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Abstract: The design of excitation controllers to improve transient stabilization of power
systems is a topic of renewed interest in the control community. Existence of a state–
feedback stabilizing law for multi–machine aggregated reduced network models has recently
been established. In this paper we extend this result in two directions: first, in contrast with
aggregated models, we consider the more natural and widely popular structure–preserving
models (SPM) that preserve the identity of the network components and allow for a more realistic
treatment of the loads. Second, we explicitly compute a control law that, under a detectability
assumption, ensures that all trajectories converge to the desired equilibrium point, provided
that they start and remain in the region where the model makes physical sense.

1. INTRODUCTION

Classical research on transient stabilization of power sys-
tems has relied on the use of aggregated reduced network
models that represent the system as an n–port described
by a set of ordinary differential equations. Several exci-
tation controllers that establish Lyapunov stability of the
desired equilibrium (with a Lyapunov function and a well–
defined domain of attraction) of these models have been
reported. The nonlinear controller design techniques that
have been considered include feedback linearization (Wang
(1993)), damping injection (Wang (2003)), as well as, the
more general, interconnection and damping assignment
passivity–based control, see Sun (2000) and Ortega (2005).

In this paper, we abandon the aggregated n–port view
of the network and consider the more natural structure–
preserving models, first proposed in Bergen et al. (1981).
Since these models consist of differential algebraic equa-
tions (DAE) they require the development of some suitably
tailored tools for controller synthesis and stability analysis.
Another original feature of the present work is that we
do not aim at Lyapunov stability, but establish instead a
“global” convergence result. 1

In Giusto (2006) SPM were used to identify—in terms of
feasibility of a linear matrix inequality—a class of power
systems with nonlinear (so-called ZIP) loads and leaky
lines for which a linear time–invariant controller renders
the overall linearized system dissipative with a (locally)

? This work has been done in the context of the European Network
of Excellence HYCON.
1 The precise meaning of the qualifier “global” will be given in the
sequel. It essentially boils down to restricting to the trajectories that
remain in the region where the model makes physical sense.

positive definite storage function, thus ensuring stability
of the desired equilibrium for the nonlinear system. Unfor-
tunately, a full–fledged nonlinear analysis of the problem
was not possible due to the difficulty in handling the com-
plicated interdependence of the variables appearing in the
algebraic constraints of the DAEs. The Lyapunov function
in that paper is obtained by adding a quadratic term in
the rotor angle to the classical energy function of Varaiya
(1985). This quadratic term is needed to compensate for
a linear term (in rotor angle) appearing in the energy
function of Varaiya (1985) and render the new storage
function positive definite. To obtain our “global” conver-
gence result we observe that removing the linear term from
the energy function of Varaiya (1985) and increasing the
quadratic term in bus voltages yields a function whose time
derivative can be arbitrarily assigned with a “globally” de-
fined static state feedback. Furthermore, although this new
function is not positive definite, it is bounded from below
and has some suitable radial unboundedness properties—
features that are essential to establish boundedness of
trajectories. We then select a control law that renders
“globally” attractive the level set of this function that
contains the desired equilibrium point. If, furthermore, the
function defines a detectable output, then all trajectories
will asymptotically converge to the equilibrium. The only
critical assumption required to establish this result is that
the loads are constant impedances—a condition that is
implicitly assumed in all controllers derived for aggregated
models.

The structure of the paper is as follows. Section 2 presents
the mathematical model of the various elements compris-
ing the power system. Then, we formulate the control
problem in Section 3. Section 4 contains our main “global”
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convergence result that relies on the aforementioned de-
tectability assumption. In Section 5 we prove that the
system is indeed detectable in the single–machine case and
simulations are given in Section 6. We wrap up the paper
with concluding remarks on future research in Section 7.

Caveat Due to space limitations, we have omitted the
proofs that can be found in Dib et al. (2007).

Notation All vectors in the paper are column vectors,
even the gradient of a scalar function: ∇x = ∂

∂x . For
any function f : Rn → R, we define ∇zj

f(z) := ∂f
∂zj

(z),
and for vector functions g : Rn → Rn, we define the
Jacobian ∇g(z) := [∇g1(z), . . . ,∇gn(z)]> ∈ Rn×n. To
simplify notation we introduce the sets

Mn := Sn × Rn × Rn
>0 × Sn × Rn

>0, n ∈ n̄ := {1, .., n},
where Rn

>0 := {x ∈ Rn | xi > 0}.

2. STRUCTURE–PRESERVING MODELLING

In this section we recall the well–known SPM for n–
machines power systems comprised by synchronous ma-
chines and loads interconnected by transmission lines.

To simplify the presentation of our results we will assume
a simplified network topology where attached to each bus
there is a machine and a load. 2 Each bus, and their corre-
sponding machine and load, have an associated identifier
j ∈ n̄. Buses are interconnected through transmission lines
that are identified by the double subindex jk ∈ Ω ⊂ n̄× n̄,
indicating that the line jk connects the bus j ∈ n̄ with
the bus k ∈ n̄; the set avoids obvious repetitions, e.g., if
jk ∈ Ω then kj /∈ Ω. We also define the set Ωj := {k ∈
n̄ | ∃ jk ∈ Ω}, that is, the set of buses that are linked
to the bus j through some transmission line. All elements
share as port variables the angle θj and the magnitude
Vj of the bus voltage phasor yj = col(θj , Vj) ∈ S × R>0.
Associated to each bus are the active and reactive powers
entering the machine, the load or the transmission lines,
that will be denoted[

PM
j

QM
j

]
,

[
PL

l

QL
l

]
,

[
Pjk

Qjk

]
∈ R2, (1)

respectively. Following standard convention, we take ac-
tive and reactive powers as positive when entering their
corresponding component.

2.1 Synchronous machines model

Each synchronous machine is described by a set of third
order DAE’s (Varaiya (1985))

δ̇j = ωj

Mjω̇j = Pmj −Djωj + PM
j

τjĖj = −
xdj

x′dj

Ej +
xdj

− x′dj

x′dj

Vj cos(δj − θj) + EFj

(2)

PM
j = −EjVj

x′dj

sin(δj − θj)− Y2jV
2
j sin(2(δj − θj))

QM
j = (YVj

− Y2j cos(2(δj − θj)))V 2
j −

EjVj

x′dj

cos(δj − θj)

(3)
2 As will become clear below the derivations are also applicable
for other network topologies—at the expense of a more cluttered
notation.

where, to simplify notation, we defined the constants

Y2j :=
x′dj

− xqj

2xqj x
′
dj

, YVj :=
x′dj

+ xqj

2xqj x
′
dj

.

The state variables xj := col(δj , ωj , Ej) ∈ S × R × R>0

denote the rotor angle, the rotor speed and the quadrature
axis internal e.m.f., respectively, and EFj

is the field
voltage. The latter is split in two terms, E?

Fj
+vj , the first is

constant and fixes the equilibrium value, while the second
one is the control action. The parameters are denoted as in
Varaiya (1985), and are fairly standard. We will make the
physically reasonable assumptions Dj > 0, xdj

− x′dj
> 0.

2.2 Loads model

Loads are described by the standard ZIP model,
PL

l = PZl
V 2

l + PIl
Vl + P0l

QL
l = QZl

V 2
l + QIl

Vl + Q0l
,

(4)

which explicitly represent the contribution of each type
of load (constant impedance, current or power). As will
become clear below, to state our main result we must
consider a simplified model for the loads. Namely, we will
assume only constant impedance loads:

PL
l = PZl

V 2
l

QL
l = QZl

V 2
l

(5)

This simplification, which is necessary to obtain the
lumped parameter model used in most transient stability
controller design studies, allows us to transform the alge-
braic constraints into a set of linear equations for which
we can give conditions for solvability.

2.3 Transmission lines model

The transmission lines are modeled with the standard
lumped Π circuit, see Anderson and Fouad (1977),

Pjk = GjkV 2
j + BjkVjVk sin(θj − θk)−

GjkVjVk cos(θj − θk)
Qjk = (Bjk −Bc

jk)V 2
j −BjkVjVk cos(θj − θk)−

GjkVjVk sin(θj − θk)

(6)

where jk ∈ Ω. The active and reactive power entering at
node k, Pkj and Qkj can be obtained by a simple change
of indexes.
Remark 1. In comparison with previous works on tran-
sient stabilization, for generality we consider lines with
capacitive effects, a parameter that is usually small, hence
reasonable to neglect.

2.4 Bus equations

From Kirchhoff’s laws, at each bus we have

0 =
∑

k∈Ωj

Pjk + PM
j + PL

j

0 =
∑

k∈Ωj

Qjk + QM
j + QL

j

(7)

where we recall that Ωj is the set of buses that are linked
to the bus j through some transmission line.

Remark 2. We bring to the readers attention the fact
that Vj , being a magnitude of a phasor, is non–negative.
Similarly, due to physical considerations, Ej > 0. These
fundamental physical constraints of the model will be
assumed for our derivations.
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3. CONTROL PROBLEM AND A KEY LEMMA

To obtain the overall model we group all the algebraic
constraints and write the system equations in the compact
form {

ẋ = f(x, y) + Lvv
0 = g(x, y), (8)

where (x := col(xj), y := col(yj)) ∈ Mn, v := col(vj) ∈
Rn, Lv := diag{col(0, 0, 1

τj
)} ∈ R3n×n, and the functions

f : Mn → R3n, and g : Mn → R2n are defined by (2), and
the replacement of (3), (5) and (6) into (7), respectively.

3.1 Problem formulation

Assumption A1. There exists an isolated asymptotically
stable open loop equilibrium (x?, y?) of the system (8).

Assumption A2. The matrix ∇yg(x, y) is invertible for
all (x, y) ∈ Mn.

Asymptotic Convergence Problem. Consider the sys-
tem (8) satisfying Assumptions A1 and A2. Find a control
law v = v̂(x, y) such that:
(x(t), y(t)) ∈ Mn, ∀t ≥ 0 ⇒ lim

t→∞
(x(t), y(t)) = (x?, y?).

Consequently, (x?, y?) is an attractive equilibrium of the
closed–loop provided trajectories start, and remain, in
Mn—the set where the model is physically valid.

Remark 3. Assumption A1 is standard in transient sta-
bility studies where v is included to enlarge the domain
of attraction of the operating point. Assumption A2 is
needed to compute the control law. In all practical sit-
uations ∇yg(x∗, y∗) is non–singular ensuring, via the Im-
plicit Function Theorem (Krantz (2002)), that ∇yg(x, y)
is (locally) invertible. We have assumed that this is true
throughout Mn to avoid cluttering notation in the main
result.

Remark 4. Notice that we do not aim at proving that
trajectories starting in Mn actually remain there, but we
only assume it. In spite of that, and with obvious abuse
of notation, we will say that a controller satisfying the
implication above ensures a “practical” convergence that
we have noted as a ”global” convergence to prevent a
cluttered notation.

Remark 5. Notice that the entries in the vector x? that
correspond to ωj are equal to zero.

3.2 Proposed solution strategy

The solution to the problem stated in section 3.1 that we
propose in the paper proceeds along the following steps:

(1) Give an explicit solution of the power balance equa-
tions g(x, y) = 0.

(2) Representation of the system dynamics as a perturbed
port–Hamiltonian system using a Hamiltonian func-
tion with desired characteristics.

(3) Construction of a control signal that, assigning the
derivative of the Hamiltonian function, ensures that

trajectories will converge to the level set of the Hamil-
tonian that contains the equilibrium point. Trajec-
tories will then converge to the equilibrium if the
Hamiltonian function defines a detectable output.

(4) Prove that the resulting controller is well defined and
convergence is guaranteed—provided the trajectories
remain in Mn.

The second and the third steps can be carried out for
the model with the general ZIP loads (4). Invoking the
existence of an isolated local minimum of Assumption
A1, using some continuity arguments and assuming de-
tectability we can, therefore, conclude that the proposed
controller renders the equilibrium locally attractive. This
kind of local results are easily obtained using linearization,
and known in the power systems community as small–
signal stability. In this paper we are interested in the
large–signal stability problem, therefore, the last step is
indispensable. To complete it, the first step is essential—
unfortunately, this imposes the restrictive requirement of
constant impedance loads (5).

4. MAIN RESULT

This section contains our main “global” convergence re-
sult, which is derived proceeding along the steps delineated
in Subsection 3.2.

4.1 Solution of g(x, y) = 0

In this subsection we present an explicit solution to the
algebraic constraints g(x, y) = 0, a result which is of
interest on its own. To simplify the presentation we define,
for j ∈ n̄, the complex variables

Vj := Vje
iθj ∈ C, V := col(Vj)j∈n̄ ∈ Cn, (9)

and

E := col(Ej)j∈n̄ ∈ Rn, δ := diag{δj}j∈n̄ ∈ Rn×n.

Lemma 1. Consider the algebraic equations g(x, y) = 0 of
the power systems model (8) defined by (3), (5), (6) and
(7). If

1
x′dj

+ QZj
>

∑
k∈Ωj

Bc
jk, j ∈ n̄, (10)

g(x, y) = 0 has a “globally” defined solution. That is, there
exists a function ŷ : Sn × Rn

>0 → Sn × Rn
>0 such that

g(x, ŷ(x)) = 0. Furthermore, this function can be written
in the form

V = W (δ)E, (11)
where W : Rn×n → Cn×n is bounded and invertible, with
elements are rational functions of cos(δj) and sin(δj).

Remark 6. As indicated in Remark 1, (10) is always ver-
ified in (standard) transient stability studies, where it is
assumed that Bc

jk = 0. Also, it is clear that the construc-
tion of ŷ directly follows from (9) and (11).

4.2 Perturbed port–Hamiltonian representation

The j-th synchronous machine model dynamics (2) can be
written as a perturbed port–Hamiltonian system

ẋj = (Jj −Rj)∇xj
Hj(xj , yj) + Lvj

vj + ξj (12)
with the Hamiltonian functions Hj : M1 → R,
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Hj :=
1
2
Mjω

2
j +

1
2
YEj E

2
j +

1
2
[∆j + YVj ]V

2
j − YFj E

?
Fj

Ej

− Y2j

2
cos 2(θj − δj)V 2

j −
EjVj

x′dj

cos(θj − δj) (13)

and we defined the matrices

Jj :=


0

1
Mj

0

− 1
Mj

0 0

0 0 0

 = −J>j , Rj :=


0 0 0

0
Dj

M2
j

0

0 0
1

τjYFj

 ≥ 0,

Lvj
:= [0, 0, 1

τj
]>, ξj := [0,

Pmj

Mj
, 0]>, and the constants

YEj :=
xdj

x′dj
(xdj

− x′dj
)
, YFj :=

1
xdj

− x′dj

,

where ∆j ≥ 0 is a key design parameter.

One important property of Hj is that it is quadratic
in Zj := col(ωj , Ej , Vj) and, furthermore, bounded from
below. (Consequently, if Hj is non–increasing, we can
conclude that all signals are bounded—because Zj will be
bounded and θj and δj live in compact sets.)
Remark 7. Due to the presence of the term ξj in (12) it
is clear that the set of open–loop equilibria and the set of
minima of Hj are disjoint. Therefore, the new Hamiltonian
cannot qualify as a Lyapunov function candidate (for the
desired equilibrium).

4.3 Evaluating the time derivative of the Hamiltonian

Besides being lower bounded and quadratic (in Zj) we will
prove in the paper another fundamental property of the
function Hj , namely, that the derivative of the function
H(x, y) :=

∑
j∈n̄ Hj(xj , yj) can be arbitrarily assigned

with a suitable selection of the control v.

The proof of this fact (Dib et al. (2007)) invokes Lemma
1 and requires the differentiation of a complex valued
function. Let us first compute Ḣ in this subsection using
standard—real domain—derivations. Towards this end, let
us define

H(x, y) :=
∑
j∈n̄

Hj(xj , yj) (14)

and compute

Ḣ = −∇>x HR∇xH + ξ̃(x, y) + L>(x, y)τ−1v +∇>y Hẏ

where

R := diag{Rj}j∈n̄ ∈ R3n×3n

ξ̃(x, y) :=
∑
j∈n̄

∇>xj
Hjξj =

∑
j∈n̄

ωjPmj ∈ R,

L(x, y) := col(∇>xj
HjLvj

)j∈n̄ = ∇EH ∈ Rn,

τ := diag{τj}j∈n̄ ∈ Rn×n.

To evaluate ẏ we differentiate the algebraic constraints
g(x, y) = 0 yielding

∇>x gẋ +∇>y gẏ = 0.
Invoking Assumption A2 we obtain

ẏ = M(x, y)ẋ, (15)

where
M := −∇−>y g∇>x g ∈ R2n×3n.

Replacing (12) in (15) we have that ẏ = F (x, y)+G(x, y)v,
where F (x, y) ∈ R2n and G(x, y) ∈ R2n×n. Therefore,

Ḣ = −∇>x HR∇xH + ξ̃0(x, y) + L̃>(x, y)τ−1v (16)
where

ξ̃0(x, y) := ξ̃ +∇>y HF ∈ R,

L̃(x, y) := L + τG>∇yH ∈ Rn. (17)

Let us take a brief respite to analyze (16). It is clear that,
wherever the vector L̃(x, y) is bounded away from zero, we
can easily select a control law v that assigns an arbitrary
function to Ḣ. In the next subsection, we will state the
proposition that allows us to assign arbitrarily Ḣ(x, ŷ(x)).

4.4 “Global” assignment of Ḣ(x, ŷ(x))

Proposition 1. Consider the power systems model (8) with
Assumptions A1 and A2 and the Hamiltonian function
(13). There exists ∆min

j > 0 such that, for all ∆j ≥ ∆min
j

we have
L̃>(x, ŷ(x))E > 0 for all x ∈ Sn × Rn × Rn

>0,

where L̃(x, y) is given in (17) and ∆j defined in (13).
Therefore, for any function α : Mn → R, the “globally”
defined control law

v =
1

L̃>E
[α(x, y) +∇>x HR∇xH − ξ̃0]τE (18)

ensures Ḣ = α.

The proof can be found in (Dib et al. (2007)).

4.5 A “globally” convergent controller

In this subsection we propose to select the function α
such that, under a detectability assumption, trajectories
converge to (x?, y?).
Proposition 2. Consider the power systems model (8) with
Assumptions A1 and A2 in closed–loop with the control
(18) with

α(x, y) = −λ[H(x, y)−H?], (19)
where H? := H(x?, y?), λ > 0, ∆j ≥ ∆min

j , and ∆min
j is

as in Proposition 1.

(i) Assume (x(t), y(t)) ∈ Mn, ∀t ≥ 0. Then, trajectories
are bounded.

(ii) If, additionally,

Assumption A3. The function H(x, y) − H? defines a
detectable output for the closed–loop system.

Then, limt→∞(x(t), y(t)) = (x?, y?).

Proof First, note that
d

dt
[H(x, y)−H?] = −λ[H(x, y)−H?].

Hence H is bounded, ensuring boundedness of trajectories.
Furthermore, we have that H(x(t), y(t)) → H?. The proof
is completed invoking LaSalle’s Invariance Principle and
the definition of detectability.
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Remark 8. The controller of Proposition 1 drives the tra-
jectories towards the level set {(x, y) ∈ Mn | H(x, y) =
H?}. The analysis of the dynamics restricted to this set
is rather involved and is currently under investigation—
hence the need of the detectability assumption. However,
we prove in the next subsection that the assumption is
verified for the classical single machine infinite bus (SMIB)
system.

Remark 9. We recall that the minima of H are not equi-
libria of the system—hence, it is not a Lyapunov function
candidate and the property Ḣ ≤ 0 is not sufficient to
guarantee some stability/convergence properties.

5. SINGLE MACHINE SYSTEM

For the elementary case of a SMIB system neglecting the
generator saliency, i.e., n = 1 and Y2 = 0, the model (2)
reduces to

δ̇ = ω
Mω̇ = Pm −Dω + PM

τĖ = −xd

x′d
E +

xd − x′d
x′d

V cos(δ − θ) + E?
F + v,

PM = − 1
x′d

EV sin(δ − θ)

QM =
x′d + xq

2xqx′d
V 2 − 1

x′d
EV cos(δ − θ).

(20)

The algebraic constraints imposed by the bus equations
(7), assuming for simplicity G = Bc = 0, are

−EV

x′d
sin(δ − θ) + BV sin(θ) + PZV 2 = 0 (21)

(YV + B + QZ)V 2 − EV

x′d
cos(δ − θ)−BV cos(θ) = 0,

where, following standard convention, the magnitude and
the angle of the voltage phasor at the infinite bus are taken
equal to 1 and 0, respectively.

To set up the notation used in the sequel, and for the
sake of completeness, we give now a simplified version of
Lemma 1.
Lemma 2. Assume the voltage V (t) > 0 for all t ≥ 0. The
algebraic constraints (21) are equivalent to

V cos(δ − θ) =
Im{A0}
|A0|2

B sin(δ)

+
Re{A0}
|A0|2

(
E

x′d
+ B cos(δ)

) (22)

V sin(δ − θ) = − Im{A0}
|A0|2

(
E

x′d
+ B cos(δ)

)
+

Re{A0}
|A0|2

B sin(δ) =: Ψ(δ, E),
(23)

where
A0 := YV + QZ + B − iPZ ∈ C.

We will now check the detectability condition (Assumption
A3) for the SMIB model (20), (21) in closed–loop with
the control (18), (19). Towards this end, we introduce the
coordinate transformation (δ, ω, E) ! η, where

η1 = δ, η2 = ω, η3 = H̃, (24)

we defined H̃ := H −H? and

H :=
M

2
ω2 +

YE

2
E2 +

1
2
[∆ + YV ]V 2 − YF E?

F E

−EV

x′d
cos(θ − δ).

Using (22) and (23) the inverse transformation for the
third coordinate is obtained as E = Φ(η1, η2, η3) where

Φ :=
1
2a

[
−b(η1) +

√
b2(η1)− 4ac(η2, η3)

]
with a constant, b and c function of η1, η2 and η3.

The closed–loop system, in the new coordinates, takes the
form

η̇1 = η2

Mη̇2 = Pm −Dη2 −
1
x′d

Φ(η1, η2, η3)Ψ(η1,Φ)

η̇3 = −λη3,

where Ψ is defined in (23).

Establishing detectability with respect to η3 is tanta-
mount to proving that the equilibrium (δ?, 0) of the two–
dimensional system

˙̃η1 = η̃2

M ˙̃η2 = Pm −Dη̃2 −
1
x′d

Φ(η̃1, η̃2, 0)Ψ(η̃1,Φ)

is asymptotically stable. For, we recall that in Proposition
2 we have already established boundedness of trajectories.
Hence, recalling that trajectories in plane systems can only
diverge, converge or go to a limit cycle, it suffices to prove
that the latter will not occur. From Poincare–Bendixson’s
Theorem we know that a necessary and sufficient condition
for non–existence of limit cycles in a system ˙̃η = f(η̃) is

∇η̃1f1 +∇η̃2f2 6= 0.

Computing this expression yields

−D

M
+∇Φf2∇η̃2Φ(η̃1, η̃2, 0) 6= 0.

We have numerically evaluated this function for the classi-
cal example used in the next subsection with PZ = QZ =
0.8 and B = 6.2112, for which the condition above is
satisfied for all η̃1 (resp., δ) and for η̃2 ∈ (−5.5, 5.5) (resp.,
ω)—an interval far beyond the normal range of operation
of the SMIB system.

6. SIMULATIONS

In this section, we present numerical simulations of the
proposed controller for the SMIB with and without line
losses. The parameters of the SMIB, taken from (Anderson
and Fouad (1977)), are as follows: xd = 0.8958, x′d =
0.8645, τ = 6, M = 12.8, D = 0.25, Pm = 1.63.
The derivation of the equilibrium point is done with the
software package PSAT (Milano (2005)).

We analyze the response of (20), (21) (system without
losses) to a short circuit which consists of the temporary
connection of a small impedance between the machine’s
terminal and the ground. The fault is introduced at t = 1s
and removed after a certain time (called the clearing time,
and denoted tcl), after which the system is back to its
pre–disturbance topology. During the fault the trajectories
make away from the equilibrium, the largest time interval
“before instability”, called the critical clearing time (tcr),
is determined via simulation.
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Fig. 1. SMIB with G = 0 and tcl=0.9s, in closed loop.
Behavior of load angle, internal voltage and control
input.

The SMIB has a critical clearing time tcr = 0.44s in open
loop. With the proposed controller, taking λ = 0.001 and
∆ = 2000, this time could be increased to 19.4s—a value
that is far beyond the time scale of interest in this problem.
This implies that the control law has enlarged the domain
of attraction of the operating point. Notice that, we can
increase tcr by decreasing λ but then the convergence of
H̃ to zero will be slower.

To tune the controller there is a compromise between the
choices of ∆ that, as indicated in Proposition 1, should
be big enough to ensure that the denominator of the
controller will stay away from zero, and λ that determines
the speed of convergence to the desired level set. Indeed,
∆ appears in H̃ as ∆V 2 where V represents, in some way,
the perturbation. Then, the bigger ∆ is, the bigger H̃ will
be in the transient phase, and we have to decrease λ to
eliminate impulsive responses in the controller during the
perturbation.

We then consider the effect of the losses in the transmission
lines setting G = 1.1876 S. Similarly to the lossless case,
the proposed controller increases the critical clearing time
from 0.36s to 7.2s. Fig. 1 presents the transient behavior
of the system without line losses.

7. CONCLUSIONS

We have presented in this paper an excitation controller
to improve the transient stability properties of multi–
machine power systems described by structure–preserving
models with leaky lines including capacitive effects. Our
main contribution is the explicit computation of a control
law that ensures “global” asymptotic convergence to the
desired equilibrium point of all trajectories starting and
remaining in the physical domain of the system—provided
a detectability assumption is satisfied. To the best of
our knowledge, no equivalent result is available in the
literature at this level of generality. Numerical simulations
were presented for the standard SMIB system, for which
the detectability assumption was numerically verified for
a classical example.

Similarly to most developments reported by the control
theory community on the transient stability problem, it
is clear that the complexity of the proposed controller—

as well as its high sensitivity to the system parameters
and the assumption of full state measurement—severely
stymies the practical application of this result. This kind
of work pertains, however, to the realm of fundamental
research where basic issues like existence of solutions are
addressed. In Ortega (2005) we proved the existence of
an asymptotically stabilizing controller (with a suitable
Lyapunov function) for aggregated models—alas, we could
only give a constructive solution for n ≤ 3. The present
paper proves that, under a detectability assumption, a
solution to the “global” convergence problem for the
more natural structure preserving models can indeed be
explicitly constructed. Current research is under way to
further investigate the implications of this assumption.
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