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Abstract: This note deals with the problems of robust H∞ control for uncertain stochastic
systems with a time-varying delay in the state. Based on the Lyapunov stability theory and the
stochastic analysis tools, delay-dependent sufficient condition is established in terms of weak
coupling linear matrix inequality (LMI) equations. The equations are derived by constructing a
more efficient Lyapunov function candidate and combining LMI approach with free-weighting
matrix technique. Properties of conservatism are only appeared with free-weighting matrices
in a equation, which is coupled with another equation weakly. So the new criteria is of low
conservatism with large time-delay, large time-varying rate and small disturbance attenuation.
Numerical examples are given to demonstrate the benefits of the proposed criteria.
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1. INTRODUCTION

In the past decades, stochastic systems have attracted
much attention due to the extensive applications of
stochastic systems in mechanical systems, economics, sys-
tems with human operators, and other areas, see Won-
ham [1968]. Recently, many fundamental results of robust
control for deterministic systems have been extended to
stochastic systems, see Wonham [1968],Yaz [1993]. The ro-
bust stochastic stability problem for uncertain parameters
and time-delay was studied by Liao et al. [2000], Mao et al.
[1998], and Xie et al. [2000] respectively. Very recently, the
stochastic version of bounded real lemma was derived in
Hinrichsen et al. [1998]; based on this, necessary and suf-
ficient conditions for the existence of H∞ controllers were
proposed in Ghaoui. [1995]. The corresponding results for
discrete-time systems were studied in Bouhtouri et al.
[1999]. Furthermore, the problems of robust H∞ control for
the systems with uncertain parameters and time-varying
delays appearing simultaneously were discussed in Xu
et al. [2002], Xu et al. [2004]. However, those conditions are
of considerable conservatism and delay-independence. To
the best of the authors’ knowledge, corresponding delay-
dependent condition has not been presented.

On the other hand, some free-weighting matrix methods
were proposed to reduce the conservatism. The results
in Lee et al. [2004] and Jing et al. [2004] are included
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or equivalent to those in He et al. [2004] and Wu et al.
[2004]. The augmented Lyapunov functional presented by
Wu et al. [2004] and He et al. [2005] is only applicable
for neutral systems with time-invariant delay. And it was
extended to time-varying delay case in He et al. [2007]
via free-weighting matrices technique. To the best of the
authors’ knowledge, the free-weighting matrices technique
for stochastic systems with state delay is still open.

In this note, a Lyapunov functional candidate is proposed.
By incorporating additional terms in the candidate, we
are able to reduce the conservatism. And the candidate
is used to analyze the robust control problem for un-
certain stochastic systems with state delay via combin-
ing linear matrix inequality (LMI) approach with free-
weighting matrices technique. Furthermore, we gain the
delay-dependent sufficient conditions for such systems in
terms of weak coupling LMI equations. The properties
of conservatism, upper time-delay, time varying rate and
disturbance attenuation, are only appeared in the equation
which involves free-weighting matrices. And the equation
is coupled with another equation which involves param-
eters of systems weakly. So, we gain low conservative
conditions with large time-delay, large time-varying rate
and small disturbance attenuation. Numerical examples
are given to demonstrate the considerable merits of the
proposed criteria.

2. PROBLEM FORMULATION

Consider the following stochastic system with state-delay
and parameter uncertainties:
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(Σ) : dx(t) = [(A + ∆A(t))x(t) + (Ad + ∆Ad(t))x(t− τ(t))

+(B + ∆B(t))u(t) + Bνν(t)]dt + [(E + ∆E(t))x(t)

+(Ed + ∆Ed(t))x(t− τ(t)) + Eνν(t)]dω(t), (1)

z(t) = Cx(t) + Du(t), (2)

x(t) = φ(t), ∀t ∈ [−h, 0]. (3)

where x(t) ∈ Rn is the state,u(t) ∈ Rm is the control
input,ν(t) ∈ Rp is the disturbance input which belongs to
L2[0,∞),z(t) ∈ Rq is the controlled output, and ω(t) is a one-
dimensional (1-D) Brownian motion satisfying

E {dω(t)} = 0, E {dω(t)2} = dt.

and τ(t) is the time-varying delay satisfying
0 < τ(t) ≤ h < ∞, 0 < τ̇(t) ≤ µ < 1 (4)

where h, µ are real constant scalars;φ(t) is initial condi-
tion, A, Ad, B, Bν , C, D, E, Ed and Eν are known real con-
stant matrices,∆A(t), ∆Ad(t), ∆B(t), ∆E(t) and ∆Ed(t) are
unknown matrices representing time-varying parameter
uncertainties, and are assumed to be of the form[

∆A(t) ∆Ad(t) ∆B(t) ∆E(t) ∆Ed(t)
]

= MF (t)
[
Na Nad Nb Ne Ned

]
(5)

where M, Na, Nad, Nb, Ne and Ned are known real constant
matrices and F (·) : R → Rk×l is an unknown time-varying
matrix function satisfying

F (t)T F (t) ≤ I,∀t. (6)

It is assumed that all the elements of F (t) are Lebesgue
measurable.∆A(t), ∆Ad(t), ∆B(t), ∆E(t) and ∆Ed(t) are said
to be admissible if both (5) and (6) hold.

3. MAIN RESULTS

Well-used lyapunov functional candidate was adopted to
solve the robust stochastic stabilization problem in the
previous works such as Xu et al. [2002] and Xu et al. [2004],
which is similar to the following form:

V (x(t), t) = x(t)T Px(t) +

∫ t

t−τ(t)

x(s)T Qx(s)ds. (7)

Some important terms were ignored when estimating the
upper bound of the derivative of Lyapunov functional for
systems in the candidate, such as −

∫ t

t−h
ẋ(s)T Z1ẋ(s)ds.

To handle this term, we improve the Lyapunov functional
candidate for stochastic time-delay systems as follows:

V ( x (t), t) = x(t)T Px(t) +

∫ t

t−τ(t)

x(s)T Qx(s)ds +

∫ t

t−h

x(s)T

·Rx(s)ds +

∫ 0

−h

∫ 0

t+θ

ẋ(s)T (Z1 + Z2)ẋ(s)dsdθ (8)

where P = P T > 0, Q = QT ≥ 0, R = RT ≥ 0 and
Zi = ZT

i > 0, i = 1, 2 are to be determined.

We use this improved Lyapunov functional candidate to
deal with the robust H∞ control for uncertain stochastic
systems with state delay.

Before proceeding further, we give the following lemma
which will be used in the proof of our main results.
Lemma 1. Wang et al. [1992] Let A, D, S, W and F be real
matrices of appropriate dimensions such that W > 0 and
F T F ≤ I. Then, we have the following:

1)For scalar ε > 0 and vectors x, y ∈ Rn

2xT DFSy ≤ ε−1xT DDT x + εyT ST Sy.

2)For any scalar ε > 0 such that W − εDDT > 0

(A + DFS)T W−1 ( A + DFS)

≤ AT (W − εDDT )−1A + ε−1ST S.

3.1 Robust Stochastic Stabilization

In this section, we propose a sufficient condition for the
stochastic asymptotically mean-square stabilization result.
The main result is given in the following theorem.
Theorem 2. Consider the uncertain stochastic delay sys-
tem (1) and (3) with ν(t) = 0. Given scalars h > 0 and
µ,this system is robustly stochastically stabilizable if there
exist scalars ε1 > 0, ε2 > 0 and matrices

X > 0, Q = QT ≥ 0, R = RT ≥ 0, G = GT ≥ 0,

H = HT ≥ 0, Zi = ZT
i > 0, i = 1, 2,

L =

[
L1

L2

L3

]
, S =

[
S1

S2

S3

]
, J =

[
J1

J2

J3

]
and Y such that the following LMIs hold.

Ω11 AdX Ω13 XNT
e XET

∗ −G XNT
ad XNT

ed XET
d

∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0

∗ ∗ ∗ ∗ ε2MMT −X

 < 0, (9)

Φ hL hS hJ
∗ −hZ1 0 0
∗ ∗ −hZ1 0
∗ ∗ ∗ −hZ2

 < 0, (10)

where

Ω11 = AX + XAT + BY + Y T BT + ε1MMT + G + H,

Ω13 = XNT
a + Y T NT

b ,

Φ = Φ1 + Φ2 + ΦT
2 ,

Φ1 =

[
0 0 0
∗ µQ 0
∗ ∗ −R

]
,

Φ2 =
[
L + J S − L −S − J

]
.

In this case, an appropriate state feedback controller can
be chosen by

u(t) = Kx(t), K = Y X−1. (11)

Proof. Applying the controller (11) to (1) with ν(t) = 0,
we obtain the resulting closed-loop system as

dx( t ) = [(AcK + ∆AcK(t))x(t) + (Ad + ∆Ad(t))x(t− τ(t))]dt

+[(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− τ(t))]dω(t) (12)

where
AcK = A + BK, ∆AcK(t) = MF (t)NcK , NcK = Na + NbK. (13)

Let
P = X−1, Q = X−1GX−1, R = X−1HX−1, (14)
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then, from (9), it is easy to see that

P−1 − ε2MMT > 0. (15)

Now, use the Lyapunov function candidate as (8) for the
system in (12) and by Itô′s formula, we obtain:

dV (x(t), t) = L V (x(t), t)dt + 2x(t)T P [(E + ∆E(t))x(t)

+(Ed + ∆Ed(t))x(t− τ(t))]dω(t) (16)

where

L V (x(t), t)dt = x(t)T (Q + R)x(t)− (1− τ̇(t))x(t− τ(t))T Q

·x(t− τ(t))−
∫ t

t−h

ẋ(s)T (Z1 + Z2)ẋ(s)ds− x(t− h)T Rx(t− h)

+2x(t)T P [(AcK + ∆AcK(t))x(t) + (Ad + ∆Ad(t))x(t− τ(t))]

+[(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− τ(t))]T P

·[(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− τ(t))],

it follows from (4) that

L V (x(t), t)dt ≤ x(t)T (Q + R)x(t)− (1− µ)x(t− τ(t))T Q

·x(t− τ(t))− x(t− h)T Rx(t− h)−
∫ t

t−h

ẋ(s)T (Z1 + Z2)ẋ(s)ds

+2x(t)T P [(AcK + ∆AcK(t))x(t) + (Ad + ∆Ad(t))x(t− τ(t))]

+[(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− τ(t))]T P

·[(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− τ(t))]. (17)

Denote

L V1(x(t), t) = x(t)T (Q + R)x(t)− x(t− τ(t))T Qx(t− τ(t))

+2x(t)T P [(AcK + ∆AcK(t))x(t) + (Ad + ∆Ad(t))

·x(t− τ(t))] + [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− τ(t))]T

·P [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− τ(t))], (18)

L V2(x(t), t) = µx(t− τ(t))T Qx(t− τ(t))

−x(t− h)T Rx(t− h)−
∫ t

t−h

ẋ(s)T (Z1 + Z2)ẋ(s)ds. (19)

Noting (15), using Lemma 1 in (18), we have

2x(t)T P [∆AcK(t)x(t) + ∆Ad(t)x(t− τ(t))]

= 2x(t)T PMF (t)[NcKx(t) + Nadx((t− τ(t))]

≤ ε1x(t)T PMMT Px(t) + ε−1
1 [NcKx(t)

+ Nadx((t− τ(t))]T [NcKx(t) + Nadx((t− τ(t))] (20)

and

[Ē + M F (t)N̄ ]T P [Ē + MF (t)N̄ ] ≤

ĒT (P−1 − ε2MMT )−1Ē + ε−1
2 N̄T N̄ (21)

where Ē = [E Ed 0], N̄ = [Ne Ned 0]. Therefore, it
follows from (18) and (20)-(21) that

L V1(x(t), t) ≤ ξ(t)T Θ1ξ(t) (22)

where

ξ(t) =
[
x(t)T x(t− τ(t))T x(t− h)T

]T
,

Θ1 =

[
Ω̄11 PAd 0
∗ −Q 0
∗ ∗ 0

]
+ ε−1

1

[
NT

cK

NT
ad
0

][
NcK Nad 0

]
+

[
ET

ET
d
0

]
(P−1 − ε2MMT )−1

[
E Ed 0

]
+ε−1

2

[
NT

e

NT
ed
0

][
Ne Ned 0

]
with Ω̄11 = PAcK +AT

cKP T +ε1PMMT P +Q+R. On the other
hand, pre- and post-multiplying (9) by diag(P, P, I, I, I)
results in

Ω̄11 PAd NT
cK NT

e ET

∗ −Q NT
ad NT

ed ET
d

∗ ∗ −ε1I 0 0
∗ ∗ ∗ −ε2I 0

∗ ∗ ∗ ∗ ε2MMT − P−1

 < 0, (23)

which, by Schur complement, implies that Θ1 < 0.This
together with (22) implies that for all ξ(t)T 6= 0 we have

L V1(x(t), t) < 0. (24)

Now, we observe the L V2(x(t), t) in (19). From the Leibniz-
Newton formula, the following equations are true for any
of the matrices L, S and J with appropriate dimensions:

2ξ(t)T L[x(t)− x(t− τ(t))−
∫ t

t−τ(t)

ẋ(s)ds] = 0,

2ξ(t)T S[x(t− τ(t))− x(t− h)−
∫ t−τ(t)

t−h

ẋ(s)ds] = 0,

2ξ(t)T J [x(t)− x(t− h)−
∫ t

t−h

ẋ(s)ds] = 0.

Add them to (19), then

L V2(x(t ) , t) ≤ ξ(t)T [Φ + hLZ−1
1 LT + hSZ−1

1 ST + hJZ−1
2 JT ]ξ(t)

−
∫ t

t−τ(t)

[ẋ(s)T Z1 + ξ(t)T L]Z−1
1 [LT ξ(t) + ZT

1 ẋ(s)]ds

−
∫ t−τ(t)

t−h

[ẋ(s)T Z1 + ξ(t)T S]Z−1
1 [ST ξ(t) + ZT

1 ẋ(s)]ds

−
∫ t

t−h

[ẋ(s)T Z2 + ξ(t)T J ]Z−1
2 [JT ξ(t) + ZT

2 ẋ(s)]ds

≤ ξ(t)T [Φ + hLZ−1
1 LT + hSZ−1

1 ST + hJZ−1
2 JT ]ξ(t).

We can write it in the following form:
L V2(x(t), t) ≤ ξ(t)T Θ2ξ(t)

where Θ2 = Φ+hLZ−1
1 LT +hSZ−1

1 ST +hJZ−1
2 JT . Which, by

Schur complement, (10) implies that Θ2 < 0,we have
L V2(x(t), t) < 0. (25)

So, from (17)-(19),(24) and (25), we can obtain
L V (x(t), t) ≤ L V1(x(t), t) + L V2(x(t), t) < 0. (26)

Then, by Xu et al. [2002] Definition 1 and Kolmanovskii
et al. [1992], we know that the closed-loop system in (12)
is robustly stable. The proof of Theorem 2 is complete.

Remark 1. If R = 0, Z1 = Z2 = 0, Theorem 2 provides a
complementary method to the result in Xu et al. [2002],
Th.1.

When there are no parameter uncertainties in the system
in (1) and (3), Theorem 2 is specialized as follows.
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Corollary 3. Consider the stochastic delay system in (1)
and (3) with v(t) = 0, ∆A(t) = 0, ∆Ad(t) = 0, ∆B(t) =
0, ∆E(t) = 0 and ∆Ed(t) = 0. Then, this system is stochas-
tically stabilizable if there exist matrices as in Theorem 2
such that the following LMI and (10) hold.[

Ω̃11 AdX XET

∗ 0 XET
d

∗ ∗ −X

]
< 0.

where Ω̃11 = AX + XAT + BY + Y T BT + G + H. In this case,
the controller can be chosen as Theorem 2.

3.2 Robust H∞ Control

In this section, we propose a sufficient condition for the
solvability of robust H∞ control problem for uncertain
stochastic delay systems. The main result is given in the
following theorem.
Theorem 4. Consider the uncertain stochastic delay sys-
tem (Σ).Given scalars h > 0, γ > 0 and µ, then this system
is robustly stochastically stabilizable with disturbance at-
tenuation γ if there exist scalars ε1 > 0, ε2 > 0 and matrices

X > 0, Q = QT ≥ 0, R = RT ≥ 0, G = GT ≥ 0,

H = HT ≥ 0, Zi = ZT
i > 0, i = 1, 2,

L̄ =

[
L
0

]
, S̄ =

[
S
0

]
, J̄ =

[
J
0

]
and Y such that the following LMIs hold.

Ω11 AdX Ω13 XNT
e XET XCT + Y T DT

∗ −G XNT
ad XNT

ed XET
d 0

∗ ∗ −ε1I 0 ET
ν 0

∗ ∗ ∗ −ε2I 0 0

∗ ∗ ∗ ∗ ε2MMT −X 0
∗ ∗ ∗ ∗ ∗ −I

 < 0,

(27)Φ̄ hL̄ hS̄ hJ̄
∗ −hZ1 0 0
∗ ∗ −hZ1 0
∗ ∗ ∗ −hZ2

 < 0, (28)

where Ω11, Ω13, L, S, J are given in Theorem 2,
Φ̄ = Φ̄1 + Φ̄2 + Φ̄T

2 ,

Φ̄1 =

0 0 0 PBν

∗ µQ 0 0
∗ ∗ −R 0

∗ ∗ ∗ −γ2I

 ,

Φ̄2 =
[
L̄ + J̄ S̄ − L̄ −S̄ − J̄ 0

]
.

In this case, an appropriate state feedback controller can
be chosen by

u(t) = Kx(t), K = Y X−1. (29)

Proof. By the state feedback in (29), the system (Σ)
becomes

(Σc) : dx(t) = [(AcK + ∆AcK(t))x(t) + (Ad + ∆Ad(t))x(t− τ(t))

+Bνν(t)]dt + [(E + ∆E(t))x(t) + (Ed + ∆Ed(t))

·x(t− τ(t)) + Eνν(t)]dω(t), (30)

z(t) = CcKx(t) (31)

where AcK and ∆AcK(t) are given in (13), and
CcK = C + DK.

It is easy to see that (27-28) implies the LMI in (9-10), so
that the closed-loop system (Σc) is robustly stochastically

stable. Next, according to Xu et al. [2002] Definition 2, we
shall show that system (Σc) satisfies

‖z(t)‖E2 < γ‖ν(t)‖2 (32)

for all nonzero ν(t) ∈ L2[0,∞),where

‖z(t)‖E2 = (E {
∫ ∞

0

|z(t)|2dt})1/2.

To this end, we assume zero initial condition, that is,
x(t) = 0 for t ∈ [−h, 0]. Thus, by Itô′s formula, we can derive

E {V (x(t), t)} = E {
∫ t

0

L V (x(s), s)ds} (33)

where the Lyapunov function candidate V (x(t), t) is given
in (8),and

dV (x ( t), t) = L V (x(t), t)dt + 2x(t)T P [(E + ∆E(t))x(t)

+(Ed + ∆Ed(t))x(t− τ(t)) + Eνν(t)]dω(t) (34)

where

L V (x(t), t)dt

≤ x(t)T (Q + R)x(t)− (1− µ)x(t− τ(t))T Qx(t− τ(t))

−
∫ t

t−h

ẋ(s)T (Z1 + Z2)ẋ(s)ds− x(t− h)T Rx(t− h)

+2x(t)T P [(AcK + ∆AcK(t))x(t) + (Ad + ∆Ad(t))

·x(t− τ(t)) + Bνν(t)] + [(E + ∆E(t))x(t)

+(Ed + ∆Ed(t))x(t− τ(t)) + Eνν(t)]T P

·[(E + ∆E(t))x(t) + (Ed + ∆Ed(t))x(t− τ(t))

+Eνν(t)] (35)

and Q > 0, R > 0 are defined in (14). Now,set

J (t) = E {
∫ t

0

[z(s)T z(s)− γ2ν(s)T ν(s)]ds} (36)

where t > 0. From (33) to (36), it is easy to show that

J (t) = E {
∫ t

0

[z(s)T z(s)− γ2ν(s)T ν(s) + L (V x(s), s)]ds}

−E {V (x(t), t)}

≤ E {
∫ t

0

[z(s)T z(s)− γ2ν(s)T ν(s) + L (V x(s), s)]ds}. (37)

Denote

L V1(x(t), t) = x(t)T (Q + R)x(t)− x(t− τ(t))T Qx(t− τ(t))

+2x(t)T P [(AcK + ∆AcK(t))x(t) + (Ad + ∆Ad(t))

·x(t− τ(t))] + [(E + ∆E(t))x(t)

+(Ed + ∆Ed(t))x(t− τ(t)) + Eνν(t)]T P [(E + ∆E(t))x(t)

+(Ed + ∆Ed(t))x(t− τ(t)) + Eνν(t)], (38)

L V2(x(t), t) = −x(t− h)T Rx(t− h) + µx(t− τ(t))T Qx(t− τ(t))

+2x(t)T PBνν(t)−
∫ t

t−h

ẋ(s)T (Z1 + Z2)ẋ(s)ds. (39)

By Lemma 1 , it can be shown that for ε1 > 0P∆AcK(t) + ∆AcK(t)T P P∆Ad(t) 0 0

∆Ad(t)T P 0 0 0
0 0 0 0
0 0 0 0


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=

PM
0
0
0

F (t)
[
NcK Nad 0 0

]

+

NT
cK

NT
ad
0
0

F (t)T
[
MT P 0 0 0

]
. (40)

Considering P = X−1, it then follows from (27) that (15)
is satisfied, therefore, by Lemma 1 again, we have

[Ē1+ M F (t)N̄1]T P [Ē1 + MF (t)N̄1] ≤

ĒT
1 (P−1 − ε2MMT )−1Ē1 + ε−1

2 N̄T
1 N̄1 (41)

where Ē1 = [E Ed 0 Eν ], N̄ = [Ne Ned 0 0]. Therefore,
L V1(x(t), t) ≤ ξ̄(t)T Ξξ̄(t) (42)

where

ξ̄(t) =
[
x(t)T x(t− τ(t))T x(t− h)T ν(t)T

]T
,

Ξ =

Ω̄11 PAd 0 0
∗ −Q 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


+ε−1

1

NT
cK

NT
ad
0
0

[
NcK Nad 0 0

]
+[ĒT

1 (P−1 − ε2MMT )−1Ē1 + ε−1
2 N̄T

1 N̄1].

By the same line as pervious subsection, we have

L V2(x(t), t) ≤ ξ̄(t)T [Φ̃ + hL̄Z−1
1 L̄T + hS̄Z−1

1 S̄T + hJ̄Z−1
2 J̄T ]ξ̄(t)

where

Φ̃ = Φ̃1 + Φ̄2 + Φ̄T
2 ,

Φ̃1 =

0 0 0 PBν

µQ 0 0
∗ −R 0
∗ ∗ 0

 .

Observe

z(s)T z(s)− γ2ν(s)T ν(s) + L V (x(s), s)

= x(s)T CT
cKCcKx(s)− γ2ν(s)T ν(s) + L V (x(s), s)

= ξ̄(s)T

CT
cKCcK 0 0 0

0 0 0 0
0 0 0 0

0 0 0 −γ2I

 ξ̄(s) + L V (x(s), s)

≤ ξ̄(s)T {

Ω̄11 + CT
cKCcK PAd 0 0
∗ −Q 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


+ε−1

1

NT
cK

NT
ad
0
0

[
NcK Nad 0 0

]
+[ĒT

1 (P−1 − ε2MMT )−1Ē1 + ε−1
2 N̄T

1 N̄1]}ξ̄(s)

+ξ̄(s)T [Φ̃ +

0 0 0 0
∗ 0 0 0
∗ ∗ 0 0

∗ ∗ ∗ −γ2I

 + hL̄Z−1
1 L̄T + hS̄Z−1

1 S̄T

+hJ̄Z−1
2 J̄T ]ξ̄(s)

= ξ̄(s)T Γξ̄(s) + ξ(s)T [Φ̄ + hLZ−1
1 LT + hSZ−1

1 ST

+hJZ−1
2 JT ]ξ(s). (43)

Now, pre- and post-multiplying (27) by diag(P, P, I, I, I, I)

result in
Ω̄11 PAd NT

cK NT
e ET CT

cK

∗ −Q NT
ad NT

ed ET
d 0

∗ ∗ −ε1I 0 ET
ν 0

∗ ∗ ∗ −ε2I 0 0

∗ ∗ ∗ ∗ ε2MMT − P−1 0
∗ ∗ ∗ ∗ ∗ −I

 < 0, (44)

which, by Schur complement, (44) implies that
Γ < 0. (45)

On the other hand, (28) implies that

Φ̄ + hL̄Z−1
1 L̄T + hS̄Z−1

1 S̄T + hJ̄Z−1
2 J̄T < 0. (46)

From (43,45-46), we obtain
z(s)T z(s)− γ2ν(s)T ν(s) + L V (x(t), t) < 0.

So, from (37)

J (t) ≤ E {
∫ t

0

[z(s)T z(s)− γ2ν(s)T ν(s) + L (V x(s), s)]ds}

< 0 (47)

for all t > 0.Then, (32) follows immediately from (47) and
(36). The proof of Theorem 4 is complete.

In the case when there are no parameter uncertainties in
the system (Σ), Theorem 4 is specialized as follows.
Corollary 5. Consider the stochastic delay system (Σ) with
∆A(t) = 0, ∆Ad(t) = 0, ∆B(t) = 0, ∆E(t) = 0 and ∆Ed(t) =
0. Then, this system is stochastically stabilizable with
disturbance attenuation γ if there exist matrices as in
Theorem 4 such that the following LMI and (28) hold.Ω̃11 AdX XCT + Y T DT XET

∗ −G 0 XET
d

∗ ∗ −I ET
ν

∗ ∗ ∗ −X

 < 0

where Ω̃11 is given in Corollary 3. In this case, the
controller can be chosen as Theorem 4.

4. NUMERICAL EXAMPLE

In this section, we shall give numerical examples to show
the benefit of our results.

Example: Xu et al. [2002] Consider the uncertain stochas-
tic delay system (Σ) with parameters as follows:

A =

[
−1 1 0
0.2 0.5 −1
0.3 0.3 −1.2

]
, Ad =

[
−0.2 0.1 0
0.1 −0.8 0.2
1 −0.3 −1

]
,

B =

[
1 0
0 1
1 0

]
, Bν =

[
0.1
0

0.2

]
,

E =

[
0.5 0.1 0.2
0 1 −0.1

−0.2 0.3 0

]
, Ed =

[
−0.5 0 0.2
0.1 0.4 0.1
0.2 −0.1 0.5

]
,

Eν =

[
0

0.2
−0.3

]
, M =

[
0

0.1
0.1

]
,

C =
[
0.5 0.1 0

]
, D =

[
0.1 −0.3

]
,

Na =
[
0.1 0 0.1

]
, Nad =

[
0 0.1 0.1

]
,

Ne =
[
0.1 0.2 0

]
, Ned =

[
0 0.1 0.2

]
, Nb =

[
0.2 0

]
.
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Using Matlab LMI Control Toolbox to solve the LMIs (27-
28), we obtain the solution as follows:

X =

[
5.3142 −0.6633 3.9000
−0.6633 4.4041 3.1194
3.9000 3.1194 7.6861

]
,

Y =

[
−54.2389 −25.2927 −57.8588
−9.1690 −18.8504 −11.5039

]
.

Therefore, by Theorem 4, it follows that the robust H∞
control problem is solvable, and the desired state feedback
control law can be chosen as

u(t) =

[
−15.1525 −11.4229 4.7969
−7.8046 −10.1056 6.5648

]
x(t).

Next, we shall show the large upper bounds h and
small minimum disturbance attenuations γ on many time-
varying rates µ. h, µ and γ are the properties of conser-
vatism for systems.

Table 1 lists the upper bounds on the time delay h for
many µ by Theorem 4 in this note.

Table 1. Maximum h for many µ and γ = 1.8

µ 0.3 0.5 0.9

Theorem 4 5.0661× 109 1.0413× 109 2.5232× 107

Table 2 lists the minimum disturbance attenuations γ for
many µ and h = 1 by Theorem 4 in this note.

Table 2. Minimum γ for many µ and h = 1

µ 0.3 0.5 0.9

Theorem 4 0.0615 0.0790 0.2351

It is clear that the upper bound time-delay h and time-
varying rate µ are large enough , while the disturbance
attenuation γ is small. Hence, the results guarantee the low
conservatism for systems. Unfortunately, the correspond-
ing h and γ are always worse in most delay-dependent
results for various systems, such as He et al. [2004], Wu
et al. [2004] and He et al. [2007].

The key why we gained these excellent results is we pro-
posed the conditions in terms of weak coupling LMI equa-
tions. The equation in (27) is deduced via constructing a
more efficient Lyapunov function candidate and adopting
LMI approach, which guarantee the low conservatism of
systems. (28) is deduced by adopting free-weighting matrix
technique to deal with some terms in Lyapunov candidate.
(28) involves free-weighting matrices ,which can be valued
freely, and the properties of conservatism mainly. And (27)
is coupled with (28) just only by Q. So, the weak cou-
pling equations in Theorem 4 is low conservatism, delay-
dependence with large time-delays, large time-varying rate
and small disturbance attenuation.

5. CONCLUSION

An improved Lyapunov functional candidate has been pro-
posed in this note, where we incorporate the more terms
to reduce the conservatism, which is the base of low con-
servatism. The LMI approach and free-weighting matrix
technique have been adopted, which is the possibility of
low conservatism. The weak coupling equations have been
presented, which is the key of gaining low conservatism
with large time-delays, large time-varying rate and small
disturbance attenuation. Some numerical examples have

been provided to demonstrate the usefulness of the pro-
posed criteria.
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