
Dynamic Modeling and Identification of a

Complex-structured Parallel Robot

Jens Kroneis, Peter A. Müller and Steven Liu

Institute of Control Systems, University of Kaiserslautern, Germany
(e-mail: {kroneis,sliu}@eit.uni-kl.de, amueller@rhrk.uni-kl.de)

Abstract: In this paper a new strategy for dynamic modeling and parameter identification of
complex parallel robots including parallel crank mechanisms is presented. Based on a model
reduction strategy motivated by the structure of the parallel robot SpiderMill, kinematics and
dynamics are derived in a compact form applying the modified Denavit Hartenberg method and
the Newton-Euler approach. The obtained parameter-linear inverse dynamical description is
reduced to a parameter-minimal form applying only an analytical reduction method. The rigid
body parameters of the inverse dynamic model are identified by using optimized trajectories
and linear estimators. Due to exclusively analytical reduction a physical interpretation of
the parameters is possible. Through the whole modeling and verification process verified
MSC.ADAMS models and Solid Edge models of the demonstrator SpiderMill are used.

Keywords: parallel robots; model reduction; parameter identification.

1. INTRODUCTION

In industrial applications the importance of parallel robots
is more and more increasing. As a tradeoff to their many
advantages over classical serial robots complex kinematic
and dynamic descriptions are required to describe the
behaviour of parallel robots. Their kinematics can be de-
scribed by using standard and modified Denavit Harten-
berg method (Kahlil and Kleinfinger [1986]) or the geo-
metric approach (Tsai [1999]). But especially the deriva-
tion of the system dynamics with regard to the imple-
mentation of modern model-based control concepts is a
challenging task. In general, two classes of strategies have
to be distinguished for the derivation of system dynamics:
variational or energy methods (e.g. Lagrangian dynamics)
and geometry- or vector-based methods. The most com-
mon vector-based method is the Newton-Euler approach,
where every rigid body of a mechanical system is cut free
and dynamic equations are derived by solving balances of
forces and torques. For serial robots, its recursive formu-
lation is very effective, but in case of parallel robots the
non-recursive formulation of the Newton-Euler approach
is more appropriate (Tsai [1999]). A main advantage of
the Newton-Euler method is the parameter-linear form of
system dynamics which allows the use of linear estimators
in the identification process. Therefore it is used here.
For reduction of modeling effort, the concept of equivalent
point or lumped masses was applied previously to paral-
lel robots with simple limb structure. In Stamper [1997]
masses of connecting rods are halved and concentrated at
adjacent joints, motivated by the assumption that their
low weight has no significant influence on full system
dynamics - which does not hold in our case. The Stewart
platform in Lebret et al. [1993] is modeled using a strategy
describing the moving platform and legs separately, not
getting an explicit or compact model of the system dynam-

ics. The approach can be applied for legs of low complexity
and actuation in link direction only. In Pietsch [2003] also
uncomplex links that allow an analytical reduction to point
masses are considered. In this paper an entire tool-based
reduction strategy, that regards manipulator’s symmetry,
for parallel robots with highly complex links is introduced.
The reduction process is supported by using CAE tools.
To develop model-based control strategies parameters of
the dynamic model have to be determined. In most cases
parameters cannot be calculated exactly, even with very
high effort. Especially for friction terms parameter identi-
fication strategies are required to improve model accuracy.
In case of parallel robots parameter identification is a chal-
lenging task. Due to kinematic (and therefore dynamic)
coupling between the links within the loops, a single link
cannot be moved independently from others. Hence the
dynamic parameters cannot be identified separately. Two
special identification methods have been developed for
parallel robots. In case of indirect identification (Grotjahn
et al. [2004]) parameters of the rigid body model and fric-
tion terms are identified separately, identifying local sys-
tem models as intermediate steps. The direct identification
method (Abdellatif et al. [2004]) estimates rigid body and
friction parameters in one step using optimized trajecto-
ries. In our case the latter is used to lower the identification
effort. Friction is neglected because corresponding effects
are not modeled in the used MSC.ADAMS model and
hence cannot be identified. The identified model forms the
basis for the development of modern model-based control
concepts and planning of optimal trajectories.
In Sec. 2 the demonstrator SpiderMill is presented and a
strategy for reduced order modeling is introduced. The
implementation of the concept for the planar robot is
performed in Sec. 3. The analytical model reduction to
the parameter-minimal form and the direct paramter iden-
tification are explained in Sec. 4. Experimental results and
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the physical interpretation of the identified parameters are
presented in Sec. 5. Conclusions are drawn in Sec. 6.

2. REDUCED ORDER MODELING STRATEGY

2.1 Models of the SpiderMill

The planar parallel robot SpiderMill, considered in our
paper, comprises a double redundant closed-chain struc-
ture, constructed with only revolute joints and standard
aluminium profiles. Besides the physical demonstrator a
rigid simulation model (Fig. 1) of the robot based on a
multi-body systems (MBS) description is implemented in
MSC.ADAMS. It supports the reduced order analytical
modeling and is used for identification of model parameters
and for verification of derived analytical models. Using
the standard Newton-Euler approach to derive the inverse
dynamic, all NK bodys of a mechanical structure must be
cut free and balances of forces and torques must be set
up. For the more complex structure of the SpiderMill this
results in a system of 6 · 17 = 102 equations. It is not
efficient to solve them. To use the standard Newton-Euler
method for the derivation of a parameter-linear description
of the system dynamics, a new strategy is developed for
the SpiderMill. It bases on two main ideas: one is the
concept of equivalent lumped masses, the other is a step-
wise physically motivated reduction method. The goal is a
simplified model where dynamical properties are retained
and particularities of parameter identification considered.

2.2 Concept of equivalent lumped masses

By using the principle of equivalent lumped masses
(Pietsch [2003], Pisla and Kerle [2000]) rigid bodies are
replaced by their discrete point masses without changing
the dynamic behavior of the modified system. The result is
a dynamic equivalent model. Two rigid mass systems are
equivalent in terms of dynamics if

• their whole mass is equal
• they have the same center of mass
• the moments of inertia refered to the center of mass

are equal.

This three conditions are described by
∑

mj = m
∑

mj · xj = 0 (1)
∑

mj · d
2
j = I

where dj is the distance between the position xj of the
surrogate mass mj and the position xi of center of gravity
of the overall mass m. This principle is used to combine the
components of the redundant parallel crank mechanisms
of the SpiderMill and to reduce the coupling elements to
single point masses.

2.3 Model reduction strategy

The introduced stepwise strategy will utilize the manipula-
tor’s symmetry and the principle of dynamically equivalent
lumped masses for reduced order modeling.
Step 1 - Planar reduction: The complex spatial parallel
manipulator SpiderMill is reduced to the virtual plane EB ,

Fig. 1. MSC.ADAMS model of the SpiderMill

expressed by the coordinate frame (ex,EB , ey,EB), that
is located symmetrically to the front and the back loop
of the demonstrator. The axes of all rotational joints are
perpendicular to EB , so that end effector movements are
reduced to this plane. By using these properties a reduced
order model can be derived. Therefore elements that are
symmetric to EB and with common center of mass lying
in EB (verified using Solid Edge) are combined to one
element, called group Gi (Fig. 2). It has been examined
that effects of the unsymmetrically mounted end effector
mass are negligible. Its center of mass is assumed to be in
EB . The reduced planar model is described by 3 · 11 = 33
equations.
Step 2 - Statically determinate model: Groups, whose
parameters cannot be identified separately because they
are always performing the same movements (e.g. G7 and
G11), are combined in so-called substitution parts Si

(Fig. 3). They have the same kinematic properties as the
involved groups and their dynamic properties are derived
by using the principle of dynamically equivalent lumped
masses. The positions of Si are derived by determining
the centers of mass of the involved groups using Solid
Edge. Then the Sis are placed in a way that their lon-
gitudinal axes are parallel to that of the original groups
and intersecting the new centers of mass (in Fig. 3 ex-
emplarily shown for G7 and G11). However, the model
is statically indeterminate. If S1 and S7 are resting, the
other elements can still be moved. This is not possible for
the real demonstrator. To get a kinematiclly correct model
four vectors (Fig. 3) for each side of the manipulator are
introduced (rG1,G2, rG2,G3, rG3,G4, rG4,G5 for left side).
As S2, S4, S6 do not rotate relative to the base coordinate
frame (ex,B , ey,B), the dashed and the bold drawn vector
loop are kinematically equivalent. Shifting S1, S3, S5, S7

along the vector loop leads to a M-structure. S2, S4, S6

Fig. 2. Planar model with grouped components
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Fig. 3. Derivation of statically determined model

are dropped. Consequently the dynamic behavior of the
M-structure is not equivalent to the real structure. To
extend the M-structure the fact is used that S2, S4, S6

cannot rotate relative to the base coordinate frame. Hence
their dynamic behaviour is equivalent to point masses. To
approximate the dynamic behavior of the real robot, the
masses of S2, S4, S6 are located at joints R2m, R3m, R4m

(filled out circles in Fig. 4). Although e.g. the distance
between the base joints of G1 and G8 to the center of
mass of G2 (Fig. 2) is marginal longer than the length of
S1 (Fig. 3) this approximation leads to good results.
Step 3 - Full symmetrical modeling: For futher sim-
plification the fact is used that the SpiderMill is a fully
parallel robot with identical limbs. This implies that S1

and S7 are described by the same kinematic and dynamic
parameters, as well as S3 and S5 so that just one symbol is
used for e.g. the mass. Furthermore, using Solid Edge it has
been verified for each substitution part Si that one of its
principal axes of inertia is identical with its longitudinal
axes and another is perpendicular to EB . Consequently,
only the principal three moments of inertia are required for
dynamic modeling. Due to the fact that all Sis are moving
in EB only one element of the tensor, which is identical for
symmetrical parts (e.g. S1 and S7), is required. Because of
the symmetrical construction of the robot the derivation
of analytical equations is analogous for both sides, so that
the modeling effort is reduced additionally.
Step 4 - Modeling of actuation: In the steps before the
drive chains of the robot have not been regarded. Now ball
screw systems acutating the axes are added (Fig. 4). The
points of contact Ai are defined on the longitudinal axes of
the substitution parts S1 and S7. At the real demonstrator
the spindle bars are not mounted on the axes of symmetry
of G8 and G11. Maintaining the distance dA from the base
joint to the contact point there is a small offset. It has been
verified that the resulting error of the spindle orientations
and therefore the effective directions of the spindle forces
(forces in direction of ball screw systems) can be neglected.
In the following joints R1 and R5 are considered as active.

Fig. 4. SpiderMill: M-structure with actuation

Result: The complex spatial parallel manipulator Spider-
Mill is reduced to a simple planar M-structure with kine-
matic exact and dynamic well approximated behaviour.
The application of the standard Newton-Euler approach
to derive the inverse dynamic leads to a system of 3·4 = 12
equations instead of 102. An efficient analytical derivation
of the inverse dynamics is now possible.

3. MODELING OF THE SPIDERMILL

The kinematics of the reduced model of the SpiderMill is
derived by using the modified Denavit Hartenberg method.
Therefore qa = (θ1, θ2) are defined as active joint variables
and two passive joint variables qp = (γ1, γ2) are intro-
duced. The verification of analytically derived kinematics
with MBS simulation in MSC.ADAMS shows identical
behavior within computational accuracy of the used pro-
grams.
For parameter identification using linear estimators an
inverse dynamic model of the SpiderMill is required in
a parameter-linear and parameter-minimal form. For this
purpose the non-recursive Newton-Euler method is applied
to the equivalent model (Fig. 4). The four substitution
parts are cut free by taking the acting forces und moments
as well as the required generalized velocities and accelera-
tions into consideration (Sec. 2.3). As a result of the fact
that the M-structure is limited to EB three equations per
substitution part arise. The resulting equation system is
solved for the spindle forces to derive the inverse dynamic
model.
Below the procedure is exemplarily shown for substitution
part S1 of the structure (Fig. 5). Its balances of forces and
moments are given in (2) and (3). In general, certain forces
can be avoided in the balances of moments by dexterous
selection of centers of rotations.

0f0 + 0fe1 −
0f1 + (0 − m1g 0)T

+ (0 − m2g 0)T = m1
0v̇c1 + m2

0v̇c2 (2)

0rc1 × (0 − m1g 0)T + 0r1 × (0 − m2g 0)T

+ 0r1 × (−0f1) + 0ra1 ×
0fe1 = m1

0rc1 ×
0v̇c1

+ m2
0r1 ×

0v̇c2 + 0Ic1
1

0ω̇1 + 0ω1 × (0Ic1
1

0ω1) (3)

Cutting free the substitution elements the whole mass of
point mass m2 is added to substitution part S1 (in joint
R2m). This approach is motivated by practical considera-

Fig. 5. Forces and moments on substitution part one
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tions. At the real structure the motion of G2 results form
the rotation of G1 and G8 with reference to their base
joints (Fig. 2). The distance between the center of mass
of G2 and the base joints of G1 and G8 is nearly equal to
the length of substitution part S1 of the reduced model.
Consequently S1 acts as lever arm and its actuation leads
to an acceleration of m2. The same approach is also used
for modeling the right hand side of the SpiderMill. The
mass m4 of G4 is partioned to S3 and S5.
By solving the balances of forces and moments for the
spindle forces fe1 and fe10, the inverse dynamic model of
the robot is obtained in parameter-linear form

τ = H (q, q̇, q̈) · pg q = [qa,qp] (4)

with τ representing the vector of generalized forces, the
vector q consisting of the active qa and passive qp joint
variables, the matrix H (q, q̇, q̈) only containing known
kinematic variables (e.g. lengths or angles) and pg being
the vector of dynamic parameters of the multi-body sys-
tem. In case of the SpiderMill it contains eleven elements:

p1 =m1dc1 p4 =m3 p7 =m4 p10 =Ic1,2

p2 =m1d
2
c1 p5 =m3dc3 p8 =m4dc3 p11 =Ic3,2.

p3 =m2 p6 =m3d
2
c3 p9 =m4d

2
c3 (5)

The derived inverse dynamic model is parameter-linear
but not necessarily parameter-minimal. To obtain the
parameter-minimal model of the robot, that is required
for applying linear estimators, it is further examined using
analytical methods.

4. PARAMETER IDENTIFICATION

4.1 Determination of basic parameters

Estimation of dynamic parameters of a rigid body system
requires a full rank matrix H. In this case the influence of
one dynamic parameter on the generalized forces τ is in-
dependent of the remaining ones and each of it is uniquely
identifiable. Inverse dynamics is then called parameter-
minimal. For determination of the minimal parameter set
pmin, parameters pj not influencing the inverse dynamics
- corresponding columns hj of matrix H are zero - will be
eliminated (Gautier and Khalil [1986, 1990], Grotjahn and
Heimann [2000]).
Then the remaining parameters are regrouped to eliminate
all linear dependencies between them. If the contribution
of a parameter pj to the inverse dynamics depends linearly

on the contribution of other parameters pj
1 . . . pj

nj
, the

corresponding colums of H are also linearly dependent

hj =

nj∑

k=1

aj
k · hj

k (6)

with constant linear factors aj
k. Then parameter pj and

associated column hj can be eliminated if the other pa-
rameters are replaced by

pj
k,neu = pj

k + aj
k · pj k = 1 . . . nj . (7)

The resulting inverse dynamics

τ = HR(q, q̇, q̈) · pR q = [qa,qp] (8)

is examined for minimality in its parameters by using
a sequence of samples (q, q̇, q̈)(i) , i = 1 . . . N and
calculating the rank b of the matrix

W =






HR(q, q̇, q̈)(1)
...

HR(q, q̇, q̈)(N)




 . (9)

If matrix W is full rank, the parameter-minimal form of
the inverse dynamics is achieved:

τ = Hmin(q, q̇, q̈) · pmin q = [qa,qp] . (10)

The elements of pmin have an independent effect on τ .
Otherwise, a numerical reduction strategy (Gautier [1990])
based on QR decomposition with pivoting has to be
applied. But this generally leads to a loss of the physical
interpretability of the parameters.

4.2 Direct identification

To estimate the dynamic parameters of the SpiderMill a
trajectory optimally exciting the system (Abdellatif et al.
[2004], Gautier and Khalil [1992], Presse and Gautier
[1993], Swevers et al. [1997]) has to be generated. The
required cost criterion and estimator will be presented be-
low. The estimation is based on measurements of the gen-
eralized forces τ̃ i, the active joint variables q̃ai and their
derivatives ˙̃qai and ¨̃qai at N equidistant time instants.
A comparison of the measured and calculated generalized
forces yields to an error ei.






τ̃ 1

...
τ̃N






︸ ︷︷ ︸

Γ̃

−






Hmin(q̃1, ˜̇q1, ˜̈q1)
...

Hmin(q̃N , ˜̇qN , ˜̈qN )






︸ ︷︷ ︸

Ψ

·pmin =






e1

...
eN






︸ ︷︷ ︸

η

(11)

To minimize the quadratic error ηT · η the least-squares
estimator

pLS = (ΨT · Ψ)−1 · ΨT · Γ̃ (12)

with measurement vector Γ̃ and information matrix Ψ is
used. The analysis of the relative estimation error

‖p̂LS − p‖

‖p‖
≤ ‖Ψ‖ ·

∥
∥
∥

(
ΨT · Ψ

)
−1

· ΨT
∥
∥
∥

︸ ︷︷ ︸

=κ(Ψ)

·
‖η‖

‖Γ‖
(13)

leads to a cost criterion to be met for optimally excitating
the system to estimate the parameters. The relative esti-
mation error decreases with the condition number κ (Ψ).
The minimization of κ (Ψ), satisfying constraints for the
active joints and their derivatives, leads to the following
optimization problem:

cost criterion: min
ǫ

κ (Ψ)

trajectory: qa = qa (t, ǫ)

costraints: qa,min ≤ qa (tk, ǫ) ≤ qa,max

q̇a,min ≤ q̇a (tk, ǫ) ≤ q̇a,max

q̈a,min ≤ q̈a (tk, ǫ) ≤ q̈a,max

tk ∈ [t0, te] k = 1 . . . N (14)

To solve this optimization problem a parametrizable func-
tion for the active joints qai (t, ǫ), whose parameters ǫ
are varied by a numerical optimizer, has to be selected.
The result of the optimization are trajectories for the
active joints that optimally excits the system to estimate
the dynamic parameters. They are implemented in the
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MBS model and τ̃ i, q̃ai, ˙̃qai and ¨̃qai are determined and

summarized in Ψ and Γ̃. Using the least-squares estimator
(12) the dynamic parameters of the inverse dynamic model
are determined.

5. EXPERIMENTAL RESULTS

To verify the inverse dynamic model highly dynamic test
trajectories for the active joints

θi (t) = θi0 +

nf∑

k=0

(
µi

k

kωf

sin (kωf t) −
νi

k

kωf

cos (kωf t)

)

(15)

are defined. The trajectories are presented in Fig. 6. The
verification of the inverse dynamic model requires the
knowledge of the parameter vector pmin. In a first step
its unknown elements are taken from the MSC.ADAMS
model (Table 1). By taken the test trajectories as motions
for the active joints the calculated spindle forces of the
analytical model solved in MATLAB are compared to the
measured values of the MSC.ADAMS model (Fig. 6 e,f
- dashed lines). Small relative errors occur. In Table 2
the average relative errors are presented. The errors of the
reduced order model mainly result from the chosen loca-
tions for the point masses representing the upper coupling
elements G2, G6 and the moving platform G4 (Fig. 2). In
the MBS model the lever arm from the base to the centers
of mass of the triangulars and the lever arms from them
to the center of mass of G4 are longer than in the reduced
model (Fig. 3). The marginal discrepance in modeling of
the contact points Ai of the spindle forces additionally
contributes to the error.
To further improve the analytical model, the dynamic
parameters are no longer taken from the MBS model
but rather identified using direct identification. The re-
quired parameter-minimal form of the inverse dynamics is

Fig. 6. Test trajectories for the left (a) and the right (b)
active joint; forces of the left (c) and the right (d)
spindle; relative error for MSC.ADAMS parameters
(dashed line) and estimated parameters (solid line) of
the left (e) and the right (f) spindle force

achieved by using only analyctical reduction (derived in
Sec. 4). This leads to the following minimal parameter set
pmin:

p1,min = d1m2 + d1m3 + dc1m1 +
d1dc3

2d3
m4

p2,min = d2
1m2 + d2

1m3 + d2
c1m1 +

d2
1dc3

2d3
m4 + Ic1,2

p3,min = dc3m3 +
dc3

2
m4

p4,min = m4 −
dc3

d3
m4

p5,min = 2d2
c3m3 + d2

c3m4 + 2Ic3,2. (16)

To estimate the parameters, trajectories optimally exciting
the system are planed solving (14). As in Abdellatif et al.
[2004] and Swevers et al. [1997] the trajectory is a finite
Fourier series (15) with the following parameters:

ǫi =
[
θi0 µi

1 . . . µi
7 νi

1 . . . νi
7 ωf

]T
i = 1, 2. (17)

The best condition κ = 21.06 is achieved for a Fourier
series with length nf = 7 and period Tf = 7.29 s. The
trajectories are presented in Fig. 7. Using the trajectories
as active joint motions the measurement vector Γ̃ and the
information matrix Ψ are dertermined and pmin is calcu-
lated using the least-squares estimator (12). To verify the
improvements of the inverse dynamic model with the esti-
mated parameter vector pmin the test trajectories (Fig. 6)
and the identification trajectories (Fig. 7) for the active
joints are used. For each trajectory the relative error of
the inverse dynamic model with the estimated parameter
vector pmin (Fig. 6/7 e,f - dashed lines) is significantly
lower than the relative error of the inverse dynamic model
with the parameters taken from MSC.ADAMS (Fig. 6/7 e,f
- solid lines). A comparison of the average relative error of
the test trajectories (Table 2) before and after the identi-
fication shows e.g. an improvement of the inverse dynamic
model of 65.1% for the spindle force fe1. Despite these

Fig. 7. Identification trajectories of the left (a) and the
right (b) active joint; forces of the left (c) and the
right (d) spindle; relative error for MSC.ADAMS
parameters (dashed line) and estimated parameters
(solid line) of the left (e) and right (f) spindle force
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Table 1. MSC.ADAMS parameters and esti-
mated parameters

MSC.Adams parameters estimated parameters

m1 = 50.9597 kg

m2 = 7.9538 kg m2 = 15.9794 kg

m3 = 14.5773 kg

m4 = 12.4560 kg m4 = 5.9203 kg

dc1 = 0.565 m

dc3 = 0.515 m dc3 = 0.833 m

Ic12 = 6.3195 kgm Ic12 = 4.9733 kgm

Ic32 = 1.6173 kgm Ic32 = 0.2162 kgm

improvements the peaks in Fig. 6 e,f and Fig. 7 e,f have
to be discussed. During the time span a peak arises the
corresponding spindle force is close to zero. Then a small
variation of the measured (fsim) and the calculated spindle
force (fcalc) results in a large relative error (∆f/fsim), as
exemplarily shown for one peak in Fig. 6.
Furthermore, the estimated parameters of pmin can be
physically interpreted. To calculate the 8 dynamic pa-
rameters with (16), it must be assumed that 3 dynamic
parameters are known. Because of the model reduction
strategy presented in Sec. 2 it is suggestive to assume the
masses m2, m4, the distance dc3 between R2m and the
center of mass of S3 and the mass moments of inertia Ic12,
Ic32 as unknown. The results are presented in Table 1. The
interpretation of the estimation is that an adjustment of
Ic12, Ic32 and a modification of point masses m2, m4 as
well as a displacement of m3 leads to an adapted reduced
model with an improved behavior.
However the results in Table 1 show that it is not possible
to estimate the real physical parameters of the SpiderMill
because the inverse dynamic is calculated based on the
reduced model. But through the parameter identification
the inverse dynamic model is appreciably improved. Addi-
tionally the calculation of the 8 dynamic parameters allows
the developement of model-based control strategies.

6. CONCLUSION

In this paper a new model reduction strategy for complex
spatial parallel manipulators is presented. It uses manip-
ulator’s symmetry and the concept of dynamic equivalent
lumped masses. Based on the reduced model the kinemat-
ics is derived by using the modified Denavit Hartenberg no-
tation and the inverse dynamics is calculated by applying
the Newton-Euler approach. Both are verified by using a
MBS model. For this purpose the dynamic parameters are
extracted from CAE tools. An improvement of the inverse
dynamic model is achieved by applying direct parameter
identification method. The required parameter-minimal
form is achieved by using analytical reduction only. Con-
sequently the physical parameters are calculated form the
estimated parameter set so that a physical interpretation
and application of model-based control strategies are pos-
sible. Because of its compact form the inverse dynamic
model can be calculated with limited hardware resources.
Hence the next steps are testing the identification strat-
egy on the demonstrator also considering friction and the
development of model-based control strategies.

Table 2. Average relative errors for the iden-
tification and the test trajectories with the

calculated and the estimated vector pmin

identification verification

calculated ∆fe1

fe1
9.90% 10.20%

calculated ∆fe10

fe10
9.08% 7.82%

estimated ∆fe1

fe1
3.33% 3.56%

estimated ∆fe10

fe10
3.30% 3.39%
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