3

10 10
0 5

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

4

1 1
2 14

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

1

1
0

1
1 xw

e
=

+
, 

1

2
0 10

1
1 xw

e−=
+

, 1 1
1 01w w= − , 

2 2
1 01w w= − , 1 2

1 0 0h w w= , 1 2
2 0 1h w w= , 1 2

3 1 0h w w= , 1 2
4 1 1h w w= . 

Note that model 1A  is unstable, thus ordinary stability 
analysis fails for model (10). Since no order relation can be 
found among their membership functions, piecewise analysis 
proceeds. State space is split in two as shown in Fig. 4 
because MFs have only two possible order relations: 

Region 1: 2 4 1 3h h h h< < <  for 1 0x < . 

Region 2: 3 1 4 2h h h h< < <  for 1 0x > . 

Note that in this case there is no more than one relationship 
per element i per region j, which fixes coefficients in LMIs 

(9) to 1i i
k k

q q
s s

d n= = . Matrices 1

1 0
3 0

E
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

11 0
33 0

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

1

1 2
3 4

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2

11 2
33 4

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 are constructed to satisfy 

properties (7)-(8).  
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Fig. 4. Membership functions for TS model (10). 
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Then, LMIs in (9) are feasible with 
0.3710 0.1291
0.1291 0.0452

T
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
 

and piecewise Lyapunov function ( )( ) 1 1

2 1

, 0
, 0

T

T

x P x x
V x t

x P x x
⎧ <⎪= ⎨ ≥⎪⎩

.  

In Fig. 5 some TS-model trajectories and level curves of the 
piecewise Lyapunov function ( )( )V x t  are shown. 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-3

-2

-1

0

1

2

3

x1

x 2

Fig. 5. PWLF curve levels. 

5.  CONCLUSIONS 

This paper presented a novel approach for stability analysis 
of TS models based on existent or induced order relations 
among the membership functions of the model. This 
approach outperforms the classical quadratic stability 
analysis and allows employing piecewise Lyapunov functions 
on TS models that have been obtained via the sector 
nonlinearity technique. Stability conditions can be expressed 
as linear matrix inequalities (LMIs) which can be efficiently 
solved by available software. Examples were provided that 
illustrate the advantages of the proposed method. 

REFERENCES 

Boyd S., El Ghaoui L., Féron E. and Balakrishnan V. (1994). 
Linear matrix inequalities in system and control theory. 
Studies in Applied Mathematics; Philadelphia.  

Ding B.C., Sun H.X., Yang P. (2006). Further studies on 
LMI-based relaxed stabilization conditions for nonlinear 
systems in Takagi-Sugeno’s form. Automatica, Vol. 42, 
pp503-508. 

Feng G. (2003). Controller synthesis of fuzzy dynamical 
systems based on piecewise Lyapunov functions. IEEE 
Transactions on Fuzzy Systems, Vol. 11(5), pp605-612.  

Guerra T.M. and Vermeiren L. (2004). LMI-based relaxed 
non-quadratic stabilization conditions for nonlinear 
systems in Takagi-Sugeno's form, Automatica, Vol. 40(5), 
pp823-829.  

Johansson M., Rantzer A. and Arzen K. (1999). Piecewise 
quadratic stability of fuzzy systems. IEEE Trans. on 
Fuzzy Systems, Vol.7, pp713-722. 

Kruszewski A. and Guerra T.M. (2005). New Approaches for 
the Stabilization of Discrete Takagi-Sugeno Fuzzy 
Models. IEEE CDC/ECC, Seville, Spain. 

Liu X.and Zhang Q. (2003). New approaches to controller 
designs based on fuzzy observers for T-S fuzzy systems 
via LMI. Automatica, Vol.39(9), pp1571-1582.  

Rhee B.J. and Won S. (2006). A new fuzzy Lyapunov 
function approach for a Takagi–Sugeno fuzzy control 
system design. Fuzzy Sets and Systems, Vol. 157(9), 
pp1211-1228. 

Sala A., Guerra T.M. and Babuska R. (2005). Perspectives of 
fuzzy systems and control, Fuzzy Sets & Systems, 
Vol.156, pp 432-444. 

Takagi T. and Sugeno M. (1985). Fuzzy identification of 
systems and its application to modeling and control. IEEE 
transaction on System Man and Cybernetics, Vol.15 (1), 
pp 116-132. 

Tanaka K. and Wang H.O. (2001). Fuzzy control systems 
design and analysis. A linear matrix inequality approach. 
John Wiley and Sons, New York. 

Taniguchi T., Tanaka K. and Wang H.O. (2001). Model 
construction, rule reduction and robust compensation for 
generalized form of Takagi-Sugeno fuzzy systems. IEEE 
Transactions on Fuzzy Systems, Vol.9 (4), pp 525-537. 

Tuan H.D., Apkarian P., Narikiyo T. and Yamamoto Y. 
(2001). Parameterized linear matrix inequality techniques 
in fuzzy control system design. IEEE Trans. Fuzzy 
Systems, Vol.9(2) ,pp324–332.  

Wang H.O., Tanaka K. and Griffin M. (1996). An approach 
to fuzzy control of nonlinear systems: Stability and 
Design Issues. IEEE Trans. on Fuzzy Systems, Vol.4 (1), 
pp 14-23. 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5616


