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Abstract: In this paper, a new sequential decentralized computational structure is developed for optimal 
state estimation in discrete time-varying linear stochastic control system with multiple sensors and cross-
correlated noises. We uses a hierarchical structure to perform successive orthogonualizations of the
measurement noises, and the Kalman filters sequentially runs based on the new constructed measurement
sequency. The  the estimator also can process the system with measurements delay as well as data fault
because the update step is just according to the coming order of sensors in a recursive form. The precision 
relation between the new algorithm and the centralized multisensor fusion method is strictly proved and
simulation result shows that new filter is better than other similar filters in performance.

1. INTRODUCTION

Data fusion for estimation has widespread applications since 
many practical problems involve data from multiple sources.
An important point in these problems is to fuse the data to
achieve improved accuracies and more specific inferences.
Traditionally, Kalman filtering theory is the best linear 
recursive algorithm and has been further studied and widely
applied in integrated navigation systems and process of
control (Linas et al., 1990; Klein, 1993). 

When multiple sensors measure the state of the same 
stochastic system whiles the noises in the target and sensors
are uncorrelated, generally there are three different types of
methods to deal with the measured data. The first method is
the centralized filter processing architecture (Anderson et al.,
1979), where all measured sensor data are communicated to
the central site for processing, and the resulting state
estimates are optimal in linear minimum variance sense. The
deficiency of increasing the number of sensors on a single
processor includes the need for higher computation
bandwidth, and poor accuracy and stability when there is 
several data fault. The second technology is the distributed
filter (Chong, 1979), wherein the information from local
estimators can yield global state estimator and the estimate
process is with lower dimensional computation (Gan et al.,
2001). The third method is the sequential iterative filter
(Singer, 1971), where all the data are sequentially used to 
update the prediction. It saves much computer time, 
especially for the systems with some measurement delays
within one sampling period, where the update are operated
without waiting all the data coming.

When the noises existing in the state and each sensor are
correlated, until now, various decentralized distributed filers

have been developed to solve these correlation problems.
Kim (Kim, 1992) and chen et al. (Chen et al., 2003],
respectively, give the multisensor optimal information fusion
estimator under the assumption of normal distribution, which
limits the application of this algorithm. The assumption of
normal distribution is omitted in the decentralized structure
of (Sun et al., 2004; Sun, 2005), which are accomplished by
solving one auxiliary function with Lagrange multiplier
method and develop the fusion smoother weighted by
matrices (FSWM) algorithm and the optimal component
fusion fixed-lag Kalman smoother (CFSWS) algorithm
respectively. However, the estimate models of  (Sun et al., 
2004; Sun, 2005) are not accurate, which result in suboptimal
estimate of both filters. Song et al (Song et al., 2007) present
a distributed algorithm for correlated noises. But the
drawback of this filter is that it is sensitive to data fault, 
because it uses the noises information of all the sensors at 
each step, which is similar to that of centralized filter. The
use of popular distributed filtering approach seems always
existing some deficiency. Instead, the sequential 
decentralized filtering method might be more practical
because of its flexible. Up to now, to the best of the author’s
knowledge, the issue of sequential filtering on noises cross-
correlated systems has not been fully investigated.

This paper presents a sequential filtering for discrete time-
varying linear stochastic system with cross-correlated state
noise and measurement noises. An optimal sequential
decentralized information fusion algorithm is given without
the assumption of normal distribution. New algorithm is 
different with the centralized filter or the distributed filter
mentioned in the above paragraph, and it is suitable for
processing the system with data delay and also be adaptive
for the situation with some data fault.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 7560 10.3182/20080706-5-KR-1001.1539



The rest is organized as follows. In Section 2, the problem
formulation is presented. A new sequential Kalman filtering
fusion formula with cross-correlated noises is proposed in 
Section 3 and the performance comparison with the
centralized Kalman filter is proved in Section 4. In Section 5,
the simulation example in a tracking system with three-sensor
is shown. Finally, we provide a conclusion in Section 6.

2. PROBLEM FORMULATION

Consider the discrete time-varying linear stochastic control
system with sensorsN
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where the superscript E  and T denote the exception and the
transpose, respectively, and ij , kl are Kronecker delta 
function.

Assumption 2: Process noise is correlated with
measurement noises , , but  is 
independent with each other, which satisfies 
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Assumption 3: Process noise and measurement noises
, ,at the same time index are correlated 

with each other, with following statistic property 
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with and is a positive matrix.)()( kSkR iii )(kRi

Assumption 4: The initial state is independent of
and  ,  and 
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Our aim is to develop a new sequential decentralized filter in 
the sense of minimum the state estimate error covariance
under assumptions 3 and 4.

3. THE SEQUENTIAL DECENTRALIZED
INFORMATION FUSION ALGORITHM

For the dynamic system described in (1) and (2), this section
is devoted to the development of a sequential decentralized
Kalman filter (SDKF) under the assumptions 3 and 4, whose 
update process is depend on the coming order of sensors. The
prediction results of the standard Kalman filter at the k -th
moment are summarized below, with minor modification
(Hashemipour et al., 1988).
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With the prediction (7), the measurements will be used 
to update which in a recursive form.

)(kZ

3.1 Decorrelated the noises

From assumption 3, we know that the systems are correlated, 
which is hard to develop the sequential Kalman filter directly.
These noises should be decorrelated and the Knowledge of
covariance from (5) allows us to modify the decorrelation
process for the multiple sensors case. Without lose of 
generality, the coming order of data from sensors at k -th
moment is assumed to be .Nzzz ,,, 21
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For the technical convenience, let us first define the
following additional notations.
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Using (2), the extend measurement equation of first  sensors
is

i
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For each local sensor, with (2), we have
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(16) and (17) will be rewritten as
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which is the new measurement equation.

Theorem 1: The new constructed measurement
noises )(kvi in (22), for Ni ,,2,1 , is independent with
each other.

Proof: Let us consider )(kvi and )(kv j for ji . Without
lose of generality, we assume . The covariance ofji1
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where ),,( ktGi is the matrix composed by the -th
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With (25) and (26), we make the conclusion that
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Remark 1: The decorrelated method adapted above is similar
to the Gram-Schmidt orthogonalization process (Lax, Peter 
D., 1996). When the measurement noises are uncorrelated,

0)(kSi , 0)(ki and the new constructed measurement
equation (22) is just to be (2). 

3.2 Derivation and construction
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This section is to develop the SDKF under assumptions 3 and
4 based on the construction given in section 3.1. The
sequential decentralized fusion algorithm (denoted as )
based on )(,),(),( 21 kzkzkz N runs a separate Kalman filter 
for each sensor, and the recursive structure is 

)]1|(ˆ)()()[()1|(ˆ

})()({)|(ˆ

11
)(

1

1
)(

1

kkxkHkzkKkkx

kzkxEkkx
(28a)

)]|(ˆ)()()[()|(ˆ

)}(,),(,)()({)|(ˆ
)(

1
)()(

1

21
)(

kkxkHkzkKkkx

kzkzkzkxEkkx

iiiii

ii  (28b)

where

1
1111

)(
1 )()()1|()()()1|()( kRkHkkPkHkHkkPkK TT  (29a)

1)(
1

)(
1

)( )()()|()()()|()( kRkHkkPkHkHkkPkK i
T
iii

T
iii  (29b)

The corresponding variance matrix of the optimal
information fusion estimator is computed by
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Once )(kz N is coming and used to update the prediction, the
sequential update at this moment is end, i.e.

)(ˆ:)(ˆ )()( kkxkkx N , and )(:)( )()( kkPkkP N  are 
obtained, and the entire process is replaced for the new set of 
measurements at next time step.

The idea of the sequential decentralized fusion algorithm
under the assumptions 3 and 4 are illustrated in figure 1.
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Fig.1. The fusion structure of SDKF

Remark 2: As shown in Fig.1, the observations update the
prediction sequentially, so it can be used to process the
system with observe time-delay within one period according
to their coming order. Also because new algorithm does not
require all the data obtained, it can also operated with some
data fault or missing.

4. PERFORMANCE COMPARISON

In this section, the performance of SDKF is presented to
compare with that of the centralized Kalman filter. 

Lemma 1(Singer, 1971): For system (1) and (2) with
assumptions 1 and 4, the sequential filter has the same
estimate accuracy as the centralized Kalman filter.

Lemma 2: For system (1) and (2) with assumptions 2 and 4,
the sequential filter has the same estimate accuracy as the
centralized Kalman filter.

Proof: The proof of Lemma 2 is similar to that of Lemma 1, 
which is omitted here.

Theorem 2: Under the assumptions 3 and 4, the estimate
accuracy of sequential decentralized Kalman filter based on

)(,),(),( 21 kzkzkz N (denoted as ) and that of centralized
Kalman filter based on  (denoted as)(kZ ) are the same, i.e. 

)(ˆ)(ˆ )()( kkxkkx , )()( )()( kkPkkP .

Proof: Before giving the discussion process, let us introduce
the centralized Kalman filter based on )(kZ (denoted as ),
which is a bridge of connecting the performance of these two
algorithms.

For technique convenience, some new notations are defined
again
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The measurement (22) can be rewritten with extended
dimension form as 
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and

)1|()]()([)|( )()( kkPkHkKIkkP  (37)

Next, we will take two steps to prove this theorem. What we
first to do is to illustrated that the  two different centralized 
Kalman filters  and have identical estimate accuracy
and then also prove the performance of SDKF and that of the
centralized Kalman filter based on )(kZ  are the same.

A. The performance of the two centralized Kalman filter are
the same, i.e. )(ˆ)(ˆ )()( kkxkkx , )()( )()( kkPkkP

According to (11), (20) and the definition of )(kH , we have
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which is invertible.
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We have 
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Combining (32), (34), (35) and (37), we have
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So, the two centralized Kalman filter have same estimate
value and estimate error covariance, which is to say the two
centralized Kalman filter have the same per

B. The performance of SDKF and that of the centralized
Kalman filter based on

formance.

)(kZ are the same, i.e.

)(ˆ)(ˆ )()( kkxkkx , )()( )()( kkPkkP .

The measurement noises in (22) are white. With lemma 2, we 
can make the conclusion that the sequential algorithm based
on )(,),(),( 21 zkzkz N nd the centralizk a ed algorithm
based on )(kZ  have e performance. i.e sam .
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The results in Theorem 2 show that the sequential
decentralized Kalman
estimator in the sense of nce.
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ULATION EXAMPLE

Consider a discrete time-varying dynamic linear system with
three sensors
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with variance )(kQ . )(kvi , 3,2,1i , are, respectively, the

. )(kw is a zero mean system
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two parts and are correlated ise
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illustrate its advantage in performance.
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Fig. 2. Comparison of precision for three decentralized fusion
filters. (a) Estimating error variance of component )(k ; (b) 
Estimating error covariance of component )(k .

The dash-dot curves denote t ariances of two components
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6. CONCLUSION
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of CFSWS, the dashed curves denote the variances of two
components of FSWM, and the solid curves denote the
variances of two components of SDKF. From Fig.2 e see
that SDKF have better precision than

CFSWS do, also the precision of CFSWS is higher than that
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performance is equivalent to that of the standard centralized
Kalman filter in estimate accuracy. When each processor
implements its filtering algorithm in a sequential manner, the
next coming new constructed measurement will be used to
update it. Because the estimators process the data in a 
sequential way, some data delay which is less than a
sampling period is allowed. Simulation results show the
advantage of new algorithm by comparing its estimate
precision with other two decentralized algorithms.
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