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Abstract: This paper presents the application of a linear state and input observation approach
to a non-input-affine nonlinear MIMO system. To detect and identify disturbances on the
system’s input, the system is transformed into an input-affine form by dynamic compensation
and then linearized. The linearization carried out is not exact due to the unknown disturbance.
It is shown that the linearization error can be represented as an equivalent input disturbance to
the exact linear system representation and the linear observation approach therefore holds. The
usefulness of the proposed method is demonstrated by a practical example. The system under
consideration is a car-like mobile platform subject to steering angle errors. A control approach
to compensate for the input disturbance based on the observation results is presented.

Keywords: observers for linear systems, nonlinear system control, application of nonlinear
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1. INTRODUCTION

The detection and reconstruction of unknown system
inputs is of great importance in diagnosis as well as in
control of uncertain and/or disturbed systems. In general,
two different basic problems can be distinguished: the
estimation of system uncertainties that can be presented
as additional system inputs and the diagnosis of unknown
system inputs due to e.g. actuator failures. Both problems
result in similar observation approaches.

A solution to the problem of simultaneous unknown input
(UI) and state estimation for uncertain continuous-time
systems was presented by Corless and Tu (1998). The
employed system model, consisting of a linear, autonomous
part and a time- and state-dependent input part, allows
the utilization of the presented results for uncertain sys-
tems as well as systems with input disturbances. Xiong
and Saif (2003) generalized the approach, incorporating
the adaption approach presented by Wang and Daley
(1996). In Edwards (2004), a comparison of two different
observation approaches is carried out: sliding mode and
unknown input, emphasizing the interconnection of them.
The considered observer’s application is limited to linear
systems. An approach to ease the necessary condition for
the existence of UI observers through delay was presented
by Sundaram and Hadjicostis (2007). It is applicable to
linear, discrete-time systems. The notion of input observ-
ability, without the necessity of state observability, was
first introduced by Hou and Patton (1998). Also, the inter-
connection of system invertibility and input observability
was pointed out. Inversion approaches to reconstructing
unknown inputs of nonlinear systems were presented by
Devasia (1999) and Edelmayer et al. (2004), the latter
presenting the geometric viewpoint and a residual gener-

ation to detect multiple faults. Both concepts are limited
to input-affine systems.

Farza et al. (2005) presented a design method for high
gain UI observers for a class of nonlinear MIMO systems.
The developed observer was evaluated by Cheviron et al.
(2007) in a stochastic setting under the assumption of all
states being available. Witczak et al. (2007) presented an
UI and state observer for a class of nonlinear discrete-time
systems.

The problem discussed in this paper is that of observing
the unknown, i.e. disturbed, input of a class of non-input-
affine nonlinear MIMO systems, not fitting into any of
the system classes considered in the works cited above.
The main idea to solve the observation problem is to first
transform the system into an input-affine form by dynamic
compensation, carry out an input-output linearization
along a predefined trajectory and then design an UI
observer based on the procedures presented in Corless
and Tu (1998) and Xiong and Saif (2003). The crux
is to show that the linear observation approach holds:
The performed linearization is influenced by the unknown
input leading to a deviation from the predefined trajectory.
Therefore the central point is to derive a transformation
procedure to represent the flaw in linearization as an
equivalent unknown input and identify the relation of it
to the originally wanted input disturbance. As a side-
effect, the presented approach shows that, for a certain
class of nonlinear systems, uncertainties leading to inexact
linearization results can be dealt with as presented here.

The paper is organized as follows: In section 2 the obser-
vation problem under consideration is stated. The trans-
formation of the problem into an equivalent UI observa-
tion problem of the linearized system is carried out and
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discussed in section 3. The following section 4 presents
the adopted UI observer. Throughout the paper a step-
by-step example illustrating the presented results is given.
A decoupled trajectory control approach based on the
observation result is presented for the example system in
section 5. Simulation results are shown in section 6. The
paper closes with a conclusion.

2. PROBLEM STATEMENT AND PRELIMINARIES

We consider a class of stable nonlinear MIMO systems
with uncertain inputs described by

ẋ =fn(x,ueff ), x(0) = x0 (1a)

y =h(ueff ) (1b)

where x(t) ∈ R
n is the system state, y(t) ∈ R

m is the
system output, and ueff ∈ R

m is the effective physical
input

ueff = u + ǫ (2)

consisting of the nominal system input u and the unknown
disturbance ǫ. The number of inputs is assumed to be
the same as the number of outputs which often holds for
physical systems. The output is assumed to be an algebraic
function of the system’s input which holds for a major
class of mechatronic systems with motors as actuators and
encoders or tachometers as sensors. We further make the
following assumption on the system’s output, which will
be required in the course of the linearization process.

Assumption 1. The Jacobian of the output function

Jh =




∂h1

∂u1
· · ·

∂h1

∂um
...

. . .
...

∂hm

∂u1
· · ·

∂hm

∂um




(3)

is nonsingular. The Jacobian being nonsingular can be in-
terpreted as some kind of ”differential input observability”.

An algebraic calculation of the effective input values is
theoretically possible, though highly inadvisable due to
the unreliability of such open-loop calculations. Therefore
an observer approach with inherent feedback structure is
sought.

Throughout the presented approach, the following exam-
ple illustrating the results and their applicability will be
considered:

Example 2. The system under consideration is a car-like
mobile autonomous platform with two physical inputs:
the velocity v of the rear axis and the steering angle δ.
The velocity is measurable, the steering angle is not. It is
subject to actuator faults as well as external disturbances.
To solve the tracking problem for the mobile platform, the
steering angle needs to be estimated. The available sensor
signals are only the speeds vr an vl of the right and left
rear wheels. This leads to the system output being a direct
function of the system input as assumed in the problem
statement.

The dynamics of the mobile platform is given by (cf.
Mitschke and Wallentowitz (2004)):

ẋ= v cos (ψ + β) (4a)

ẏ = v sin (ψ + β) (4b)

ψ̇ = ψ̇ (4c)

ψ̈ =−
C

v
ψ̇ +Dδ (4d)

β̇ =−
A

v
β +

B

v
δ − ψ̇, (4e)

where x and y are the coordinates of the mobile platform’s
position w.r.t. a global coordinate frame, ψ is the orien-
tation of the platform, and β is the attitude angle. The
velocities vr and vl of the right an left rear wheel are

y1,2 = v ± vE tan δ = h(v, δ). (5)

A, B, C, D, and E are positive constants determined by
the physical properties of the platform.

Remark: The platform’s dynamic model is defined for ve-
locities unequal zero, which, in our case, does not represent
any constraint, because the platform is considered during
motion only.

For control purposes, a concept to monitor the (mea-
surable) velocity and the (uncertain) steering angle of
the platform will be developed as an illustrative example
accompanying the presented theoretical results.

3. TRANSFORMATION AND LINEARIZATION

To transform the system into a form to which a linear
observation approach is applicable, the system is first
transformed into an input-affine form by dynamic com-
pensation and then linearized along a trajectory.

3.1 Transformation to linear form

Dynamic compensation. By choosing the new system
inputs to be

v = u̇ (6)

the following augmented system is obtained:

˙̃x =

(
ẋ
u̇

)
=

(
fn(x,u)

0

)

︸ ︷︷ ︸
f(x̃)

+

(
0
I

)

︸︷︷︸
g

v (7a)

y =h(u) = h(x̃) (7b)

with I being an m×m identity matrix. The order of the
augmented system is given by ñ = n+m.

Remark: The reference values of u are assumed to be
generated a priori by a corresponding algorithm, therefore
the use of their time derivatives does not impose any
problem.

Example 3. Applying the dynamic compensation to the
system presented in example 2 leads to the following
equation

(
v1
v2

)
=

(
v̇

δ̇

)
, (8)

the resulting augmented system is given by
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˙̃x=




ẋ
ẏ

ψ̇

ψ̈

β̇
v̇

δ̇




=




ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7




=




v cos(ψ + β)
v sinψ + β

ψ̇

−
C

v
ψ̇ +Dδ

−
A

v
β +

B

v
δ − ψ̇

0
0




︸ ︷︷ ︸
f(x̃)

+




0 0
0 0
0 0
0 0
0 0
1 0
0 1




︸ ︷︷ ︸
g

(
v1
v2

)

(9)
with the output equation remaining unchanged.

IO linearization. The following theorems show that

• IO linearization (cf. Isidori (1989)) can always be
carried out

• the linearization leads to an IO behavior resembling
m decoupled integrators

for systems of the form (1) fulfilling assumption 1.

Theorem 4. The compensated system of the form given by
(7a) and (7b) always has a vector relative degree

r = (r1 · · · rm) = (1 · · · 1)

if Assumption 1 holds.

Proof. The two conditions on r are

(i) LgjL
k
fhi(x̃) = 0

for all: i ≤ j ≤ m, 1 ≤ i ≤ m, k < ri − 1

(ii) |A| =

∣∣∣∣∣∣∣

Lg1L
r1−1
f h1(x̃) · · · LgmL

r1−1
f h1(x̃)

...
. . .

...
Lg1L

rm−1
f hm(x̃) · · · LgmL

rm−1
f hm(x̃)

∣∣∣∣∣∣∣
6= 0.

It can be readily seen that the Jacobian given by (3) is
identical to the transformation matrix

A =



Lg1h1(x̃) · · · Lgmh1(x̃)

...
. . .

...
Lg1hm(x̃) · · · Lgmhm(x̃)


 . (10)

Its nonsingularity therefore implies r = (1 · · · 1). 2

Theorem 5. A linearizing input transformation for the
compensated system of the form given by (7a) and (7b)
is given by

w = Av. (11)

Proof. Differentiation of the system output yields

y
(ri)
i = Lri

f hi +
m∑

j=1

LgjL
ri−1
f hiuj

with ri = 1 and

Lfhi = 0 ∀i 2

The implications of theorem 4 and 5 together with the fact
that the distribution

G = span{g1, . . . , gm} (12)

is always involutive for the compensated system lead to a
transformation matrix of the form

T =




h1(x̃)
...

hm(x̃)
φm+1

...
φñ




, (13)

transforming the compensated system into m single inte-
grators as the resulting IO relation with internal dynamics
given by



zm+1

...
zñ


 =



φm+1

...
φñ


 . (14)

By choosing



zm+1

...
zñ


 =



x1

...
xn


 (15)

the original system’s stable dynamics is recovered in the
internal dynamics of the compensated, linearized system.

The linearization is carried out along a predefined nomi-
nal trajectory. The linearizing input transformation A is
a function of the system’s physical input u subject to
unknown disturbances ǫ not accounted for in the calcu-
lation of the linearizing input transformation. This leads
to a flaw in the linearization. To still observe the system
with a linear approach, the equivalence of the observation
problems has to be investigated.

Example 6. The compensated system of example 3 has
a relative vector degree r = (1 1). The linearizing state
feedback is given by the matrix

A =



Lg1h1 Lg2h1

Lg1h2 Lg2h2


 =




1 + E tan δ
Ev

cos2 δ

1 − E tan δ −
Ev

cos2 δ


 (16)

which is nonsingular ∀x with x6 = v 6= 0. By choosing the
transformation matrix

T (x) =




x6 + x6E tanx7

x6 − x6E tanx7

φ3

φ4

φ5

φ6

φ7




(17)

to be

T (x) =




x6 + x6E tanx7

x6 − x6E tanx7

x1

x2

x3

x4

x5




=




v + vE tan δ
v − vE tan δ

x
y
ψ

ψ̇
β




(18)

we obtain the following normal form
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ż1 =w1 = u1(1 + E tan δ) + u2
Ev

cos2 δ
(19a)

ż2 =w2 = u1(1 − E tan δ) − u2
Ev

cos2 δ
(19b)

ż3 =ẋ1 (19c)

ż4 =ẋ2 (19d)

ż5 =ẋ3 (19e)

ż6 =ẋ4 (19f)

ż7 =ẋ5 (19g)

The resulting linear system comprises two uncoupled inte-
grators, the internal dynamics ((19c) to (19g)) is given by
the original system’s dynamics, which is open-loop stable.

3.2 Equivalence of system representations

To investigate the equivalence of observing a disturbance
ǫ of the physical system input (see Fig. 1(a)) to observing
a disturbance e at the input of the linearized system (see
Fig. 1(b)) we take advantage of the decoupling effect of the
linearization carried out. A disturbance ǫi affecting the ith

input of the physical system will have an effect on certain
components of the system output determined by (1b). The
following procedure leads to a direct relation between ǫi
and e

(1) Determine the outputs yj that are not influenced by
ǫi using (1b).

(2) Choose the elements ej of the equivalent input dis-
turbance vector e to be zero if the jth output is not
influenced by ǫi.

(3) Calculate
veff = A−1(w + e). (20)

(4) Determine the relation of the two input disturbances
by comparing the components of veff = u̇ + ǫ̇ to
ueff .

(a)

(b)

Fig. 1. (a) System with unexact feedforward linearization,
(b) Equivalent linear system with input disturbance

The sketched procedure leads to a direct relation between
ǫi and e and can therefore be utilized to transform an
observed input disturbance of the linearized equivalent sys-
tem back into the originally wanted physical disturbance.

Example 7. Following the procedure sketched above, we
first consider the influence of ǫ on the two output compo-
nents vr and vl of the system linearized in example 6.

(
vr

vl

)
=

(
v + vE tan δ
v − vE tan δ

)
.

Both inputs are influenced, therefore we choose(
w1eff

w2eff

)
=

(
w1 + e1
w2 + e2

)
.

Evaluating (20) leads to

v1eff =
1

2
(w1 + w2) +

1

2
(e1 + e2) (21)

v2eff =
cos2 δ − E cos2 δ tan δ

2vE
w1

−
cos2 δ + E cos2 δ tan δ

2vE
w2 +

cos2 δ

vE
(22)

Comparing this result to(
u1eff

u2eff

)
=

(
v

δ + ǫ

)

and obeying (6) we obtain

e1 = − e2 = e (23)

ǫ =

∫
e
cos2 δ

vE
dt (24)

through comparison to the nominal case (11).

4. UI OBSERVATION

For the resulting linearized system given by


ż1
...
żm

żm+1

...
żñ




=




w1

...
wm

ẋ1

...
ẋn




(25)



y1
...
ym


 =



z1
...
zm


 (26)

an UI observer as presented by Corless and Tu (1998)
and Xiong and Saif (2003) is now used to determine the
effective input. The observer structure is shown in Fig. 2.

Fig. 2. Structure of the UI observer for the equivalent
system

The matrix F representing the influence of the nominal
inputs w is given by

F =

(
I
0

)
(27)
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with I being an m×m itdentity matrix and the 0 matrix
having the dimension l×m where l ≤ m is the number of
equivalent input disturbances.

Within the observer, the input matrix B is augmented to
account for the influence of e:

B = (I D) (28)

with I being an m×m identity matrix and D having the
dimension m× l. D is readily determined by following the
procedure described in subsection 3.2.

The resulting observer equations are:

˙̂y =




1
...
1


 fo + L [Iŷ − y] (29)

fo =Fw − γG [Iŷ − y] (30)

The observer matrices L and G are calculated as depicted
in the workings of Corless and Tu (1998) and Xiong and
Saif (2003).

Example 8. The observer matrices for the dynamic plat-
form of examples 2 to 7 are

F =

(
1 0
0 1
0 0

)
. (31)

The input matrix B is augmented to account for the
opposing influence of e:

B =

(
1 0 1
0 1 −1

)
. (32)

The resulting observer reliably determines the input dis-
turbance e from which the disturbance ǫ on the steering
can be calculated. Simulation results for different distur-
bance scenarios are shown and discussed in section 6. The
utilization of the achieved results for trajectory control
purposes is shown in section 5.

5. TRAJECTORY CONTROL – A PRACTICAL
EXAMPLE

Based on the observation of the unknown equivalent input
e of the system of examples 2 to 8, a closed-loop structure
as shown in Fig. 3 is now used to compensate for deviations
of the steering angle δ from the reference value.

Fig. 3. Structure of closed-loop system

The measurable platform velocity is controlled by a decou-
pled outer control loop not depicted in the figure. To utilize

the observer estimate ê for the steering angle control,
relation (24) is incorporated in the control law. A linear
fast I-type controller with the reconstructed ǫ as input is
sufficient for the sought compensation.

The presented control approach leads to a decoupled
velocity and steering angle control for trajectory tracking
based on very limited sensor information.

6. SIMULATION RESULTS

Figures 4 and 5 show simulation results for two different
disturbance scenarios. In the first case, the platform is
initially driving straight with constant velocity v0. From
t = 1 s to t = 2 s the steering angle δ is linearly increased
to its final reference value π

8 rad, causing the platform to
pursue a circular path. At t = 3 s, an external disturbance
causes a gradual reduction of the steering angle by π

128 rad.
In the second case, the reference trajectory of the platform
is the same as in the first case but now the consecutive loss
of motor steps, leading to less steering action as wanted,
is considered. From t = 1.75 s on the steering angle does
not change any more.
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Fig. 4. Simulation results, circular driving with external
disturbance

The plots are arranged the same way in both figures: (a)
and (b) show the reference end estimated values of w1

and w2. (c) shows the resulting system output vr and
vl. The estimated steering angle disturbance is shown in
(d). (e) and (f) show the velocities and error in steering
angle for the closed loop structure presented in section 5
respectively.
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Fig. 5. Simulation results, consecutive step losses during
steering action

Clearly, in both cases the observation and compensation of
the input disturbance are successful. The chosen scenarios
show that the presented approach works for disturbances
occurring during steady state operation of the platform
as well as for disturbances interfering with the transient
behavior.

7. CONLUSION

The reconstruction of unknown inputs of nonlinear MIMO
systems by a linearization approach is presented in this
paper. The class of systems considered is characterized by
having general, nonlinear state equations and nonlinear
algebraic output equations depending on the system inputs
only.

To achieve the reconstruction aim the system is first trans-
formed into an augmented input-affine system and then
linearized along a trajectory by exact IO linearization.
The unknown inputs of the original system cause this
linearization to be inaccurate because they lead to devia-
tions from the reference trajectory used for linearization.
To still achieve a correct observation result, a method of
transforming the linearization inaccuracies into an equiva-
lent input disturbance of the nominal linearized system
is presented. Afterwards, a linear UI observer for the
resulting nominally linear system with input disturbance
is designed.

A step-by-step practical example is given to illustrate
the developed procedure and demonstrate the observation
results. For the example system, a car-like mobile platform

with steering angle errors, a trajectory control approach
based on the observation results is shown as a sample
application.
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