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Abstract: This paper presents sufficient conditions based on dilated LMIs to analyze and
synthesize controllers that minimize the L2-norm of the the closed-loop system for spatially
varying interconnected polytopic systems. The approach presented here searches for a parameter
dependent Lyapunov function (PDLF) by dilating the original LMIs. This dilation not only
helps in the search for a PDLF but also introduces extra degrees of freedom which may result
in further reduction of conservatism. Approaches to synthesize full-order polytopic controllers
and reduced-order, reduced-structure controllers are also presented here.
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1. INTRODUCTION

The problem of finding suitable controllers for inter-
connected systems has attracted the attention of re-
searchers for more than three decades. Earlier approaches
to deal with such systems rely on designing first a pre-
compensator to decouple the system into sub-systems. The
next step is to design a controller for each of the sub-
systems (Siljak, 1978). However, the final controller will
have a centralized structure as shown in Fig. 1, where G0,
G1, . . . are subsystems of the interconnected system G.

G1

Centralized Controller K

G0 G2

Fig. 1. Centralized Control Structure

The main problem associated with this approach is that
modern MIMO controller design techniques may fail if
the number of sub-systems becomes very large. In some
cases interacting systems are distributed spatially and
their interactions depends on the spatial location of one
subsystem with respect to another. In (Curtain and Zwart,
1995) and (v. Keulen, 1993) a detailed mathematical anal-
ysis has been presented for systems having continuous time
and space dynamics, while (D’Andrea and Dullerud, 2003)
have considered continuous-time and discrete-space sys-
tems. In this paper the framework proposed in (D’Andrea
and Dullerud, 2003) is used, which is briefly summarized
here.

Consider the configuration shown in Fig. 2, consisting
of identical subsystems G. The overall spatially intercon-
nected system Ḡ can be represented as

[

Txt(t, s)
Sxs(t, s)

z

]

=





Ātt Āts B̄t
1

Āst Āss B̄s
1

C̄t
1 C̄s

1 D̄11





[

xt

xs

w

]

(1)

where xt is the temporal state vector , z is the output
vector and d is the input vector of one subsystem, T and
S are the temporal differential and spatial shift operators
defined as:

Tx(t, s) =
∂x(t, s)

∂t
,

Six(t, s) = x(t, s1, . . . , si + 1, . . . , sL) (2)

and s = [s1, ..., sL] represents the spatial co-ordinates.
Physically, the spatial states xs represent the interactions
among the subsystems.

z
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Fig. 2. Spatially Interconnected System

The assumption that the same system is replicated at
each node of a fixed lattice, is relaxed in (Wu and
Yildizoglu, 2005) by considering nearly identical subsys-
tems present at the nodes of the spatial lattice, if these can
be represented in Linear Fractional Transformation (LFT)
form.The approach presented there then searches for a
common Lyapunov function over a set of all allowed plants.
In order to reduce the conservatism which may arise due
to single Lyapunov function extra degree of freedom is
introduced in the form of multipliers or scaling matrices.

In this paper the approach presented in (Chughtai and
Munro, 2004) is extended to spatially varying intercon-
nected polytopic (SVIP) systems. These are systems which
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can be represented as a convex combination of a num-
ber of vertex plants, whose dynamics vary only spatially.
The approach presented here searches for a parameter-
dependent Lyapunov function (PDLF) in a systematic
way. This can been achieved by dilating the original LMIs.
This dilation not only helps in search for PDLF but also
introduces extra degree of freedom which may result in
further reduction of conservatism. Two cases of controller
synthesis are considered here:

1. Full-order interconnected polytopic controllers.
2. Reduced-order decentralized robust controller.

For the first case LMI conditions are presented while for
the second a hybrid LMI-evolutionary approach is used.

The paper is organized as follows: Section 2 introduces
the notation used in the paper along with a review of
previous results. In section 3 sufficient conditions based on
dilated LMIs for SVIP systems are presented to analyze
robust performance. Section 4 deals with controller syn-
thesis based on the analysis conditions in section 3. Both
proposed approaches are applied to a simple example and
results are compared with those achieved with previously
presented LMI conditions. This is followed by concluding
remarks in Section 5.

2. NOTATION AND PRELIMINARIES

For brevity let us define xT =
[

xtT xsT
]

, where xt ∈

Rnt ,xs ∈ Rns , ns =
L
∑

i=1

nsi
+

L
∑

i=1

ns
−i

, xs1 ∈ Rn
si

, w ∈ Rl,

z ∈ Rk. Also define,

Ā =

[

Ātt Āts

Āst Āss

]

, B̄1 =

[

B̄t
1

B̄s
1

]

C̄1 =
[

C̄t
1 C̄s

1

]

(3)

If (I − Āss) is invertible then using a bilinear transfor-
mation the discrete (spatial) part of the system (1) can
be converted to continuous as presented in (D’Andrea and
Dullerud, 2003).

Let the transformed system be represented as G, then (1)
can be written as

[

Ξx
z

]

=

[

A B1

C1 D11

] [

x
w

]

(4)

where all matrices have compatible dimensions and Ξ =
[

T 0
0 S

]

, where now S represents the spatial shift operator

after a bilinear operation.

The sets P and X are defined as

P = {diag(P t, P s) : P t ∈ Rnt×nt , P s ∈ Ps}

Ps := {diag(P s1 , ..., P sL) : P si ∈ Rnsi
×nsi } (5)

X = {diag(Xt,Xs) : Xt ∈ X t,Xs ∈ X s}

X t := {Xt ∈ Rnt×nt : XtT = Xt > 0} (6)

X s := {diag(Xs1 , ...,XsL) :

Xsi ∈ Rnsi
×nsi ,XsT = Xs} (7)

Combining Theorem 1 and Theorem 2 of (D’Andrea and
Dullerud, 2003), the distributed version of the Kalman-
Yacubovich-Popov Lemma (KYP) can be presented as
follows

Theorem 2.1. A system (G) is well-posed, stable and has
L2-norm < γ if there exists X ∈ X such that the following
inequality is satisfied:





AT X + XA XB1 CT
1

BT
1 X −γ2I DT

11
C1 D11 −I



 < 0 (8)

The above theorem shows that after a bilinear transfor-
mation on spatial coordinates the overall system is stable,
well-posed and has L2-norm < γ if there exists X ∈ X ,
such that

xT XΞx + ΞxT Xx +
1

γ
zT z − γwT w < 0 (9)

In the sequel we will use the notation sym(X) to represent
X + XT and in LMIs we will replace the symmetric terms
in the upper matrix triangle by ∗.

3. PERFORMANCE ANALYSIS

Using the approach presented in (Chughtai and Munro,
2004) the following result can be proved for spatially inter-
connected systems, which may be referred to as extended
KYP lemma.

Theorem 3.1. A system (G) is well-posed, stable and has
L2-norm < γ if there exists X ∈ X and a matrix F ∈ P
such that the following inequality is satisfied:







F1A + AT FT
1 X − F1 + AT FT

2 F1B1 CT
1

X − FT
1 + F2A −F2 − FT

2 F2B1 0
BT

1 F 2
1 BT

1 FT
2 −γI DT

11
C1 0 D11 −γI






< 0

(10)

Proof: Let y = Ξx, then we can write (4) in its ”descriptor”
form as

EΞζ =

[

0 I
A −I

]

ζ +

[

0
B1

]

w

z = [C1 0] ζ + D11w (11)

where ζT =
[

xT yT
]

and E =

[

I 0
0 0

]

. Let a candidate

Lyapunov function for the system (4) be

V = xT Xx = ζ

[

X 0
0 0

]

ζ

=

[

X F1

0 F2

]

E = ET

[

X 0
FT

1 FT
2

]

(12)

where X ∈ X and F ∈ P. Now, we can write (9) for (11)
as

ζT

[

X F1

0 F2

]

EΞζ + ΞζT ET

[

X 0
FT

1 FT
2

]

ζ

+
1

γ
zT z − γwT w < 0 (13)

Using (11) and applying the Schur complement, (13) holds
if (10) holds. This completes the proof.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7768



3.1 Robust Performance

The extended KYP lemma presented above can be used
to analyze the L2-norm of a system. Note that in (10)
there are no product terms between the Lyapunov matrix
and state space model matrices. This observation helps in
analyzing the robust performance of SVIP systems using
PDLF.

To show this, let the interconnected system (4) be spatially
varying, but be contained in a convex polyhedron Φ which
is defined as

Φ = {M(α) :=

p
∑

i=1

αiM,α ≥ 0,

p
∑

i=1

αi = 1} (14)

where, M(α) =

[

A(α) B1(α)
C1(α) D11(α)

]

. That is, each state space

model matrix may be written as a convex combination of p
given vertices M1, . . . ,Mp. Let us also define a parameter-
dependent Lyapunov matrix as

X(α) = diag(Xt,Xs(α)),Xs(α) =

p
∑

i=1

αiX
s
i (15)

If the inequality (10) holds for each extreme system defined
by Mi simultaneously, one can multiply each of these
inequalities by αi > 0 and sum them up to obtain





AT (α)F T
1

+ F1A(α) ∗ ∗ ∗

X(α) − F T
1

+ F2A(α) −F2 − F T
2

∗ ∗

B1(α)T F T
1

B1(α)T F T
2

−γI ∗

C1(α) 0 D11(α) −γI



 < 0

(16)

The above result can be formally presented as follows.

Theorem 3.2. A spatially varying interconnected poly-
topic system is stable, well posed and has worst case L2-
norm less than γ if there exist Xi ∈ X , ∀i = 1, . . . , p
and F ∈ P such that (16) holds for all p vertex systems
simultaneously.

4. CONTROLLER SYNTHESIS

For large-scale systems, the complexity of a centralized
control structure makes it not only difficult to synthesize
but also difficult to implement. A simpler control structure
is a spatially varying interconnected polytopic controller
(SVIPC) which is shown in Figure 3. The least complex
control structure considered here is a spatially decentral-
ized robust control (SDRC), which is as shown in Figure
4, where the same controller is used at each node point.

K2

G0 G2G1

K0 K1

Fig. 3. Spatially Varying Interconnected Polytopic Control
Structure

Let a state space representation of the plant be given as

K

G0 G2G1

K K

Fig. 4. Decentralized Robust Control Structure

[

x
z
y

]

=

[

A B1 B2

C1 D11 D12

Cy Dyw 0

] [

x
w
u

]

(17)

e = r − y

For the synthesis problem, LMI (16) becomes a bilinear
matrix inequality in X, γ and K. Next we will deal with
how to solve this BMI problem for the SVIPC and SDRC
cases.

4.1 SVIPC

Let the vertex SVIP controllers (Ki) after a bilinear
transformation be given as

[

xKi

u

]

=

[

AKi
BKi

CKi
DKi

] [

xKi

y

]

(18)

where xKi
∈ Rnt+ns . In order to apply Theorem 3.1 define

a permutation matrix P of (D’Andrea and Dullerud, 2003)
as

P :=

[

PG
T 0 PK

T 0
0 PG

s 0 PK
s

]

PG
T =

[

Int

0

]

, PK
T =

[

0
Int

]

,

(19)

PG
s =



















Ins1
0 . . . 0

0 . . . . . . 0
0 Ins

−1
. . . 0
...

0 0 . . . Ins
−L

0 . . . . . . 0



















(20)

PK
s =



















0 . . . . . . 0
Ins1

0 . . . 0
0 . . . . . . 0
0 Ins

−1
. . . 0
...

0 0 . . . Ins
−L



















(21)

It can be seen that PT P = I. After applying this
transformation the closed loop system Gc becomes

Āc = PAcP
T , B̄c = PBc,

C̄c = CcP
T , D̄c = Dc. (22)

Furthermore, let F1 = F2 = F will lead to the following
BMI condition
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











sym(AJ + B2W ) ∗ ∗ ∗ ∗ ∗

U + (A + B2DKCy)T sym(NA + V Cy) ∗ ∗ ∗ ∗

X1 − JT + AJ + B2W X2 − ST + A + B2DKCy sym(−J) ∗ ∗ ∗

XT
2

− I + U X3 − NT + NA + V Cy −I − S sym(−N) ∗ ∗

BT
1

+ DT
ywDT

K
BT

2
BT

wNT + DywV T BT
1

+ DT
ywDT

K
BT

2
BT

wNT + DywV T
−γI ∗

C1J + D12W C1 + D12DKCy 0 0 D11 + D12DKDyw −γI













< 0

(27)









ĀcF + FT ĀT
c X − F + FT ĀT

c B̄c FT C̄T
c

X − FT + ĀcF −F − FT B̄c 0
B̄T

c B̄T
c −γI D̄T

c

C̄cF 0 D̄c −γI









< 0

(23)

Remark 1 : The assumption F1 = F2 = F is found to
be very restrictive for some examples. Thus, one may get
either infeasibility or larger Γ.

Applying a congruence transformation on (23) with T =
diag(P, P, I, I), we obtain









AcF̄ + F̄T AT
c X̄ − F̄ + F̄T AT

c Bc F̄T CT
c

X̄ − F̄T + AcF̄ −F̄ − F̄T Bc 0
BT

c BT
c −γI DT

c

CcF̄ 0 Dc −γI









< 0

(24)

where X̄ = PXPT and F̄ = PFPT .

Remark 2 : After this transformation X̄ has the form
(D’Andrea and Dullerud, 2003),

X̄ =

[

X1 X2

XT
2 X3

]

(25)

where, X1,X3 ∈ X and X2 ∈ P

Now we can use the change of variable technique proposed
in (Scherer et al., 1997) by defining new variables U , V ,
W as

[

U V
W DK

]

=

[

R NB2

0 I

] [

AK BK

CK DK

] [

L 0
CyJ I

]

+

[

N
0

]

A [J 0]

S = NJ + RL (26)

where J,N,R,L ∈ P. This transformation leads to lin-
earity in the variables, and the resulting LMI condition is
given as (27).

Now, let us consider a SVIP system (G) which resides in a

polyhedron Φ defined by (14) where Mi =

[

Ai B1i B2

C1i D11i D12

Cy Dyw 0

]

of appropriate dimensions, such that

A1. B2, Cy, D12 and Dyw.

It can be seen that under this assumption we can guarantee
stability and performance using a PDLF as discussed in
Theorem 3.2. Then we can synthesize an SVIP controller
by following approach.

1. Solve the LMI problem

min
Ui,Vi,Wi,DKi,(J,N,X3i)∈P,(X1i,X2i)∈X

γ

s.t (27) hold, ∀i = 1, . . . , p (28)

2. Find MKi =

[

AKi
BKi

CKi
DKi

]

by inverting (26).

3. Find a controller for each node point as convex
combination of p extreme points.

4. Apply an inverse bi-linear transformation, as dis-
cussed in (D’Andrea and Dullerud, 2003), to convert
the controller to discrete space.

4.2 SDRC

The problem of designing SDRC for SVIP systems is a
non-convex problem. The approach presented here is based
on a hybrid evolutionary-algebraic approach proposed in
(Farag and Werner, 2004) for non-convex synthesis prob-
lems involving lumped LTI systems, where the fitness
of controllers was evaluated by solving algebraic Riccati
equations. Here LMIs will be used to assess fitness. A
genetic algorithm (GA) is used to construct K and the
LMI solver is applied to calculate P , Θ and γ. An algo-
rithm to find a controller that minimizes the worst case
performance γ over the complete operational envelope of
an SVIP system, can be summarized as follows:

• Generate an initial random population of controllers
{K1, . . . ,Kµ},

where Ki =
{

Ak
i, Bk

i, Ck
i,Dk

i
}

can have any struc-
ture.

• Evaluate the objective function:

f(Ki) =

{

γ if Acl is stable

κ(Acl) + β if Acl is unstable
(29)

where Acl is the A-matrix of the closed-loop system,
κ(Acl) is the maximum real part of the eigenvalues of
Acl, β is a penalty on destabilizing controllers, and γ
is the worst-case performance obtained by solving

min
F∈P,Xi∈X

γ

s.t (16) holds, ∀i = 1, . . . , p (30)

using standard LMI solvers
• Evolve the current generation using evolutionary

operators to produce the next generation
• Repeat evaluate and evolve steps until a stopping

criterion is met.

4.3 Example

To illustrate the above algorithm, consider the problem
of temperature control of a nonuniform two-dimensional
plate. This example is a modified version of an example
given in (D’Andrea and Dullerud, 2003) (to test the above
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algorithm, a spatial variation of the thermal conductivity
has been introduced). Let Q be a heat source, then the
multi-dimensional heat transfer in the absence of any
convective heat loss, is given by

ρc
∂T

∂t
= ∇(K∇T ) + Q (31)

where T , ρ, c, K are the temperature, density, specific
heat and thermal conductivity of the material and ∇ =
( ∂

∂x
, ∂

∂y
). It is assumed that the thermal conductivity of the

plate varies linearly along both the dimensions according
to the following relation.

K(x, y) = K0(1 − ǫ
x

L1
− ǫ

y

L2
) (32)

Using the finite difference approximation of the two spatial
partial derivatives results in the following continuous-time,
discrete-space approximation,

∂T

∂t
= (K ′ − αδ1 − αδ2)(S1 + S−1

1 − 2)T

+(K ′ − αδ1 − αδ2)(S2 + S−1
2 − 2)T

−
2α

L1
(S1 − S−1

1 )T −
2α

L2
(S2 − S−1

2 )T

+
1

ρc
Q, (33)

where K ′ = K0(1 − ǫ), α = ǫ K0

2ρc
, δ1 = 2x/L1 − 1 and

δ2 = 2y/L2 − 1. Thus, the extreme plants are obtained
for δ1,2 = ±1 The boundary conditions are taken to be
T (t, 0, y) = T (t, L1, y) = T (t, x, 0) = T (t, x, L2) = 0.
Let d1 be the input disturbance and r be the reference
temperature. The control objective is disturbance rejection
with minimum control effort.

For comparison, first the approach presented in (Wu and
Yildizoglu, 2005) (the controller shown in Figure 3) is
applied to the system for different values of ǫ; the achieved
performance γw is shown in Table 1. It can be seen
that as the variation in the system increases the worst-
case L2-norm also increases. Next, SVIP controllers are

Table 1. Worst-case L2-norm (γw) as a func-
tion of ǫ.

ǫ γw γd γro

0.1 1.549 1.253 1.98
0.3 2.332 1.542 4.79
0.7 3.436 2.984 9.53

designed using the LMI conditions 27. The worst case
L2-norm achieved by these controllers are represented as
(γd). It can be seen that better performance is achieved
using the dilated LMIs, which is due to the parameter-
dependent Lyapunov function. To complete the compar-
ison, fixed-structured controllers are also designed using
the hybrid algorithm presented above. The worst-case L2-
norm achieved by this controller, after 100 generations
with 20 individuals, is γro. Note that the worst case perfor-
mance index has increased, which indicates a deterioration
in achieved control objectives. However, this is the price
one has to pay in order to achieve simply structured
controllers. The main advantage of which is that now
the communication burden among the controllers of sub-
systems has reduced which makes these controllers easier
to implement.

5. CONCLUSIONS

This paper presents sufficient LMI conditions to analyze
the performance of SVIP systems in terms of its worst
case induced L2-norm. These LMIs search for PDLF which
makes the approach less conservative than previously pre-
sented LMI conditions. Furthermore, these LMIs have an
extra degree of freedom due to presence of slack variables
which further reduce the conservativeness. These slack
variables also help in the synthesis of less conservative
controllers by multi objective optimization. This, however,
is the topic of our future research.

The analysis condition proposed here is extended to syn-
thesize distributed controllers. Two cases of controller syn-
thesis were considered,

1. Full order interconnected polytopic controllers.
2. Reduced order decentralized robust controller.

Full order polytopic controllers are designed by minimizing
worst case induced L2-norm of the closed loop system. It
has been shown that this problem is convex after a change
of variables and can be solved by standard LMI solvers.

To design reduced-order, fixed-structure controllers, anal-
ysis LMIs are used in a combined GA-LMI algorithm .
The proposed algorithm involves genetic operators to span
the solution space and LMI solvers to find the worst case
performance.

The efficiency of the proposed algorithms is demonstrated
by applying it to the problem of controlling the tempera-
ture profile of a large non-uniform plate. The result shows
that using the proposed LMI conditions, less conservative
controllers can be synthesized compared with existing ap-
proaches.
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