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Abstract: The paper addresses the fault detection problem for discrete event systems on the basis of a 
Petri Net (PN) model. Assuming that the structure of the PN and the initial marking are known, faults are 
modelled by unobservable transitions. Moreover, we assume that there may be additional unobservable 
transitions that are associated with the system legal behaviour and that the marking reached after the firing 
of a transition is unknown. We propose a diagnoser that works on-line: it waits for the firing of an 
observable transition and employs an algorithm based on the definition of some integer linear 
programming problems to decide whether the system behaviour is normal or exhibits some possible faults.  

 

1. INTRODUCTION 

Faults are physical conditions that cause a device or a 
component to fail to perform in a required manner. A fault 
may cause failures, i.e., the termination of the ability of an 
item to perform a function. If a fault is detected early and 
removed, the failure may be avoided. Hence, automatic fault 
detection and diagnosis in Discrete Event Systems (DES) is a 
research area that received a lot of attention in the last years. 
The analysis of the fault detection and diagnosis of DES is 
based in the related literature on models that describe the 
expected behaviour of the system in the presence of faults 
(see the works by Sampath et al. 1995, 1998 for an overview 
of the literature). In (Sampath et al. 1995) the diagnoser is a 
finite state machine containing the system state estimate and 
the transition from a normal state to a fault state is triggered 
by an unobservable event. Moreover, Lunze and Schroder 
(2004) use a stochastic automaton and a diagnostic algorithm 
that detects the existence of a fault and isolates possible 
sensor or actuator faults or identifies plant faults. However, 
these approaches require the explicit determination of all the 
system states. In order to cope with the state explosion 
problem, Petri Net (PN) models have been used in the context 
of DES fault detection. Hadjicostis and Verghese (1999) 
consider faults in PN in the form of losses or duplications of 
tokens. Sahraoui et al. (1987) use PN to model the normal 
behaviour of systems and consider as faults the occurrence of 
events that do not match firing conditions properly. 
Benveniste et al. (2003) propose an approach to handle 
unbounded asynchrony in DES diagnosis using net unfolding. 
In addition, Prock (1991) presents a technique for on-line 
fault detection monitoring the number of tokens marking 
places belonging to p-invariants: when the number of tokens 
inside p-invariants changes then a fault is detected. Ushio et 

al. (1998) extend the necessary and sufficient condition for 
diagnosability to unbounded PN and introduce a method for 
the modification of coverability trees in order to detect failure 
transitions. Moreover, Giua and Seatzu (2005) construct a 
diagnoser using PN models and a deterministic automaton 
whose edges are labelled by the observable transitions and 
nodes are reachable from the initial state by a firing sequence 
of transitions. However, the drawback of this diagnoser 
approach is that it requires the computation of a new 
diagnoser if the system changes. In a recent paper, Ramirez-
Trevino et al. (2007) propose an on-line approach for fault 
diagnosis of DES by the interpreted PN formalism. 

This paper deals with the fault detection and diagnosis of 
DES on the basis of a PN model of the system. Assuming 
that the structure of the PN and the initial marking are 
known, faults are modelled by unobservable transitions. 
Moreover, we assume that there may exist additional 
unobservable transitions that are associated with the system 
legal behaviour. The proposed diagnoser works on-line: it 
waits for an observable event and an algorithm decides 
whether the system behaviour is normal or may exhibit some 
possible faults. To this aim, some Integer Linear 
Programming Problems (ILPP) are defined and provide 
eventually the minimal sequences of silent transitions 
containing the faults that may have occurred. 

The proposed approach avoids the state explosion problem 
because it neither requires the complete knowledge of the 
state reachability set as in (Corona et al. 2004) nor that of the 
automaton states as in (Sampath et al. 1995). Moreover, it is 
a general technique since no assumption is imposed on the 
reachable state set that can be unlimited and few properties 
must be fulfilled by the structure of the PN modeling the 
system. In addition, the benefit of this approach compared 
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with the fault detection methods proposed in the related 
literature is that it does not require the computation of a new 
diagnoser when the system changes or it is reconfigurated. 

2. BASIC DEFINITIONS ON PETRI NETS 

This section recalls some basic definitions on PN (Peterson, 
1981).  

Definition 1: A PN is a bipartite graph described by the four-
tuple PN=(P, T, Pre, Post), where P is a set of places with 
cardinality m, T is a set of transitions with cardinality n, Pre: 
P×T→   and Post: P×T→   are the pre- and post-
incidence matrices respectively, which specify the arcs 
connecting places and transitions. More precisely, for each 
p∈P and t∈T element Pre(p,t) (Post(p,t)) is equal to a natural 
number indicating the arc multiplicity if an arc going from p 
to t (from t to p) exists, and it equals 0 otherwise. Note that 

 is the set of non-negative integers. Matrix C=Post-Pre is 
the m×n incidence matrix of the net 

For the pre- and post-sets we use the dot notation, e.g., 
•t={p∈P: Pre(p,t)>0}. A PN is said pure if for each p∈P and 
t∈T it holds Pre(p,t)Post(p,t)=0, i.e., p can not be 
simultaneously an input and output place of the same 
transition t. 

The state of a PN is given by its current marking, which is a 
mapping M: P→ , assigning to each place of the net a 
nonnegative number of tokens. A PN system 〈PN,M0〉 is a net 
PN with an initial marking M0. 

A transition tj∈T is enabled at a marking M if and only if (iff) 
for each p∈•tj, it holds M(p)≥Pre(p,tj) and we write M[tj> to 
denote that tj∈T is enabled at marking M. When fired, tj 
produces a new marking M’, denoted by M[tj>M’ that is 
computed by the PN state equation M’=M+C jt  where jt  is 
the n-dimensional firing vector corresponding to the j-th 
canonical basis vector. 

Let 1 2, ,..., kb b bt t tσ =  be a sequence of transitions (or firing 

sequence) and let k=|σ| be its length, given by the number of 
transitions that σ contains. If a transition t∈T appears in the 
sequence σ, we write t∈σ. Moreover, the notation M[σ〉M’ 
indicates that the sequence of the enabled transitions σ may 
fire at M yielding M’. We also denote σ : T→ n  the firing 
vector associated with a sequence σ, i.e., σ (t)=q if transition 
t is contained q times in σ. A marking M is said reachable 
from 〈PN,M0〉 iff there exists a firing sequence σ such that 
M0[σ〉M. The set of all markings reachable from M0 defines 
the reachability set of 〈PN,M0〉 and is denoted by 
R(PN,M0)={M|∃ σ : M0[σ〉M}. 

A PN having no oriented cycles is called acyclic. We recall 
the following result for this subclass of PN: 

Theorem 1: (Corona et al. 2004) Let PN be an acyclic PN. 

(i) If vector y satisfies equation M0+Cy≥0 there exists a firing 
sequence  σ firable from M0 and such that the firing vector 
associated to  σ is y. 

(ii) A marking M is reachable from M0 iff there exists a non 
negative integer solution y satisfying the state equation 
M=M0+C y. 

A language may be a formal way describing the behaviour of 
a DES. The event set E={ei} is viewed as an alphabet and 
L⊂E* is the set of all words (sequence of events) generated 
by the system, also called the DES language (Cassandras and 
Lafortune 1999). 

If a PN PN=(P, T, Pre, Post) is used to model the DES, the 
system events are associated with transitions. 

Definition 2: Given a PN, the function λ: T→E∪{ε} is the 
transition labelling function that assigns to each transition 
t∈T either a symbol ei∈E or the empty string ε. 

We assume that the set of transitions is partitioned into 
T=To∪Tu, where To represents the set of observable 
transitions and Tu represents the set of unobservable or silent 
transitions. Accordingly, the labelling function λ is defined as 
follows: if t∈Tu then λ(t)=ε, if t∈To then λ(t)≠ ε. 

In this paper we assume that the same label ei∈E cannot be 
associated to more than one transition. Hence, the labelling 
function restricted to To is an isomorphism and with no loss 
of generality we assume Ε= To. 

Definition 3: Given a net PN=(P, T, Pre, Post) and a subset 
TA⊆T of its transitions, we define the TA-induced subnet of 
PN as the new net PNA=(P, TA, PreA, PostA) where PreA and 
PostA are the restrictions of Pre and Post to TA. In other 
words, the net PNA is obtained from PN removing all 
transitions in T\TA. We also write PNA∠TAPN. 

In the following we consider the subnet PNu∠TuPN. 

3. FAULT DETECTION PROBLEM STATEMENT 

3.1 Basic Definitions 

In this section we provide some further definitions necessary 
to introduce the fault detection problem for DES. 

Let ∆f={f1,… fF} be the set of faults that may occur in the 
system and F the corresponding cardinality. Each fi∈∆f is 
modelled by an unobservable fault transition τi∈Tf with 
Tf={τ1, τ2,…, τF}⊆Tu, since an observable fault transition is 
trivially diagnosed. Consequently, denoting by 
Tnf={τF+1, τF+2,…, τF+H} the set of H unobservable transitions 
that do not correspond to faults, it holds Tu=Tf∪Tnf. We say 
that a fault fi with i∈{1,…,F} occurs when the corresponding 
fault transition τi∈Tf fires. Obviously, the observable 
transitions are n-H-F=O in number. 

Moreover, we denote by w the word of events associated with 
the sequence σ∈T* with w=λ(σ), using the extended form of 
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the transition labelling function λ: T* → E* in the usual 
manner. Note that the length of a sequence σ is greater than 
or equal to the corresponding word w (i.e., |σ|≥|w|). In fact, if 
σ contains q transitions labelled by ε, then |σ|=q+|w|. In 
addition, we denote by σu∈σ  (σo∈σ) the subsequence of σ 
composed by the unobservable (observable) transitions and 
by uσ : Tu→ H F+  ( oσ : To→ O ) the corresponding firing 
vector. Analogously, we denote by σf (σnf)∈σu the 
subsequence of σu composed by the fault (no fault) 
transitions and by fσ  ( nfσ ) the corresponding firing 

vectors. By the assumption Ε=To, it holds σo=w. Note that in 

the following we denote the firing vector = o

u

⎡ ⎤
⎢ ⎥
⎣ ⎦

σ
σ

σ
. 

The following definitions are necessary for the diagnoser 
specification. 

Definition 4. Given the initial marking M0∈ m  and an 
observable sequence σo, we define  

Σ(M0, σo)={σ∈T* | M0[σ 〉 , σo∈σ and |σ|>|σo|)} 

the set of interpretations of σo at M0. 

More precisely, Σ(M0, σo) is the set of sequences containing 
the observable sequence σo and the unobservable sequences 
whose firing at M0 is consistent with the observed sequence 
σo. 

Definition 5. Given the initial marking M0∈ m  and an 
observable sequence σo, we define the set of interpretations 
of σo at M0 containing the fault fk as: 

Σ(M0, σo,fk)={ σ∈Σ(M0, σo) | τk∈σ }. 

Among the above sequences, we want to select those whose 
firing vector is minimal, that we call minimal interpretations. 

Definition 6. Given the initial marking M0∈ m  and an 
observable sequence σo, we define the set of minimal 
interpretations of σo at M0 containing the fault fk: 

Σm(M0, σo,fk)={ σ∈Σ(M0, σo,fk) |¬∃ σ'∈Σ(M0, σo,fk) such that 
| σ'|<|σ|} 

and we denote Ym(M0, σo,fk)={ σ ∈ m  | σ∈Σm(M0, σo,fk)} 
the corresponding set of firing vectors. 

3.2 The Diagnoser Definition 

In this paper we deal with the problem of detecting at each 
observed DES event whether the behaviour is normal or a 
fault may have occurred. Hence we address the specification 
of a diagnoser. 

We assume the following properties hold for the system 
under investigation: 

A1) the structure of the net PN modelling the DES is known 
and pure; 

A2) the initial marking M0 is known; 
A3) the labels associated to the firing of transitions in To can 

be observed; 
A4) the subnet PNu∠TuPN is acyclic. 
 
In particular, assumption A1 imposes that each transition 
firing changes the token distribution of the net. Moreover, A2 
and A3 are assumptions that exhibit the level of the system 
knowledge. Finally, assumption A4 is commonly adopted in 
the field of fault detection and it means that cycles of non-
observable events are not admissible (Sampath et al. 1995). 
The inputs of the diagnoser are the initial marking M0 and the 
observed word w∈L, where L is the language of the DES. 
Assuming that w=λ(σ), the sequence 

1 1 2 2 ... h hu u ut t tα α ασ = σ σ σ  with h≥1 denotes the sequence of 
observable and unobservable transitions corresponding to the 
word w. More precisely, 1 2 ... ho t t tα α ασ = =w with itα ∈To for 

i=1,…,h is the observable subsequence of σ and each 

iuσ ∈Tu* is the sequence of unobservable transitions that 

have occurred before transition itα  for i=1,…,h and after 

transition 1it
−α  for i=2,…,h. 

Definition 7: A diagnoser is a function Φ that associates to 
each observed word w∈T*o    and to each initial marking 
M0∈ m  the following sets: 

• Φ(M0,w)= N  
if the behaviour of the system is normal during the observed 
word w because there exists no firing sequence containing a 
transition τk∈Tf that is consistent with the observation. 
• Φ(M0,w)={(fk, σ )| Σ(M0, σo,fk)≠∅ and σ ∈Ym(M0, σo,fk) 

with σo=w} 
if fault fk∈∆f may have occurred during the observed word w. 
In such a case ∀ fk∈∆f such that Σ(M0, σo,fk)≠∅ the diagnoser 
provides the firing vector of a minimal interpretation of σo=w 
containing fault fk. 

• Φ(M0,w)={(fk, σ )| Σ(M0, σo,fk)≠∅ and σ ∈Ym(M0, σo,fk) 
with σo=w}∪{N} 

if two cases may occur: i) some faults fk∈∆f may have 
occurred during the observed word w, ii) the behaviour of the 
system may be normal. 
 
Definition 8: A PN system <PN,M0> is said diagnosable if 
for each observed word w∈T*o the diagnoser detects either a 
normal behaviour or a set of faults that must have occurred 
because they are contained in each firable sequence 
consistent with the observation. 

Example 1: As an example, let us consider the net in Fig. 1. 
Assume that the set of observable transitions is To={t1, t2, t3} 
and the set of unobservable transitions is Tu={τ1,…,τ4}, where 
faults f1 and f2 are associated to transitions τ1 and τ2, 
respectively. Let us also assume that the system is in the 
initial marking M0=[1 1 0 0 0 0 0]T and word w=t1=σo is 
observed. We infer Σm(M0,t1,f1)={ (τ1t1)} and Σm(M0,t1,f2)=∅. 
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Hence, 0 1( , )tΦ M ={(f1, [ ]0 0 1 0 0 0 T1σ = | ), N} 
is obtained by the diagnoser, i.e., fault f1 may have occurred 
but the behaviour may also be normal. 

Now, assume that at marking M0 word w=t1t2 is observed. 
The sets of minimal interpretations of  σo=t1t2 at M0 are 
Σm(M0,t1t2,fk)=∅ for k=1,2. Hence, the diagnoser provides 
Φ(M0,(t1t2))=N, i.e., fault f1 has not occurred during the 
observed sequence and the behaviour must be normal. 
 

 

Fig. 1. The PN of Example 1. 

4. THE DIAGNOSER SPECIFICATION 

Given a DES with language L and a PN system 〈PN,M0〉 
modelling the DES and satisfying A1-A4, this section 
proposes an algorithm that specifies on-line a diagnoser Φ 
for each initial marking M0∈ m  at the occurrence of an 
observed word w∈L. To show the algorithm properties, the 
following results are proven. 

Proposition 1: Let us consider a DES with language L and a 
PN system 〈PN,M0〉 modelling the DES and satisfying A1-
A4. Given an observation w∈L denoted by 
w= 1 2 ... ho t t tα α ασ = , if there exists fk∈∆f and a sequence 

1 1 ... h hu ut tα ασ = σ σ  with | iuσ |≥0 such that σ∈Σm(M0, σo,fk), 
then the following ILPP 1 admits at least a solution. 

ILPP 1: min
1 2 1

( , ,..., ) =
hT

F Hh ii
u u u uϕ +

=
∑1  σ σ σ σ  (1) 

s.t. 1( , ,  wξ 0, M Post Pre) = 

=

,

-1

-1

1

T

1

 for =1,...,

σ     for =1,...,

σ 0 for =1,...,

σ  for =1,...,

σ  for =1,...,

σ 1

i

i

m
i

F H
i

i u i

i u i

i- u ii
h

F H ii

i h

i hu
i hu

t i hu
t i hu

f

α

α

+

+
=

⎧ ∈
⎪
⎪ ∈
⎪
⎪ ≥
⎪⎪
⎨ ≥
⎪
⎪ + =
⎪
⎪
⎪ ≥
⎪⎩

∑1

M

M + C

M + C Pre 

M + C C M

 

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

 

where Mi is the marking reached after the itα  fire for 

i=1,…,h, F H+1  is the vector of dimensions F+H with each 
element being 1 and 

if
σ ∈ iuσ  for i=1,…,h. 

Proof: Let us assume that there exists a fault fk∈∆f and a 
sequence 1 1 ... h hu ut tα ασ = σ σ  such that σ∈Σm(M0, σo,fk). 
Denoting the evolution of the net 

1 10 α 1 1 α[σ ... [σ h hu h u ht t−〉 〉M M M M , constraints (2a) and (2b) 

are obviously verified. Since the PN PNu∠TuPN is acyclic, by 
Theorem 1 constraints (2c) are verified because they 
guarantee that there exists a firing sequence iuσ  fireable 

from Mi-1 and such that the firing vector associated to iuσ  is 

iuσ . By the hypotheses, at marking Mi-1 the subsequence 

iuσ  enables transition αit  for i=1,…,h, and (2d) is satisfied. 

Moreover, if αit  fires then marking Mi is reached and 
constraints (2e) are verified. Furthermore, since we assume 
that σ∈Σm(M0, σo,fk), there exists at least an unobservable 
subsequence ifσ ∈ σ such that | ifσ |≥1. Consequently, 
constraint (2f) is verified. Hence, the ILPP 1 admits at least a 
solution and selects the firing vectors 

1uσ , …, 
huσ  

minimizing 
1 2

( , ,..., )
hu u uϕ σ σ σ . � 

Remark 1: By Proposition 1, if the ILPP 1 does not admit any 
solution then we can infer that no fault has occurred at M0 
during the observed word w∈T*o. 

Proposition 2: Let us consider a DES with language L and a 
PN system 〈PN,M0〉 modelling the DES and satisfying A1-
A4. Given an observation w∈L denoted by 
w= 1 2 ... ho t t tα α ασ = , the fault fθ∈∆f  is contained in a fireable 
sequence consistent with the observation iff there exists a 
sequence of firing vectors 

1uσ ,…,
iuσ ,...,

huσ  that is a 

solution of the following ILPP 2. 

ILPP 2: min
1 2 1

( , ,..., ) =
hT

F Hh ii
u u u uϕ +

=
∑1  σ σ σ σ  

s.t. 2 ( , ,  , )w θξ τ =0, M Post Pre   

=
-1

-1

1

1

 for =1,...,

σ     for =1,...,

σ 0 for =1,...,

σ  for =1,...,

σ  for =1,...,

σ ( ) 1

i

i

m
i

F H
i

i u i

i u i

i- u ii
h

ii

i h

i hu
i hu

t i hu
t i hu

u

α

α

θτ

+

=

⎧ ∈
⎪
⎪ ∈
⎪
⎪ ≥
⎪⎪
⎨ ≥
⎪
⎪ + =
⎪
⎪
⎪ ≥
⎪⎩
∑

M

M + C

M + C Pre 

M + C C M

 

(3a)

(3b)

(3c)

(3d)

(3e)

(3f)

 

Proof (Only if:) Assume that fault fθ∈∆f may have occurred. 
Hence, there exists σ∈Σm(M0, σo,fθ) such that 

1 1 ... h hu ut tα ασ = σ σ  and 1 10 α 1 1 α[σ ... [σ h hu h u ht t−〉 〉M M M M , 

where | iuσ |≥0 for i=1,…,h and for some i∈{1,…,h} it holds 

τ 
 
3

τ 1

t 1 

τ 
 

2 τ 
 

4 

t 2 t 3 
p 1

p 2

p 3

p 4 

p 5

p 6 

p7 
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τθ∈ iuσ . Constraint (3a) is trivially verified. Moreover, 
following the proof of Proposition 1, we show that for each 

iuσ  for i=1,…,h the associated firing vectors 
iuσ  satisfy 

(3b)-(3e). Since σ∈Σm(M0, σo,fθ), there exists a sequence 

iuσ ∈σ such that τθ∈ iuσ , i.e., 
iuσ (τθ)≥1. Consequently, 

constraint (3f) is verified. This proves that the ILPP 2 admits 
a solution and selects the firing vectors 

1uσ ,…,
iuσ ,...,

huσ  

minimizing 
1 2

( , ,..., )
hu u uϕ σ σ σ . 

(If): If there exists a solution 
1uσ , …, 

huσ  of the ILPP 2, by 

constraints (3a) - (3e) the sequence 1 1 ... h hu ut tα ασ = σ σ  is 
enabled at M0 and may fire yielding the evolution 

1 10 α 1 1 α[σ ... [σ h hu h u ht t−〉 〉M M M M . Moreover, constraint 

(3f) imposes that at least a vector 
iuσ  for some i∈{1,…,h} is 

such that 
iuσ (τθ)≥1. Hence, it holds τθ∈ iuσ ∈σ. 

Consequently, fault fθ∈∆f  may have occurred during the 
sequence σo firing.              � 

Remark 2: By Proposition 2, iff the ILPP 2 admits a solution 

1uσ ,…,
iuσ ,...,

huσ  and for some i∈{1,…,h} 
iuσ (τθ)≥1, 

then there exists a sequence 1 1 ... h hu ut tα ασ = σ σ  such that 

σ∈Σm(M0, σo,fθ). Consequently, we infer that fault fθ may 
have occurred at the occurrence of w=σο at marking M0. 
However, even if the ILPP 2 admits a solution, it is possible 
that there exists a sequence σ∈Σ(M0, σo) where each iuσ ∈σ 

is such that iuσ ∈Tnf*, i.e., each unobservable subsequence 
does not contain any fault transition. In such a case the 
behaviour of the system may also be normal. The following 
proposition allows us to detect such a situation. 

Proposition 3: Let us consider a DES with language L and a 
PN system 〈PN,M0〉 modelling the DES and satisfying A1-
A4. Given an observation w∈L denoted by 
w= 1 2 ... ho t t tα α ασ = , if the following ILPP admits a solution, 
then the behaviour of the system may be normal. 

ILPP 3 min 
1 2 1

( , ,..., ) =
hT

F Hh ii
u u u uϕ +

=
∑1  σ σ σ σ  

s.t. 3( , ,  )wξ =0 u, M C Pre  

=
-1

-1

1

1

 for =1,...,

σ

σ 0 for =1,...,

σ  for =1,...,

σ  for =1,...,

σ 0

i

i

m
i

F H
i

i u i

i u i

i- u ii
hT

F H ii

i h

u
i hu

t i hu
t i hu

f

α

α

+

+
=

⎧ ∈
⎪
⎪ ∈
⎪
⎪ ≥
⎪⎪
⎨ ≥
⎪
⎪ + =
⎪
⎪
⎪ =
⎪⎩

∑1  

M

M + C

M + C Pre 

M + C C M

 

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

 

where 
if

σ ∈ iuσ  for i=1,…,h. 

Proof Let us assume that there exist h vectors 

1 2
, ,...,

hu u uσ σ σ  solution of the ILPP3. By constraints (4a) - 

(4e) there exists a sequence 1 1 ... h hu ut tα ασ = σ σ  such that 

1 10 α 1 1 α[σ ... [σ h hu h u ht t−〉 〉M M M M . Since constraint (4f) 

imposes that 
if

σ =0  for i=1,…,h, it holds σ∈Σ(M0, σo) and 

σ does not contain fault transitions. Hence, the system 
behaviour during the occurrence of w at M0 may be normal. � 

The algorithm shown in Fig. 2 and described in the following 
allows us to specify on-line the diagnoser function Φ.  

The inputs of the diagnoser are the initial marking M0, the PN 
structure and the DES observed word w. Assuming that 
|w|=h, by the labelling function λ we obtain w=λ(σ) and 

1 2 ... ho t t tα α ασ = =w∈σ with itα ∈To for i=1,…,h.  The 

algorithm defines the ILPP1: if the ILPP1 admits no solution 
then by Proposition 1 it is inferred Φ(M0,w)=N (step 4) and 
the algorithm goes to step 7. If the ILPP1 admits a solution, 
Step 5 defines an ILPP 2 for each fθ∈∆f: if the ILPP 2 admits 
a solution σ  for fθ, then by Proposition 2 and Remark 2, it 
holds  that σ ∈Ym(M0, σo,fθ) and the algorithm sets 
Φ(M0,w)=  Φ(M0,w)∪{(fθ, σ )}. Finally, the algorithm has to 
check whether Σ(M0, σo) may contain a sequence of silent but 
not faulty transitions. Hence the ILPP3 is defined (Step 6). 
By Proposition 3, if the ILPP 3 admits a solution then the 
algorithm sets Φ(M0,w)=  Φ(M0,w)∪{N}, i.e., the behaviour 
may either be normal or may correspond to a fault. 

Algorithm 
1. Input: M0∈

m, PN=(P, T, Pre, Post), λ, To , Tu , Tf , Tnf  
Output: Φ 

2. Initializing the algorithm variables. 
w=ε, , h=0, σo ∈ O, o = 0σ  

3. Recording the events. 
Wait until a new event e is observed. 
e=: λ(t); w=wt ; h=h+1, Φ(M0,w)=∅, oσ (t)= oσ (t)+1; 

4. Solving the ILPP 1 
Solve min

1 2
( , ,..., )

hu u uϕ σ σ σ  s.t. 1( , , ,  0wξ  M Post Pre)  

If the ILPP 1 admits no solution then set Φ(M0,w)=N 
and goto 7 

5. Solving the ILPP 2 
for θ=1 to F 

Solve min 
1 2

( , ,..., )
hu u uϕ σ σ σ  s.t. 2( , ,  , )w θξ τ0, M Post Pre   

If the ILPP 2 admits a solution 
1 2

, ,...,
hu u uσ σ σ  then set 

1

h

i
i

u u
=

= ∑ σ σ , o
u

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 
σ

σ =
σ

, Φ(M0,w)=  Φ(M0,w)∪{(fθ, σ )} 

end for 
6. Solving the ILPP 3. 

Solve min 
1 2

( , ,..., )
hu u uϕ σ σ σ  s.t. 3( , ,  )wξ 0, M Post Pre  

If the ILPP 3 admits a solution then set 
Φ(M0,w)=  Φ(M0,w)∪{N}. 

7. Returning to the condition of recording the events. 
goto 3. 

Fig. 2 The algorithm specifying the diagnoser function. 
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The ILPP solved by the algorithm are at most F+2 in number. 
Hence, if the number of fault transitions is not very large, 
then the algorithm can be applied in real time. Moreover, to 
evaluate the computational complexity of the optimization 
problems, we recall that the primary determinants of the 
computational difficulty of an ILPP are the number of integer 
variables. It is easy to infer that in the worst case the 
unknowns of each ILPP are h(m+F+H) in number. However, 
in the examined cases an optimal solution is obtained in a 
short time implementing and solving the ILP problems on a 
PC equipped with a standard solver of optimization 
problems, e.g. Gnu Linear Programming Kit (GLPK, see 
http://www.gnu.org/software/glpk/glpk.html). 

5. AN EXAMPLE 

This section presents an example that shows how the 
diagnoser and the proposed algorithm work and how the 
resulting diagnoser is able to characterize the system 
behaviour. 

Example 2: Let us consider the net in Fig. 1 and described in 
Example 1. Let us observe the word w= 1 2 3 1 3t t t t t  at the initial 
marking M0=[1 1 0 0 0 0 0]T. The algorithm in Fig. 2 
provides the following results: 

0 1( , )tΦ M ={(f1, [ ]1 0 0 | 1 0 0 0 T=σ ),N}, 

0 1 2( , )t tΦ M =N, 0 1 2 3( , )t t tΦ M =N, 

0 1 2 3 1( , )t t t tΦ M ={(f1, [ ]2 1 1 | 1 0 1 1 T=σ ),N}, 

0 1 2 3 1 3( , )t t t t tΦ M ={(f1, [ ]2 1 2 | 1 1 1 1 T=σ ), 

(f2, [ ]2 1 2 | 1 1 1 1 T=σ )} 

Hence, the diagnoser provides an ambiguous solution after 
the observation of w= 1t  because either fault f1 may have 
occurred or the system behaviour may be normal. On the 
other hand, when w= 1 2t t  and w= 1 2 3t t t , the ambiguity is 
solved because in the two cases there exists no firing 
sequence containing a transition τk∈Tf and consistent with the 
observation. An uncertain situation is detected after word 
w= 1 2 3 1t t t t  because either fault f1 may have occurred or the 
system behaviour may be normal. However, when 
w= 1 2 3 1 3t t t t t  is observed the diagnoser decides that the two 
faults f1 and f2 have occurred because the two provided 
minimal interpretations contain both τ1 and τ2. For example, 
the sequence σ= 1 3 2 3 4 1 1 2 3t t t t tτ τ τ τ  may have occurred. 

Note that decisions after each event are taken by the 
diagnoser in 0.074 seconds in the worst case using a PC with 
a 1.73 GHz processor, 1 GB RAM and the GLPK solver. 

6. CONCLUSIONS 

The paper discusses the fault detection problem of Discrete 
Event Dynamical Systems (DES) proposing a diagnoser 
specified in real time by a procedure that is based on a Petri 
Net (PN) model of the system. The on-line procedure stores 
the observed sequence of DES events and the corresponding 
observable PN markings and decides whether the system 

behaviour is normal or some faults may have occurred. To 
this aim, some integer linear programming problems are 
defined by an algorithm that provides, at each observed 
event, the possible occurred faults or detects the system 
normal behaviour. We remark that integer linear 
programming is an accepted methodology to solve problems 
in discrete event systems. However, the computational 
complexity of the proposed identification algorithm increases 
with the number of places, of the silent transitions and of the 
observed transitions of the PN model. Hence, our future 
efforts will be devoted to use appropriate heuristics and 
methodologies to overcome such a drawback. 
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