

MANUFACTURING PROCESS PLANNING
 FOR LASER CUTTING ROBOTIC SYSTEMS

Alexandre Dolgui1
, Anatol Pashkevich1,2

1Division for Industrial Engineering and Computer Sciences
Ecole de Mines de Saint Etienne, 158, Cours Fauriel, 42023 Saint Etienne, France

2Department of Automatics and Production Systems

Ecole des Mines de Nantes, 4 Alfred-Kastler St., 44307 Nantes, France

Abstract: the paper presents a new computational technique for the manufacturing process
planning in laser cutting robotic systems. It focuses on the optimisation of robot motions
for continuous contour tracking using the redundancy caused by the tool axial symmetry.
In contrast to previous works, the developed technique is based on the dynamic
programming and explicitly incorporates verification of the velocity/acceleration
constraints. It also takes into account recent advances in robot mechanical design
allowing unlimited rotations of some manipulator axes. The technique is implemented in
a CAD package and verified in the automotive industry. Copyright © 2008 IFAC

Keywords: Computer-aided manufacturing, robotics, redundant manipulators, path
planning, dynamic programming, multiobjective optimisation.

1. INTRODUCTION

Recent advances in laser technology motivate
amending the existing robot path planning methods,
which do not allow the complete utilisation of the
actuator capabilities and neglect some particularities
in the manipulator mechanical design. At present, the
cutting speed is comparable with the kinematic
capabilities of industrial robots (Schlueter, 2005), so
their performances are becoming a bottleneck in
enhancing the cutting cells productivity.

A typical robotic laser cutting system consists of a
laser, a beam-delivery-system and a cutting head
integrated with a 5- or 6-axis manipulator. One of the
recent developments in this field, the Robocut system
(www.rpt.net), is based on a 5-axis anthropomorphic
manipulator with standard 3-axis forearm
architecture and a reduced 2-axis wrist with
endlessly rotating 4th and 5th joints. This special
design offers essential advantages, since the cycle

time losses can be avoided for the reverse rotations.
In spite these benefits, the 5-axis robots possess
essential disadvantages related to the difficulties to
solve the inverse kinematic problem. So, most of the
cutting robotic cells are based on the 6-axis robots
with the standard 3-axis wrist allowing unlimited
rotation of the 4th and 6th axes. Obviously, this
redundancy simplifies robot control and
programming, and also increases the flexibility of the
manufacturing cell, while posing another problem:
optimal utilisation of the kinematic redundancy.

For robotic laser cutting, most of the related research
focuses on the off-line programming, which allows
essentially reduce the system down time and make
economically feasible even very small batch sizes
(Kaierle, 1999; Mitsi et al., 2005). At the moment,
there are a number of commercial off-line
programming systems on the market. However, there
still exists a considerable gap between their
capabilities and requirements of a particular

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 14822 10.3182/20080706-5-KR-1001.1457

application. And up to now, the robot programs for
many 3D cutting applications are constructed
interactively. The ultimate goal is the automatic
generation of robot programs from CAD drawings,
similar to CNC machining.

For manipulators with six degrees of freedom, the
motion planning problem was firstly addressed in
(Abe et al., 1994; Shibata et al., 1997). These authors
proposed a genetic algorithm that optimises the
cutting tool orientation using the evaluation function
extracted from the experience of skilled operators.
However, they succeeded in the generation of
manipulator motions for relatively slow cutting
speed. Some recent techniques that employ the
general end-effector constraints concept (Yao and
Gupta, 2007) also suffer from this drawback.

An alternative approach, proposed by the authors of
this paper (Pashkevich et al., 2004), is based on the
graph-based search space representation and
dynamic programming. These yields essential gain in
computation speed and allowed successfully apply
the technique in industry. Nevertheless, recent
advances in technology and the essential increase of
the cutting speed motivate further improvements.

This paper focuses on the enhancement of our
method by imposing additional constraints on the
trajectory smoothness and taking into account the
ability of some robot axes for unlimited rotations. Its
remainder is organised as follows. Section 2 is
devoted to the problem statement, Section 3 presents
the main theoretical results, Section 4 contains
simulation and implementation issues, and Section 7
summarizes the main contributions.

2. PROBLEM STATEMENT

2.1 Manufacturing task model

Let us assume that the desired Cartesian path, along
which the cutting tool is to be moved, is imported
from a CAD system and is described by two vector
functions as follows:

{ (), () [0,]; 0,...t t t k t T k n= = ⋅∆ ∈ =C p n } (1)

here t is a scalar argument (time); p(t)∈R3 defines
the Cartesian coordinates of the tool tip, and n(t)∈R3
is the unit vector of the tool axis direction, which
must be normal to the part surface. These data can be
directly extracted from the graphical model of the
part, by defining the processing contour as an
“augmented line”. The path is assumed to be closed
and time-uniformly sampled into the sequence of
nodes , ;{ k k k =p n 0,... }n , where the first and the
last coincide (0 ;), and the time-
interval length is ∆t .

n=p p 0 n=n n

To describe the tool spatial location, let us also
define the Cartesian displacement along the path

 and introduce a unit

direction vector

1 ;k k k+∆ = −p p p 0,... 1k n= −

|| ||k k k= ∆ ∆a p p , which is tangent
to the part surface and to the direction of the points
for the tool motion. For the last node, let us define
this vector as 0n =a a . Then, assuming that the
vectors ak and nk are mutually orthogonal, each node
may be associated with the Cartesian frame in which
the x-axis is directed along the path, the z-axis is
directed along the cutting tool, and the y-axis is
computed in such way that these three axes form a
right-handed coordinate frame. The corresponding
homogenous transformation matrix is composed of
the vectors , , ,k k k k k×a a n n p and is denoted as kH .

The frame sequence { 0,... }k k =H n is used as a
pivot for defining the complete pose of the robotic
tool, which is usually determined by six independent
parameters (three Cartesian coordinates and three
Euler angles). However, since the cutting tool is
axially symmetric, the frames Hk can be rotated
around corresponding zk-axes without any influence
on the technological process. This one-dimensional
redundancy leads to an infinite set of admissible tool
locations described by the matrix product

() () , (- ,]k k z k k kγ γ γ π π= ⋅ ∈L R H , (2)

where γk is an arbitrary scalar parameter and Rz(γ) is
the standard z-axis rotation matrix.

Another source of redundancy is related to the
manipulator posture µ (or the configuration index),
which is required for the unique mapping from the
task space to the joint coordinate space. So, in total,
the robotic task is described by a sequence of
locations (2), while the design parameters are
represented by the sequence ,{ . At
this step, the design problem can be formulated in the
terms of non-linear programming; however this
straightforward approach is not prudent because of
high dimension of the relevant search space.

0,... }k k k nγ µ =

2.2 Constraints

For laser cutting and other curve-tracking
applications, a designer must take into account three
types of constraints: task, robot kinematic and
collision constraints (Hwang et al., 1994). Here, task
constrains are expressed in the terms of the required
position/orientation of the tool and are described by
expression (2). Robot kinematics constraints are
caused by the manipulator geometry. And collision
constraints arise from the need to avoid collisions
between the robot and workcell components.

To define the kinematic constrains more precisely, let
us express the tool location L corresponding to the
joint coordinate vector as 6R∈q

6

1
1

() ()i
tool i i base

i

q−
=

⎛ ⎞
= ⋅ ⋅⎜ ⎟

⎝ ⎠
∏L q T T T , (3)

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14823

where i-1Ti is the transformation matrix from the
(i-1)th to the ith link, qi is the corresponding joint
coordinate, the matrix Ttool defines the tool tip
location, and the matrix Tbase defines the robot base
location. Particular expressions for the homogenous
matrices i-1Ti for various manipulators can be found
in common reference books (Spong et al., 2006).

For the inverse transformation 1 (,)c µ−=q f L , let us
introduce the configuration index µ∈Μ that
determines the manipulator posture, where Μ
contains all combinations of admissible
configurations (shoulder right/left, elbow up/down,
wrist plus/minus). It should be stressed that typical
robot controllers do not allow changing the
manipulator configuration while moving between
successive nodes and using the Cartesian space on-
line interpolation. But for cutting applications, this
specific kinematic constraint can be released by
temporarily switching to the joint-space
interpolation. So, in contrast to our previous work
(Pashkevich et al., 2004), here we do not use separate
manifolds for each value of µ.

Using the inverse kinematic transformation, the
sequence of the admissible tool locations can be
mapped into the joint coordinate space

1(,) (() ,)
(- ,], , 1

k k k c z k k
Q

k k k n
γ µ γ µ

γ π π µ

−⎧ ⎫= ⋅⎪ ⎪= ⎨ ⎬
∈ ∈ Μ =⎪ ⎪⎩ ⎭…

Q f R H
C (4)

taking into account both the workspace dimension
limits (i.e. inverse kinematics existence) and the joint
limits , min max

i i iq q q< < i I∈ , . For
further convenience, the constraint violation case is
denoted as

{1, 6}qI = …

()k kγ = ∅Q . It is also worth mentioning
that the latest laser-cutting manipulators allow
unlimited rotation of the 4th and 6th axes, so in this
case . {1, 2, 3, 5}qI =

The collision constraints are managed in a similar
way, i.e. their violation leads to ()k kγ = ∅Q and
corresponding tool locations are inevitably excluded
from a feasible set. The collision detection functions
are standard routines of industrial robotic CAD
packages, together with the direct/inverse kinematics
of the robotic manipulators.

From application point of view, the desired path
planning algorithm should produce “smooth motions
at reasonable speeds and at reasonable
accelerations”. Within the frames of the adopted
path presentation (1), the joint velocity/acceleration
constraints may be expressed via the finite-difference
approximation as:

()
, , 1

v
i k i k v iq q qη−− < ⋅ ∆ , (5)

()
, , 1 , 22 a

i k i k i k a iq q q qη− −− + < ⋅ ∆ , (6)

where () maxv

i iq q t∆ = ∆� () max 2aq q t; i i∆ = ∆�� ; the notations
 and define the maximum ith joint

velocity and acceleration; and η

max
iq∆ � max

iq��
v and ηa are the

scaling factors to be adjusted by the designer. Hence,
the complete set of constraints arising from the
technical nature of the problem are summarized in
inequality ()k kγ ≠ ∅Q and in the expressions (5),
(6), which ensure the path existence and its
admissible curvature in the joint coordinate space.

2.3 Design objectives

In the qualitative terms, the desired manipulator
motion should be as smooth as possible while
satisfying the contour-tracking and actuator-
dependent constraints. This means that the qualitative
performance measures should be based on some type
of the “smoothness/economy” measures applied to all
manipulator joints (Edan and Nof, 1997).

For the considered problem, which is based on the
discrete path presentation, the degree of smoothness
can be evaluated by the following criteria:

• total displacement
()

, , 1 1
1

(,) (,)- (,)
n

s
i i k k k i k k

k

J q qγ µ γ µ− − −
=

= ∑γ µ 1k , (7)

• maximum increment (speed)
()

, , 1 1(,) max (,) - (,)v
i i k k k i k kk

J q qγ µ γ µ− − −=γ µ 1k , (8)

• coordinate range
()

, ,(,) max (,) min (,)i i k k k i kkk
J q qγ µ γ µ∆

k k⎡ ⎤ ⎡= − ⎤⎣ ⎦ ⎣γ µ ⎦ , (9)

where i is the joint number, and γ , µ are the vectors
composed of the design parameters γ0, γ1, …γn and
µ0, µ1, …µn respectively.

Intuitively, the minimization of each of these criteria
should lead to a smoother generated path. However,
as follows from our studies, the objectives (7) – (9)
may compete with each other. Besides, these indices
are computed for each joint coordinate. Thus, the
resulting performance measures form a vector and
the designer must choose one of the existing multi-
criteria optimisation techniques (Cheng and Shih,
1997). However, independent of the chosen
technique, the corresponding vector-optimisation
engine must include the scalar-optimisation routines
that are developed below.

3. PATH PLANNING ALGORITHM

3.1 Search space presentation

To obtain an optimal solution under the above
constraints, let us sample the feasible domain for the
redundant parameter γ. This transforms the continues
search space into an acyclic directed graph, with the

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14824

vertices uniquely representing the tool location
matrix L and the vector of joint coordinates Q.

In particular, let us assume that the parameter γ∈[-π,
π] is sampled with the step ∆γ = 2π/m0, m0∈Z and,
for each discrete value of γ and each admissible
configuration µ∈Μ, the locations (2) are tested for
the kinematic and collision constraints. Then, the
admissible locations, which satisfy the constraints,
are included in the search space in such manner that
each Cartesian-path node {pk, nk} produces several
elements of the data structure {L, Q}:

,
,

,1

{ }
m

k j
k k

k jj

k

=

⎧ ⎫
→ ⎨ ⎬

⎩ ⎭

L
p n

Q∪ (10)

where mk is the number of the successful locations
for the kth node. It should be noted that the “path-
smoothness” constraints (5), (6) are not tested at this
stage yet, since they are associated with several
successive locations.

Then, the feasible search space can be represented by
a directed graph with the vertices

,

,0 1

mn
k j

k jk j

k
V

= =

⎧ ⎫
= ⎨

⎩ ⎭

L
Q∪ ∪ ⎬ (11)

and edges

, 1,

, 1,1 1 1

1
,

m mn
k j k l

k j k lk j l

k k
E −

−= = =

− ⎛ ⎞⎧ ⎫ ⎧ ⎫
= ⎜ ⎨ ⎬ ⎨ ⎬⎜ ⎩ ⎭⎩ ⎭⎝ ⎠

L L
Q Q∪ ∪ ∪ ⎟⎟

)

, (12)

which connect only successive tool locations. Hence,
the original robot control problem is reduced to a
specific best-path problem for a graph (11), (12),
where the performance measure should incorporate
the design objectives (7)…(9). Besides, both the
initial and final vertices are not unique, but the
problem can be transformed to the classical problem
by adding the virtual start and end nodes.

Since the Cartesian path is sampled uniformly, the
related distance matrix should be based on a joint
space metric. Also, it is necessary to take into
account that the actuator capacities (i.e. maximum
speed, acceleration, etc.) are different for different
manipulator axes. So, the displacement components
∆qi corresponding to the joint displacement vector

1 6 should be weighted. The most
prudent is assigning the weights ,
where is the maximum axis speed specified by
the manufacturer. And finally, the distance in the
weighted joint space may be defined using the
Euclidean, Manhattan or Chebychev metrics because
their clear physical meaning.

(,q q∆ = ∆ ∆…q
max -1()i iw q t= ∆�

max
iq�

While computing these distances, it is also necessary
to take into account that the 4th and 6th manipulator
axes may allow unlimited rotation. In this case, the

differences iq∆ must be pre-processed in accordance
with the expression:

{ }min 2 , {4, 6}i ip Z
q q π p i

∈
∆ = ∆ + ∈ (13)

where p is an integer number.

3.2 Generation of optimal path

Since there is no combinatorial optimisation
technique, which is able to solve this multi-objective
problem directly, the vector performance measures
(7) - (9) should be converted into an aggregate scalar
criterion. At this step, a relevant metric (Manhattan
or Chebychev) is applied to the sequence of the path
segments, while inside the segments the weights are
altered between optimisation runs to produce a set of
Pareto-optimal solutions.

Corresponding expressions for the objective
functions may be written as follows:

()()
1

1
(,) (,)- (1,)

n
s

a k k
k

J k j kρ −
=

= ∑γ µ Q Q j− (14)

()()
1(,) max (,)- (1,)a k kk

J k j kρ∆
−=γ µ Q Q j− (15)

where (.), { , , }a a E M Cρ ∈ is the distance
function, the notation jk defines the values of the
redundant parameters γ, µ at the kth node and, for
further convenience, the vectors of the joint
coordinates Qk,j are denoted as Q(k,j). So, a vertex
may be coded as pair (k, j), an edge is identified by
quadruplet (k1, j1, k2, j2), and the solution is defined
by the array of j-indices {Jopt(k), k=0,1,…n} of the
sequential visiting vertices. Also, following this
notation, the cluster sizes are defined in the array
{Jmax(k), k=0,1,…,n} and the cost of the edges are
denoted as ρ (k1, j1, k2, j2).

For the the objectives (14) and (15), an optimal path
can be found by means of dynamic programming. A
basic expression for the proposed algorithm is
derived in the following way. Let us consider a
reduced order sub-problem with k clusters S0, S1, …
Sk-1, and let be the length of the shortest path

0 1 1k

1,k jd ∗
−

S S S −→ → →… that links a vertex 1, 1k j kv S− −∈
to the nearest vertex 0u S∈ , assuming that all the
clusters are visited exactly once. Then, using the
dynamic programming, the optimal solutions for the
sub-problem with k+1 clusters S0, S1, … Sk can be
found by choosing the best edge , , (,)k ju v 1ku S −∈
that links the vertex ,k j kv S∈ with the cluster Sk-1 :

{ }, 1, 1, ,min (,) , 1,k j k p k p k jp
d d v v kρ∗ ∗

− −= + = …n

j

 (16)

Therefore, the desired solution for n+1 clusters S0, …
Sn can be obtained sequentially, starting from k = 0
with 0, 0,jd ∗ = ∀ , successively increasing the k-
index up to n, computing , and, finally, choosing
the smallest . The corresponding

,k jd ∗

, , 1, 2,n j nd j m∗ = …

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14825

sequence of the j-indices 0 1 , which
defines the shortest path, is extracted in the reverse
order, starting from k = n and ∗ .

{ nj , j , j∗ ∗ ∗… }

j=

)

)

,arg min{ }n n
j

j d∗

An outline of the path planning procedure based on
this technique is presented below. The procedure
consists of five basic steps where the first two, (1)
and (2), implement the recursion (16). These steps
deal with creating matrices of optimal distances
Mdist(k,j) and the corresponding matrix Mind(k, j) of
the optimal j-indices of the preceding clusters. In
steps (3) and (4), the minimum value in the nth
column of the distance matrix Mdist(.) is computed, in
order to select the best vertex in the last cluster.
Finally, in step (5), the best vertices of the preceding
clusters are iteratively extracted from the matrix
Mind(.) to generate the optimal path described by the
array of the optimal indexes Jopt(.). The procedure
also uses the array Jmax(.) containing the upper range
for the j-index and the vertex distance function ρ(.)
defined previously. The notation d∞ defines the
infinity)

A distinct feature of this procedure is contained in
sub-steps (2bβ) and (2bγ) that verify the path-
smoothness constraints (5) and (6). Sub-step (2bβ)
incorporates the function , which evaluates
the velocity constraints (5) for all manipulator axes
while the manipulator moves from the location L

(vf k, j, p

k-1,p
to the location Lk,j (a non-zero value of this function
corresponds to violating one of the velocity
constraints). Similarly, at the sub-step (2bγ), the
function verifies the acceleration
constraints (7) for the location sequence L

(,af k, j, p l
k-2,l , Lk-1,p ,

Lk,j , where the location Lk-2,l is assumed to be the
optimal predecessor of Lk-1,p, i.e. . (1)indl M k - , p=

A similar algorithm can be applied for the minimax
design objective) . The only modification needed
deals with the sub-step (2bα). Combining two of the
path generation options (objectives

(∆J
()sJ and)(J ∆)

and altering the distance metrics weights wi together
with the constraint weights ηv and ηa (see
expressions (5) and (6)), the designer can generate a
collection of the candidate solutions to be included in
the Pareto-optimal set.

4. IMPLEMENTATION RESULTS

To evaluate efficiency of the proposed technique,
first it was applied to the planar cutting task
described in detail in (Pashkevich et al., 2004). For
this task, two techniques were applied (the known
and the proposed ones), and a set of solutions was
obtained that differ by both the optimisation criteria
and the weights: wi , ηv and ηa. As follows from our
study, for the previous technique, tuning of the
weights wi can barely produce acceptable results.
Most of the solutions have a tendency for undesirable
oscillations in the orientation axis. In contrast, the
new technique simplifies obtaining smooth solutions
with the balanced values of the partial criteria. This
result is illustrated in Fig. 1 and 2, which contain the
trajectories generated both methods.

Procedure: Path_planning
(1) For j = 1 to Jmax(0) do
 Set Mdist(0, j) := 0; Mind (0, j) := 0
(2) For k = 1 to n do
 For j = 1 to Jmax(k) do
 (a) Set dmin := d∞

 (b) For p = 1 to Jmax(k-1) do
 (α) Set dcur := Mdist(k-1, p) + ρ(k, j, k-1, p)
 (β) If k > 0 & fv(k, j, p) ≠ 0
 Set dcur := d∞

 (γ) If k > 1 & fa(k, j, p, Mind(k-1, p)) ≠ 0
 Set dcur := d∞

 (δ) If dcur < dmin then
 Set dmin := dcur; jopt := p
 (c) Set Mdist(k, j) := dmin ; Mind(k,j) := jopt;
(3) Set dmin := inf;
(4) For j := 1 to Jmax(n) do
 (a) Set dcur := Mdist(n, j)
 (b) If dcur < dmin then
 Set dmin := dcur; jopt := j
(5) For k = 0 to n do
 Set Jopt(n-k) := jopt ; jopt := Mind(n-k, jopt);

The developed algorithms have been also
implemented on the manufacturing floor, in
ROBOMAX CAD package, which is already used in
automotive industry and has been successfully
applied for the design of a number of manufacturing
lines. With respect to 3D laser cutting, the
Robomax/Laser subsystems enable to design a
workcell layout and optimise robot motion using
multi-objective optimisation techniques. At the
beginning, using standard routines of the Autodesk
Mechanical Desktop (AMD), a mathematical
description of the cutting contour is presented in the
form of the “augmented line”. The designer may
define either the desired distance between vertices or
their total number. In addition, he/she can estimate
the minimum number of vertices required keeping
the accuracy within tolerances. Relevant software
tools allow also to aggregate separate segments in a
common cutting contour and perform the unification
of sampling distances.

5. CONCLUSION

This work presents a new computational technique
for the manufacturing process planning in laser
cutting robotic systems. Its particular contribution is
related to the multi-objective optimisation of the
manipulator motions for the continuous contour
tracking with an axis-symmetric technological tool.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14826

Joint coordinates Joint velocities

q1

q2

q3

q1
. q2

.

q3
.

Fig. 1. Optimisation results for the known technique

Joint coordinates Joint velocities

q1

q2

q3

q1
. q2

.

q3
.

Fig. 2. Optimisation results for the proposed technique

In contrast to previous work, this optimisation
technique explicitly incorporates the verification of
the velocity/acceleration constrains, enabling the
designer to interactively define their importance with
respect to the path-smoothness objectives. In
addition, the proposed approach takes into account
the capacity of some wrist axes for unlimited rotation
in order to produce more efficient motions. The
technique is implemented in a CAD package and
verified in the automotive industry.

REFERENCES

Abe, T., Shibata, T. and Tanie, K. (1994). Motion

planning for 3D cutting by a manipulator with 6
degrees of freedom - optimization by genetic
algorithm, Proceedings of 3rd Int. Conference.
on Fuzzy Logic, Neural Nets and Soft
Computing, 453-454.

Cheng, F.-T. and Shih, M.-S. (1997). Multiple-goal
priority considerations of redundant
manipulators. Robotica, 15(6), 675-691.

Edan, Y. and Nof, S. (1996). Graphic-based analysis
of robot motion economy principles. Robotics
and Computer- Integrated Manufacturing, 12(2),
pp. 185-193.

Hwang, Y.K., Chen, P.C., Maciejewski, A.A. &
Neidigk, D.D. (1994). Global motion planner for

curve-tracing robots. IEEE Int. Conference on
Robotics and Automation, 662-667.

Kaierle, S., Fuerst, B., Kittel, J., Kreutz, E.W. &
Poprawe, R. (1999). Design and manufacturing
tools for laser beam processing. Proceedings of
SPIE, Vol. 3833, 148-159

Mitsi, S., Bouzakis, K.-D., Mansour, G., Sagris, D. &
Maliaris, G. (2005). Off-line programming of an
industrial robot for manufacturing. International
Journal of Advanced Manufacturing
Technology, 26(3), 262-267.

Pashkevich, A., Dolgui, A. & Chumakov, O. (2004).
Multiobjective optimization of robot motion for
laser cutting applications. Int. J. of Computer
Integrated Manufacturing, 17(2), 171-183.

Schlueter, H. (2005). Advances in industrial high
power lasers. Proceedings of SPIE, Vol. 5777
(Part I), 8-15.

Shibata, T., Abe, T, Tanie, K. & Nose, M. (1997).
Motion planning by genetic algorithm for a
redundant manipulator using a model of criteria
of skilled operators. Information Sciences,
102(1-4), 171-186.

Spong, M., Hutchinson, S., Vidyasagar, M. (2006).
Robot modeling and control, John Wiley &
Sons, 478 pp.

Yao, Z. & Gupta, K. (2007). Path planning with
general end-effector constraints. Robotics and
Autonomous Systems, 55(4), pp. 316-327.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

14827

