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Abstract: Based on the Unscented Kalman Filter (UKF), the nonlinear filter is presented for parameter 
estimation in linear system with correlated noise where the unknown parameters are estimated as a part of 
an enlarged state vector. To avoid the computational burden in determining the state estimates when only 
the parameter estimates are required, a new form of UKF, where the state consists only of the parameters 
to be estimated, is proposed. The algorithm is based on the inclusion of the computed residuals in the 
observation matrix of a state representation of the system. Convergence properties of the proposed 
algorithm are analyzed and ensured. The algorithm is verified by using Matlab simulations on the vehicle 
navigation systems with aided GPS. 

 

1. INTRODUCTION 

The problem of parameter estimation is stochastic linear 
dynamic systems has been researched considerable because 
of its importance in model building and control theory 
(Astrom et al., 1971; Granados et al., 1998; James et al., 
2000; Chin-Lang Tsai et al., 2006). It is well known that the 
general case of correlated noise leads to a nonlinear 
estimation problem. A number of methods have been 
proposed, most of which base on the Extended Kalman Filter 
(EKF) (Jazwinski, 1970; Astrom et al., 1971). A variant of 
method will be discussed in this paper. 
The approach to parameter estimation in linear systems can 
be summarized as follows. To estimate the unknown 
parameters of a linear system, the parameters are appended to 
the state variables, and a state estimator for the enlarged 
system is then used to obtain joint estimates of both the 
original system state and the system parameters. However, 
since the enlarged system is nonlinear (Astrom et al., 1971), 
to make the computation of the estimates feasible, the 
unscented kalman filter (UKF) (Julier et al., 1995), which 
aims at the nonlinear system directly (Julier, 2000; Julier et 
al., 2000; Lefebvre et al., 2002; Julier et al., 2004), is 
proposed. 
Although the UKF approach to parameter estimation has a 
strong intuitive appeal and offers the possibility(Julier et al., 
1997a; Julier et al., 1997b; Julier et al., 1997c; Wan et al., 
2000), it suffers from many disadvantages (Pan Quan et al., 
2005). The computational burden of estimating the enlarged 
state and magnified by the necessity for Unscented 
Transform (UT) at each step may have divergence problems, 
and although filter divergence can be avoided in modified 

algorithms, the modifications require additional computing 
time. 
The contribution of this paper rests in the development of the 
UKF for parameter estimation. This is achieved by modeling 
the system, whose parameters are to be estimated, by state 
equations where the state consists of the system and noise 
parameters, while the corresponding inputs, outputs, and 
computed residuals are collected in the observation matrix of 
the state equations. This results again in a nonlinear system, 
and the UKF state estimator directly gives, in this case, the 
parameter estimates only. To study the convergence 
properties of the algorithm, some techniques based on the 
associated differential equation (Ljung, 1977; Ljung, 1979; 
Xionga et al., 2006) are used. It is shown that the UKF can 
achieve the convergence properties.  
The paper is structured as follows. Section II contains the 
outline of the problem and gives the UKF equations. In 
Section III, the parameter estimation algorithm is developed, 
and the related convergence results are obtained in Section IV. 
The algorithm is verified by using Matlab simulations on the 
vehicle navigation systems with aided GPS (Nebot, 1998) 
and the results show the effectiveness of the algorithm. 

2. PRELIMINARIES 

Consider the state representation of a multivariable system 
0 0

0

( 1) ( ) ( ) ( )
( ) ( ) ( )

x t A x t B u t v t
y t C x t w t
+ = + +

= +
                 (1) 

where ( )u t , ( )y t , and ( )x t  are the input, output, and state 
vector of dimensions un , yn  and xn , respectively, and { ( )}v t , 
{ ( )}w t are sequences of independent random vectors with zero 
mean and the covariance. 

{ } T
( )E ( ) ( )( )

T T
ij

Q Sw i w j v jv i S R δ⎡ ⎤⎡ ⎤ ⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
, 1iiδ = , 0ijδ = ( )i j≠   (2) 
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Also, the initial state (0)x , assumed to be a random vector 
with zero mean and a covariance (0)Π is considered 
independent of { ( )}v t , { ( )}w t  for 0t > , and the matrices in (1) 
and (2) are time invariant. 
We shall now consider the case where the matrices in (1) and 
(2) are unknown and to be estimated from the input-output 
measurements { ( ), ( )}u t y t , 0,1,t = " . For this purpose, we shall 
establish a model of (1): 

( 1) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

x t A x t B u t v t
y t C x t w t

θ θ
θ

+ = + +
= +                     (3) 

where 

{ } T
( )E ( ) ( )( )

T T
ij

Q Sw i w j v jv i S R δ⎡ ⎤⎡ ⎤ ⎡ ⎤ =⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
, 1iiδ = , 0ijδ = ( )i j≠  

E( (0)) 0x = , T(0) (0) (0)Ex x = Π                     (4) 
In this model, the unknown matrices are represented as some 
differentiable functions of a parameter vector θ  which will 
be estimated by using the UKF approach. First, form an 
enlarged state vector by appending the parameter vector 

( )tθ θ=  to the state 
[ ]T( ) ( ) ( )z t x t tθ=                                   (5) 

The resulting state equations are nonlinear: 
( )

( 1) ( ( ), ( ))
0

( ) ( ( )) ( )Z

v t
z t f z t u t

y t g z t w t

⎡ ⎤
+ = + ⎢ ⎥

⎣ ⎦= +
                         (6) 

where 
( ) ( ) ( ) ( )( ( ), ( )) ( )

A x t B u tf z t u t t
θ θ

θ
+⎡ ⎤= ⎢ ⎥⎣ ⎦

                      (7) 

( ( )) ( ) ( )g z t C x tθ=                                  (8) 
The required parameter estimates are now obtained by 
applying the UKF to (6) which gives. 
The n-dimensional random variable ( )z t with mean ˆ( )z t  and 
covariance ( )zP t  can be approximated by sigma points ( )i tξ  
selected from the columns of ˆ( ) ( ( ))z

iz t a LP t± , 0, , 2i L= … . The 
opposite weight iω  is 2(0) 1 (1 )z aω = − , 2( ) 1 2z i Laω =  ( 1, 2, , 2i L= … ). 
The predicted mean and covariance are computed as 

( 1| ) ( ( ), ( ))i it t f t u tξ ξ+ = , 
2

0

ˆ( 1| ) ( ) ( 1| )
n

z i
i

z t t i t tω ξ
=

+ = +∑  
2

T

0

ˆ ˆ( 1| ) ( )( ( 1| ) ( 1| ))( ( 1| ) ( 1| ))
n

z
z i i

i

P t t i t t z t t t t z t t Qω ξ ξ
=

′+ = + − + + − + +∑  

0
0 0
QQ ⎡ ⎤′ = ⎢ ⎥⎣ ⎦

 

Then the measurement update can be performed with the 
equations as follows. 

( 1| ) [ ( 1| )]z
i iy t t g t tξ+ = + , 

2

0

ˆ ( 1| ) ( ) ( 1| )
n

z
z i

i

y t t i y t tω
=

+ = +∑  
2

T

0

ˆ ˆ( 1| ) ( )( ( 1| ) ( 1| ))( ( 1| ) ( 1| ))
n

z z z z z
v z i i

i
P t t i y t t y t t y t t y t t Rω

=

+ = + − + + − + +∑  
2

T

0

ˆˆ( 1| ) ( )( ( 1| ) ( 1| ))( ( 1| ) ( 1| ))
n

z z z
zy z i i

i
P t t i t t z t t y t t y t tω ξ

=
+ = + − + + − +∑  

1( 1) ( 1| )[ ( 1| )]z z z
zy vK t P t t P t t −+ = + +  

ˆˆ ˆ( 1) ( 1| ) ( 1)( ( 1) ( 1| ))z z zz t z t t K t y t y t t+ = + + + + − + , 0 0 Tˆˆ ˆ(0) [0  ]z z θ= =  
T( 1) ( 1| ) ( 1) ( 1)[ ( 1)]z z z z z

vP t P t t K t P t K t+ = + − + + + , 
0

0
0

ˆ( ) 0(0)
0

P P θ⎡ ⎤Π= = ⎢ ⎥Σ⎣ ⎦
 

with 0θ̂ , 0Σ  incorporating any a priori information we may 
have about the parameter vector.  
When the algorithm are implemented, a fairly complex 
algorithm results, and for high-order systems, the 
computational burden may be substantial. Even worse, the 
usual arbitrary choice of the model covariance matrices (4) 

may lead to divergence and bias problems. Therefore, it 
would be of interest to investigate an alternative represent-
tation to (1) which should not give rise to the need for the 
selection of the covariance matrices (4) when there is no a 
priori information about their structure available; the 
representation should have fewer parameters and should 
obviate the necessity for the state estimation where only the 
parameter estimates are required. At the same time, we would 
like to keep the structure of the Kalman filter estimator 
because of its advantageous minimum variance formulation 
of the estimation problem. A representation of (1) having all 
the above features will be discussed in the next section and 
will form a basis for the proposed estimation algorithm. 

3. THE ALGORTHM 

Since in parameter estimation only the input-output 
properties of a system are of interest, we shall now start with 
the parameter parsimonious vector difference equation (VDE) 
representation of a multivariable linear system. We shall use 
the form 

1 1 1( ) ( ) ( ) ( ) ( ) ( )A q y t B q u t C q e t− − −= +                    (8) 
where 1q−  is the backward shift operator. 

1 ( ) ( 1)q y t y t− = −  
and 

1 1
1

1 1
1

1 1
1

( )
( )
( )

a

a
b

b
c

c

n
n
n

n
n

n

A q I A q A q
B q B q B q
C q I C q C q

−− −

−− −

−− −

= + + +
= + +
= + + +

"
"
"

                       (9) 

where the coefficients iA , iC  are y yn n× matrices, whereas the 
coefficients B , are y un n×  matrices. The sequence { ( )}e t  is 
assumed to consist of independent random vectors of 
dimension yn , having zero mean and a covariance 

T
0( ) ( ) klEe k e l δ= Λ .                           (10) 

Although it is possible to obtain under some assumptions the 
representation (8) from the state form (1) and vice versa, in 
the sequel we shall assume that the data { ( ), ( )}u t y t , 0,1,t = "  
have been generated by (8), which is an important form in its 
own right, and we shall formulate the problem as the 
estimation of the parameters in (9) and (10) from the given 
input-output data. 
To develop the estimation algorithm, first write the system (8) 
in the form 

0 0( ) ( ) ( )y t t e tθ ψ θ= +                           (11) 
with 

T
0

T
0

0

T
0

( ) 0 0 0
0 ( ) 0( ) 0
0 0 0 ( )

t
tt

t

η
ηψ

η

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

"
# # %

                     (12) 

an yn nθ× , matrix 
T T T T

0 1 2[    ]
ynθ σ σ σ= "                              (13) 

where 
T T T T T T T
0

T
1 1 1

( ) ( ( 1) , , ( ) , ( 1) , ( ) , ( 1) , ( ) )
                      th row of[     ]

a b c

a b c

i n n n

t y t y t n u t u t n e t e t n
i A A B B C C

η
σ

= − − − − − − − −
=
" " "

" " "
(14) 

If (11) is now formally considered to be the observation 
equation of a state representation of system (8) with the state 
defied as the (constant) parameter vector 0 0( )tθ θ= , we obtain a 
particular form of state equations for (8): 

0 0

0 0

( 1) ( )
( ) ( ) ( ) ( )

t t
y t t t e tθ

θ θ
ψ θ

+ =
= +

                      (15) 
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For parameter estimation purposes, we also need a model of 
(15) based on parameter value ( )tθ : 

( 1) ( )
( ) ( ) ( ) ( )

t t
y t t t e tθ

θ θ
ψ θ

+ =
= +

                         (16) 

where, in analogy with (11)-(14), 
T

T

T

( ) 0 0 0
0 ( ) 0( ) 0
0 0 0 ( )

t
tt

t

η
ηψ

η

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

"
# # %

                     (17) 

is a matrix of dimension yn nθ× . 
T T T T
1 2( ) [ ( )  ( )  ( )]

ynt t t tθ σ σ σ= "                      (18) 
where 

T T T T T T T

T
1 1 1

T

( ) ( ( 1) , , ( ) , ( 1) , ( ) , ( 1) , ( ) )
             th row of[ ( ) ( )  ( ) ( )  ( ) ( )]
                          ( ) ( ) ( ) ( ),  ( ) ( )

a b c

a b c

i n n n

t y t y t n u t u t n e t e t n
i A t A t B t B t C t C t

t y t t t E t tθ

η
σ

ε ψ θ ε ε

= − − − − − − − −
=

= − =Λ

" " "
" " " (19) 

By deriving the representation of the form (16), the parameter 
estimation problem is now transformed into a state estimation 
problem for (16). Let us now briefly comment on the 
structure of (16). While (15) is only of symbolic value since 
the random vectors ( 1), ( )ce t e t n− −" in 0 ( )tψ  are unknown, 
these quantities are replaced in the observation matrix ( )tψ in 
(16) by the computed residuals ( 1), ( )ct t nε ε− −" as shown in 
(19), which makes (16) a usable model. The matrix ( )tψ now 
depends on ( )θ i , and the representation (16) is nonlinear so 
that the UKF must be used. Note that the sequence { ( )}e t  is 
not white, but becomes white as 0( )tθ θ→ . 
From the conversion of a parameter estimation problem into 
an UKF problem, we shall also derive some additional 
benefits. The available information about the statistical 
properties of the parameters to be estimated can be readily 
incorporated into the algorithm as has already been discussed, 
and the minimum variance Kalman filtering approach leads 
us to expect that lower variance of the parameter estimates 
can be obtained then from a number of other approaches 
available. Also, by a natural extension of the algorithm, it 
will be possible to estimate parameters which are Gauss-
Markov random processes. What is left now is to apply the 
UKF algorithm to the state equation model (16). To make use 
of the minimum variance formulation of the Kalman filter, an 
estimator for the covariance 0Λ  will be coupled with the filter 
equations. The resulting algorithm is particularly simple: 
The n-dimensional random variable ( )tθ with mean ˆ( )tθ  and 
covariance ( )P tθ  can be approximated by sigma points ( )i tχ  
selected from the columns of ˆ( ) ( ( ))it a LP tθθ ± , 0, , 2i L= … . The 
opposite weight iω  is 2(0) 1 (1 )aθω = − , 2( ) 1 2i Laθω =  ( 1, 2, , 2i L= … ). 
The predicted mean and covariance are computed as 

2

0

ˆ( 1| ) ( ) ( )
n

i
i

t t i tθθ ω χ
=

+ =∑                            (20) 
2

T

0

ˆ ˆ( 1| ) ( )( ( ) ( 1| ))( ( ) ( 1| ))
n

i i
i

P t t i t t t t t tθ
θω χ θ χ θ

=

+ = − + − +∑     (21) 

Then the measurement update can be performed with the 
equations as follows. 

( 1| ) ( ) ( )i iy t t t tθ ψ χ+ = , 
2

0

ˆ ( 1| ) ( ) ( 1| )
n

i
i

y t t i y t tθ θ
θω

=

+ = +∑    (22) 
2

T

0

ˆˆ ˆ( 1| ) ( )( ( 1| ) ( 1| ))( ( 1| ) ( 1| )) ( 1)
n

e i i
i

P t t i y t t y t t y t t y t t tθ θ θ θ θ
θω

=

+ = + − + + − + +Λ +∑ (23) 
2

T

0

ˆ ˆ( 1| ) ( )( ( 1) ( 1| ))( ( 1| ) ( 1| ))
n

y i i
i

P t t i t t t y t t y t tθ θ θ
θ θω χ θ

=

+ = + − + + − +∑ (24) 

1( 1) ( 1| )[ ( 1| )]y eK t P t t P t tθ θ θ
θ

−+ = + +                 (25) 

ˆ ˆ( 1) ( 1 | ) ( 1)( ( 1) ( ) ( ))it t t K t y t t tθ θθ θ ψ χ+ = + + + + − , 0ˆ(0)θ θ=     (26) 
T( 1) ( 1| ) ( 1) ( 1)[ ( 1)]eP t P t t K t P t K tθ θ θ θ θ+ = + − + + + , 0

0
ˆ( ) 0(0)

0
P θ⎡ ⎤Π= ⎢ ⎥Σ⎣ ⎦

(27) 

T1ˆ ˆ ˆ( 1) ( ) [ ( ) ( ) ( )]
1

t t t t t
t

ε εΛ + = Λ + − Λ
+

, 0ˆ (0)Λ = Λ         (28) 

( ) ( ) ( ) ( )t y t t tθε ψ θ= −                          (29) 
In (28), in analogy with (27), ˆ ( 1)tΛ + denotes an estimate of Λ  
based on 1t +  data pairs { ( ), ( )}u j y j , 0,1, ,j t= " , and the resulting 
formula (28) is obtained by rewriting its off-line version. 
To avoid some numerical problems which may arise if the 
matrix ( 1)P tθ +  becomes singular, (21) is sometimes 
replaced by 

2
T

0

ˆ ˆˆ ( 1| ) ( )( ( ) ( 1| ))( ( ) ( 1| ))
n

i i
i

P t t i t t t t t t Qθ
θω χ θ χ θ

=

+ = − + − + + Δ∑    (30) 

where, kQΔ is an extra positive definite matrix introduced in 
the calculated covariance matrix as a slight modification of 
the UKF so that the stability will be improved. 
Remark 1. To ensure the convergence of UKF, the matrices 

( 1)P tθ +  need to be positive define. From (27), as ( 1| )P t tθ +  
and T( 1) ( 1)[ ( 1)]eK t P t K tθ θ θ− + + +  may be not positive definite 
matrices, extra additive matrix QΔ  in (30) should be 
introduced as a modification to the UKF so that ( 1) 0P tθ + ≥  
will be satisfied. Obviously, if QΔ  is sufficiently large, 

( 1)P tθ +  can always be positive define. This means that the 
UKF can tolerate high order error introduced during the UT 
by enlarging the noise covariance matrix. 

4. CONVERGENCE ANALYSIS 

In this section, a simple approach to convergence of the 
algorithm (20)-(30) is given.  
Expanding ( ) ( )t tψ θ in (16) by a Taylor series about ˆ( )tθ θ=  
gives, 

ˆ ˆ( ) ( )

( ) ( ) ( )
t t

G t t t
θ θ θ θ

ψ θ ε
θ θ= =

∂ ∂= = −
∂ ∂

                 (31) 

Substituting (31) into (16) yields an approximate equality. 
( ) ( ) ( ) ( )y t G t t e tθ θ≈ +                             (32) 

In (32), it is evident that there always exist residuals of error 
prediction ˆ( 1| )t tθ + . In order to take these residuals into 
account and obtain a more exact equality, an unknown 
instrumental diagonal matrix 1 2diag( , , , )Mλ λ λ λ= " is 
introduced, so that 

( ) ( ) ( ) ( )y t G t t e tθ λ θ= +                          (33) 
To prove the convergence of the algorithm (20)-(30), a 
method of analysis based on an associated deterministic 
differential equation (Ljung, 1977) will be used. To be able to 
apply the analysis, we shall assume in the following that the 
input ( )u t is a weakly stationary process with rational spectral 
density and that all absolute moments of the sequences { ( )}u t , 
{ ( )}e t  exist and are bounded, we shall also require that the 
system (8) and the equation generating ( )tε  in (29) be stable.  
For analysis of the algorithm convergence, some regularity 
conditions similarly as in (Ljung, 1977; Ljung, 1979; Xionga 
et al., 2006) are recalled. 
Lemma. Consider the differential equation given by 

( ) ( ( ))D Dd f
d
θ τ θ τ
τ

=                            (34) 
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Let { | ( ( ), )sD A Qθ θ=  stabilizable and ( ( ), ( ))A Cθ θ  detectable } . 
Let ˆ ˆ{ ( ), ( )}t x tθ  be given by algorithm (20)-(30). 
1) Suppose that the associated deterministic differential 
equation (34) has an invariant set CD , with domain of 
attraction ADθ ∈ (which will be a subset of SD ). Suppose 
further that ˆ( )tθ  belongs to a compact subset of AD and ˆ( )x t is 
bounded infinitely often with probability one. Then 

ˆ( ) Ct Dθ → with probability 1 as t →∞ .               (35) 
2) Suppose that ˆ( )tθ θ ∗→  with probability greater than zero. 
Then θ ∗  must be a stable stationary point of the differential 
equation (34). 
3) Let D be a compact subset of SD  such that the trajectories 
of (34) that start in D do not leave D . Suppose that the 
estimates ˆ( )tθ  are projected into D and that (34) has an 
invariant set CD  with a domain of attraction AD D⊃ . 
Then ˆ( ) Ct Dθ → with probability 1 as t →∞ . 
To apply the Lemma and the theory in (Ljung, 1977), we 
shall start with a derivation of an alternative expression for 
the Kalman gain ( )K t  in (26). Writing (20) and (30) in terms 
of 

1( ) [ ( )]t tP tθ −Θ =                                  (36) 
We obtain 

1 T 1ˆ ˆ ˆˆ( 1) ( ) ( / 1) ( 1) ( ) ( 1)[ ( ) ( ) ( )]t t t t G t t y t t tθθ θ λ ψ θ− −+ = + + Θ + Λ + −       (37) 
T( 1) ( ) (1/ 1)[ ( 1) ( 1)[ ( 1)] ( )]et t t K t P t K t tθ θ θΘ + = Θ + + + + + −Θ       (38) 

The associated differential equation for the algorithm (20)-
(30) will now be defined in terms of processes resulting from 
the algorithm when the parameter estimates are kept at some 
constant value ˆ( )tθ θ= , ˆ ( )tΛ = Λ . Then ( )G t , ( )tψ , and ( )tε  
would give some ( ; )G t θ , ( ; )tψ θ  and ( ; )tε θ  for large t . Define 
now the expectations 

T 1

T
( , ) ( ; ) ( ; )

( ) ( ; ) ( ; )
f EG t t

W E t t
θ λ θ ε θ
θ ε θ ε θ

−Λ = Λ
=

                    (39) 

The behavior of the estimates obtained from (20)-(30) can be 
described by the coupled differential equations 

1( ) ( ) ( ( ), ( ))
( ) ( ( )) ( )

d R f d
d W d
θ τ τ θ τ τ τ
τ θ τ τ τ

−= Λ
Λ = − Λ

                    (40) 

To comment on the significance of some of the quantities 
introduced in (39), the expression ( , )f θ Λ  can be interpreted 
as the average correction to ˆ( 1)tθ +  in (37) with 

1[1/ 1] ( 1) ( 1)t t P t−+ Θ + = +  being the correction gain. Apparently, 
( 1) 0P t + → for large t  if 1( 1)t−Θ +  is bounded, but this is 

guaranteed by (38). The convergence properties of the 
algorithm (20)-(30) can now be summarized in the following 
result. 
Theorem. Consider input-output data { ( ), ( ) | 0,1, }u t y t t = "  
generated by a stable system (8), and its model (16) whose 
parameters are estimated by the algorithm (20)-(29) with (21) 
replaced by (30). Assume that the algorithm is equipped with 
a feature that guarantees stable generation of ( )tε  in (29). 
(This is achieved by allowing only such parameter vector 
ˆ( )tθ  for which 1 1ˆ ( )C q− −  is stable.) Then the estimate ˆ( )tθ  

converges with probability one to a stationary point of the 
function 

T 1( , ) ( ; ) ( ; ) ln | |V E t tθ ε θ ε θ−Λ = Λ + Λ                  (41) 
where | |Λ denotes the determinant of Λ  and 

1 1 1 1 1 1 1 1( , ) ( ) ( ) ( ) ( ) ( ) ( )t C q A q y t C q B q u tθ θ θ θε θ − − − − − − − −= −  
where Aθ , Bθ and Cθ are model polynomials corresponding to θ .  

Proof. Under standing assumptions, the asymptotic properties 
of the algorithm (20)-(30) are described by the differential 
equation (40). From (29), (39), and (41) we get 

1( , ) ( , )
2

df V
d

θ θ
θ

Λ = − Λ  

Choosing now (41) as a Lyapunov function, this gives 
T 1 1

T 1 1

T 1 1 1

[ ( ; ) ( ; )] ( , )

  ( ; ) ( ( ) ) ( ; ) tr[ ( ( ) )]
2 ( , ) ( , ) tr[ ( ( ) )] ( ( ) )

dV E t t f
d
E t W t W
f f W W

ε θ ε θ θ
θ
ε θ θ ε θ θ
θ θ θ θ

− −

− −

− − −

= Λ Θ Λ

− Λ −Λ + Λ −Λ
= − Λ Θ Λ − Λ −Λ Λ −Λ

�

     (42) 

The term T 12 ( , ) ( , )f fθ θ−− Λ Θ Λ  on the right side of (42), with 
(39) it can be verified that 

T 1

T 1 T 1 T 1

2 T 1 T 1 T 1

2 ( , ) ( , )
2[ ( ; ) ( ; )] [ ( ; ) ( ; )]
2 [ ( ; ) ( ; )] [ ( ; ) ( ; )] 0

f f
EG t t EG t t
EG t t EG t t

θ θ
λ θ ε θ λ θ ε θ
λ θ ε θ θ ε θ

−

− − −

− − −

− Λ Θ Λ
− Λ Θ Λ

= − Λ Θ Λ ≤
�  

The last term 1 1tr[ ( ( ) )] ( ( ) )W Wθ θ− −− Λ − Λ Λ −Λ  on the right side of 
(42) was obtained by applying well-known trace identities, 
with (39) it is obviously that 

1 1tr[ ( ( ) )] ( ( ) ) 0W Wθ θ− −− Λ − Λ Λ − Λ ≤  
Therefore, we can obtain 

T 1 1 12 ( , ) ( , ) tr[ ( ( ) )] ( ( ) ) 0V f f W Wθ θ θ θ− − −= − Λ Θ Λ − Λ − Λ Λ − Λ ≤�  (43) 
The equality in (43) holds only for such θ θ ∗=  and ∗Λ = Λ  
which give ( , ) 0f θ∗ ∗Λ =  and T( ) ( , ) ( , )W E t tθ ε θ ε θ∗ ∗ ∗ ∗Λ = = . These 
are the stationary points of (41).                                            □ 
Remark 2. λ  is an unknown instrumental diagonal matrix 
introduced to evaluate the error introduced by linearization. 
And the convergence of the algorithm do not depend on the 
magnitude of λ . According to (41), although different λ  
may change the value of V�  in (42), it will remain negative 
and the relationship shown in (43) will not be changed. 

5.  SIMULATION 

The results in the preceding three sections clarify the UKF 
based nonlinear filtering for parameter estimation in linear 
systems with correlated noise and the convergence analysis 
of the algorithm, respectively. 
In order to show the efficiency of the algorithm, it is applied 
to the GPS error model of the vehicle navigation systems 
with aided GPS (Nebot, 1998) in comparison with the UKF 
and the EKF.  
In the GPS error model, the auto-correlation and 
corresponding power spectral density (PSD) of the error 
signal must be estimated. A transfer function can be fitted to 
the PSD estimates in the form 

2
2 2

( )( ) [ ]
2
ss

s s
γ β
αβ α
+Φ =

+ +
 

with parameters unknown. 
This model may be described by a shaping filter with 

process model 
1 2
2

2 1( ) ( )( ) 0
x t w tx t

ζα γ
γβα

−⎡ ⎤⎡ ⎤ ⎡ ⎤= +⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦
�
� , 0.7ζ =  

Then the constant velocity model and error model to estimate 
longitude and latitude is expressed as 

( 1) ( ) ( )
( ) ( ) ( )

x t Ax t t
z t Hx t t

ρ
υ

+ = +
= +  

where 
T( ) [ ( )   ( )   ( )   ( )]o a o ax t v t v t x t x t=  
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2
T

2
0[ ( ) ( )]

0
gps
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R E t t συ υ
σ

⎡ ⎤= = ⎢ ⎥
⎣ ⎦

 

where, ( )ov t and ( )av t are the velocity on the directions of 
longitude and latitude, respectively. ( )ox t  and  ( )ax t are the 
parameters of the variance of longitude and latitude, 
respectively. 2

voq , 2
vaq , 2

gpsσ  and 2
velσ  are white noises. 

It is obviously that in this application the observation is 
composed of the GPS position measurement that is corrupted 
with correlated noise. Then the unknown parameters α , β  
and γ  are represented as a parameter vector θ  which will be 
estimated by using the UKF approach and form an enlarged 
state vector by appending the parameter vector ( )tθ θ=  to the 
state. So we can obtain 

T( ) [     ]tθ α β γ= , [ ]T( ) ( ) ( )z t x t tθ=  
The required parameter estimates ( )z t and ( )tθ  are now 
obtained by applying the proposed UKF. The trajectories of 
the estimated parameters ( )ox t  and ( )ax t  with EKF and UKF 
are depicted in Fig. 1 and Fig. 2, respectively.  
Fig. 1 and Fig. 2 show the filtering results of the system with 
respect to the GPS position estimate ( )ox t  and  ( )ax t . The GPS 
observation consists almost entirely of correlated noise 
because the vehicle is stationary. Compare with EKF, the 
position estimation with UKF is substantially obtained and 
the position error can remain in the 100 m range on the whole. 
The trajectories of the estimated parameters α , β  and γ  
with EKF and UKF are compared in Fig. 3 to Fig. 5 and with 
the new form of EKF and UKF are compared in Fig. 6 to Fig. 
8, respectively. 
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Fig. 1. The parameter estimation of the longitude ( )ox t . 

Fig. 3 to Fig. 5 show the filtering results of the unknown 
parameters α , β  and γ  represented as a parameter vector θ  
which are estimated by using the UKF approach. The filter is 
able to obtain the required parameter estimates α , β  and γ  
for the GPS error model when the estimate parameters remain 
unknown. These results may be satisfied the anticipated 
values of GPS observation. From these figures, we can find 
UKF make sure the estimation achieve the anticipated values 
more quickly compare with EKF. But the computational 
burden is still substantial, though the divergence and bias 
problems don’t appear. 
Fig. 6 to Fig. 8 show the filtering results of the unknown 
parameters α , β  and γ represented as a parameter vector θ  

which are estimated by using the new proposed UKF 
approach. The filter also can obtain the required parameters 
and satisfy the anticipated values of GPS observation. And 
also, UKF make sure the estimation achieve the anticipated 
values more quickly compare with EKF. Furthermore, 
compare with Fig. 3 to Fig. 5, it is easy to see that the 
estimation achievement process to the anticipated values is 
expedited. Consequently, the computational burden is 
obviously reduced by using the new proposed UKF. From 
these figures, the convergence of the new proposed UKF is 
also verified. 
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Fig. 2. The parameter estimation of latitude ( )ax t . 
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Fig. 3. The parameter α  estimation with UKF and EKF. 
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Fig. 4. The parameter β  estimation with UKF and EKF. 
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Fig. 5. The parameter γ  estimation with UKF and EKF. 
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Fig. 6. α  estimation with the new form UKF and EKF. 
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Fig. 7. β  estimation with the new form UKF and EKF. 
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Fig. 8. γ  estimation with the new form UKF and EKF. 

The simulations on the vehicle navigation systems with aided 
GPS in this section verify the proposed algorithm and its 
performance from the view of experimentation. It is shown 
that the proposed algorithm has practicability to a certain 
extent. 

6. CONCLUSIONS 

Based on the nonlinear filter UKF, the algorithm is presented 
for linear systems with correlated noises. Fistly, the outline of 
the problem is presented and the UKF equations are proposed. 
Then the parameter estimation algorithm is developed and an 
extra additive matrix QΔ  is introduced to make sure the 
matrices ( 1)P t + is positive define. Furthermore, the analysis 
of the related convergence properties of the algorithm is 
given. According to some standard results about the 
convergence of stochastic processes, it is pointed out that, the 
convergence of the algorithm may be ensured and do not 
depend on the magnitude of λ  which is an unknown 
instrumental diagonal matrix introduced to evaluate the error 
introduced by linearization. Moreover, the vehicle navigation 
systems with aided GPS are introduced to show the high 
performances of the proposed algorithm. 
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