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Abstract: In this paper, new control strategies based on Linear Matrix Inequalities (LMIs) are
proposed for bilateral teleoperation systems over networks with time delays and packet losses.
The characteristics of the network are thoroughly incorporated in the design and are mainly
discussed in two cases: random packet loss with constant time delays; and random packet loss
with random time varying delays. Correspondingly, a stochastic switching control approach is
designed for the system with random packet loss. The Markov Jump Linear Systems (MJLSs)
framework is applied using time based controllers to guarantee Mean Exponential Stability. The
tracking error is shown to be bounded by the rate of change of the external forces acting on
the teleoperation system. Finally, simulation results with experimentally collected network data
show the performance of the proposed scheme as well as how to fine tune the controller gain.
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1. INTRODUCTION

Bilateral teleoperation is a challenging problem due to
the difficulty posed by the presence of a communication
channel with random transmission delays (Pan et al.,
2006). The situation becomes more complicated when
the communication channel in question has intermittent
transmissions as well as random delays. Internet Protocol
(IP) based networks like the Internet and wireless networks
are the main alternatives that have been considered.

Many teleoperation efforts in recent times have been based
on the wave variable methods developed in (Niemeyer
and Slotine, 1991), including (Anderson and Spong, 1989).
These models impose passivity constraints on the oper-
ator and the environment which cannot be met in all
applications. Other methods require precise knowledge of
the environment, the operator or both so that predictive
methods can be used. These methods provide the ability to
overcome some of the effects of the time delay, but require
a great deal of information about elements that are often
unknown.

Much work has been done in the field of Networked Con-
trol Systems (NCSs), including methods based on Lin-
ear Matrix Inequalities (LMIs) and Markov Jump Linear
Systems (MJLS) that consider networks with packet loss
and varying, bounded delays (Lin and Antsaklis, 2005).
NCS have a different structure from teleoperation systems;
where NCSs have one plant that must be controlled, tele-
operation systems have two or more separate plants whose
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operation must be coordinated. Many teleoperation tasks
consist of interactions with an environment in a complex
manner. Remote manipulation often involves coupling the
dynamics of the controlled device with the environment’s
dynamics. These can change abruptly and drastically de-
pending on the particular task. In telesurgery, for example,
the properties of bone are quite different from those of
muscle.

Work has been done to adapt the controller to the changing
environment (Heredia et al., 1996) and others have sought
to model the operator (Prokopiou et al., 1998) and some
have done both (Zhu and Salcudean, 2000). In the pro-
posed paper, neither models for the operator nor for the
environment are used when deriving the controllers to al-
low for general results that cover a wide range of scenarios
and which would be robust to outside variations. Different
design scenarios are addressed incorporating different lev-
els of knowledge about the network. The first incorporates
packet losses and formulates the teleoperation system as
a Markov Jump Linear System (MJLS) with stochastic
properties. The second deals with random, bounded delays
as well as losses. The main contribution of this work is
the successful integration of the ideas in various NCS
approaches and their adaptation to the bilateral teleoper-
ation problem. Packet losses and bounded time delays are
considered to develop delay-dependent stability conditions
and gain design procedures. The tracking error is shown
to be bounded by the rate of change of the external forces
acting on the teleoperation system.

2. SYSTEM MODELLING

In the teleoperation case, the controller would be updated
both with received packets from the remote site as well
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as local sensor measurements. With control frequencies of
1kHz required for high quality haptic systems (Tanner and
Niemeyer, 2004), our controller would essentially become
a time based controller, therefore a time based approach
is adopted in this paper. The various components are the
master and slave manipulators, the human operator, the
environment and the communication network.

2.1 The Master and Slave Manipulators

In this paper, a linear, single degree of freedom manip-
ulator (Pan et al., 2006) is modelled using state-space
equations, where the master and slave manipulators are
considered identical. The sign conventions depicted in Fig.
1 are adopted for the rest of this work, where um is the
master control signal, us is the slave control signal, fh is
the operator force, fe is the environmental force, xm is the
master position, and xs is the slave position.

sxmx

mu

hf
ef su

Fig. 1. Teleoperation Force Diagram

The manipulator model is considered as

ẋm =Actxm + Bct(um + fh) (1)

ẋs =Actxs + Bct(us − fe) (2)

where b is the damping factor, J is the inertia and

Act =

[

0 1

0 −
b

J

]

, Bct =

[

0
1

J

]

,xm =

[

xm

ẋm

]

,xs =

[

xs

ẋs

]

.

The slave model is analogous to the master model, but the
sign convention on fe is opposite to fh. These models are
then discretized using a sample and hold discretization as

xm[k + 1] = Axm[k] + B(um + fh) (3)

xs[k + 1] = Axs[k] + B(us − fe), (4)

where A = eActTs and B =
∫ Ts

0
eActτdτBct.

2.2 The Operator and The Environment

The operator is not modelled explicitly here. The oper-
ator’s forces are the input to the system. Although no
model is considered, the input force is considered band
limited based on (Ang et al., 2004) where it was shown that
voluntary motion is limited to 6Hz. Anything above that
frequency can be considered an involuntary tremor and
should be filtered electronically for improved precision.
The limitation on the frequency of the operator’s motion
means that its derivative is also bounded. If we take the
Fourier Transform of fh(t), Fh(ω), the frequency bound
means that Fh(ω) = 0, ω ∈ {(−∞,−ωMax) ∪ (ωMax,∞)}.
Using the inverse Fourier transform, the derivative of the
operator’s force can be expressed as

ḟh(t) =

∫ ∞

−∞

−iωFh(ω)e−iωtdω

=

∫ ωMax

−ωMax

−iωFh(ω)e−iωtdω. (5)

So long as
∫ ωMax

ωMax

Fh(ω)dω is finite, then ḟh is bounded.

This condition applies to all practical signals even though
Fh(ω) itself may not be bounded at all points (i.e. for a
DC signal where the transform is the Dirac Delta). The

discrete-time difference function, dh[k] , fh[k]− fh[k − τ ]
where τ is the time delay, is also bounded since it is
the discrete time version of the derivative. This quality
is essential to show that the system is stable.

In the simulations, a spring and damper system is used for
the environment as,

fe = [be ke]xs, (6)

where be is the environmental damping and ke is the
spring constant. Due to the generality of the proposed
methods, any model can be used so long as its difference
function, de[k] , fe[k] − fe[k − τ ], is bounded. In the
event that the environmental forces do not satisfy the
necessary criterion, like with rigid surfaces, the forces can
be separated into high and low frequency content (Tanner
and Niemeyer, 2004). The high frequency elements are
filtered at the slave side and transmitted as haptic events
to the master where they are rendered with open-loop
pulses. The transmitted low frequency signal would ensure
de[k] is bounded.

2.3 The Network

The network delay model will change in the various sec-
tions as the control assumptions are brought more in line
with actual Internet-based teleoperation. The values used
for the simulations will be derived from an experiment
where Internet Control Message Protocol (ICMP) Echo
Request packets were transmitted from Dalhousie Univer-
sity in Halifax, Nova Scotia, Canada to Google.com in
Mountain View, California. This represents a round-trip
distance of 12,000km and provides an illustrative example
of the challenges of transmitting over significant distances.
The packets were sent every second for a week using the
hrPing software program from cFos (http://www.cfos.de).
This program was selected due to its increased time reso-
lution compared to the ping program included with Mi-
crosoft Windows. The elapsed time between the initial
transmission and the response is measured using the num-
ber of CPU cycles, easily providing micro-second resolu-
tion. In this paper, it is assumed that the communication
channel behaves identically in both directions.

3. CONTROL OVER NETWORKS WITH PACKET
LOSS AND CONSTANT DELAY

The stochastic losses are modelled according to a two-
state Markov Chain. The constant delay is defined as τ .
The system is expressed as a Markov Jump Linear System
(MJLS), switching between the open loop and closed
loop configurations. A stability condition and control gain
design method is derived.
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3.1 Modelling and Control Strategy

Force information will be repeated when a packet is lost
according to (7):

f̂h[k + 1] =

{

fh[k − τ ], packet received

f̂h[k], packet lost.
(7)

The system state is updated based on an assumption of
constant velocity and is estimated as (8)

x̂m[k + 1] =

{

xm[k − τ ], packet received
Alossx̂m[k], packet lost

(8)

where Aloss =

[

1 Ts

0 1

]

. Our closed loop controllers are the

same as in the Section 3, repeated here as (9) and (10),
and the open loop controllers are given by (11) and (12)
as:

um[k] =K1

(

xm[k] − xs[k − τ ]
)

− fe[k − τ ] (9)

us[k] =K1

(

xs[k] − xm[k − τ ]
)

+ fh[k − τ ] (10)

um[k] =K2

(

xm[k] − x̂s[k]
)

− f̂e[k] (11)

us[k] =K2

(

xs[k] − x̂m[k]
)

+ f̂h[k]. (12)

3.2 Markov Jump Linear Systems

The system is modelled as a Markov Jump Linear System
(MJLS), switching between the open loop and closed loop
configurations depending on whether or not an update was
received. The random variables are governed by a discrete-
time, discrete-state Markov Chain (MC) ik ∈ {1, 2}, k =
{1, 2, ...} where State 1 represents a received packet and
State 2 is a packet loss. MCs are stochastic processes where
the transition probabilities depend only on the current
state, as in (13).

Tα,β =P (ik+1 = β|ik = α, ik−1 = α1, ..., ik−n = αn)

=P (ik+1 = β|ik = α), (13)

where Tα,β is the probability that the system will transit
from state α to state β. A detailed state history is not
required to make a prediction and is a simple means of
describing many phenomena, including network transmis-
sions (Nilsson and Bernhardsson, 1996).

An MC of this nature is completely described by its
transition matrix which is an organization of all the
transition probabilities into matrix form. The transition
matrix T in (14) represents a two state MC which will
be used to model the packet losses in the communication
channel. It would be a simple exercise to increase the
number of states if a more complicated MC would better
describe the network.

T =

[

T1,1 T1,2

T2,1 T2,2

]

. (14)

For the rest of this work, the system stability is discussed
in terms of stochastic stability. We will be using the
definition of Mean Exponential Stability (MES), which is
a type of second moment stability based on the expected
value of the square of a random variable. MES is defined
as follows (Boukas and Liu, 2002).

Definition 1. A system is MES if for some α > 0, β > 0
and initial state i0 and initial trajectory e0 = e[k], k =
[−τ, 0) if

E
{

‖e[k]‖
2
|e0, i0

}

≤ α ‖e0‖ e−βk. (15)

The error dynamics must be rewritten so that they can
be put into the MJLS framework. By modifying the NCS
formulation in (Kawka and Alleyne, 2006), we define
the augmented state-vectors as (16) and the disturbance
vector as (17).

sm[k] =

[

xm[k]
x̂m[k]

]

, ss[k] =

[

xs[k]
x̂s[k]

]

, (16)

dk =









fh[k] − fh[k − τ ]
fe[k] − fe[k − τ ]

fh[k] − f̂h[k]

fe[k] − f̂e[k]









. (17)

The disturbance vector is not directly related to the
disturbance forces but rather their difference functions.
The error expression is formed of the actual state error
as well as the last known state error:

e[k] = sm[k] − ss[k] =

[

xm[k] − xs[k]
x̂m[k] − x̂s[k]

]

(18)

If the actual state errors are bounded then the last known
state errors will also be bounded.

Using this error definition, the closed loop error dynamics
are (19) and the open loop error dynamics are (20). The
two equations have the same form and so the MJLS
framework can be applied.

e[k + 1] = A1e[k] + A1d
e[k − τ ] + D1d[k] , closed loop

(19)

e[k + 1] = A2e[k] + A2d
e[k − τ ] + D2d[k] , open loop

(20)

where

A1 =
[

(A + BK1) 0

0 0

]

, A1d
=

[

BK1 0

I 0

]

,D1 =
[

B B 0 0

0 0 0 0

]

A2 =
[

(A + BK2) BK2

0 Aloss

]

, A2d
=

[

0 0

0 0

]

,D2 =
[

0 0 B B

0 0 0 0

]

.

3.3 Control Design With Constant Delay and Packet Loss

Theorem 1. If there exists symmetric positive definite ma-
trices P̂i ∈ R2n×2n, Q̂ ∈ R2n×2n, R̂ ∈ R2n×2n and Ŝ ∈
R2n×2n, block diagonal structured matrices Xi ∈ R2n×2n

and Yi ∈ R2n×2m, positive scalar γ and arbitrary scalars
θ2 and θ3 such that (21) holds for i, j = 1, 2 for the time
delay τ and packet loss transition matrix T

∑

j

∑

i

p(α = i, β = j)LMJLS(i, j) < 0, (21)

where LMJLS(α, β) is








Φ11 Φ
T

21
Φ

T

31
(τ + 1)N̂α1

γDα

Φ21 Φ22 Φ
T

32
(τ + 1)N̂α2

γθ2Dα

Φ31 Φ32 Φ33 (τ + 1)N̂α3
γθ3Dα

(τ + 1)N̂
T

α1
(τ + 1)N̂

T

α2
(τ + 1)N̂

T

α3
−(τ + 1)R̂ 0

γD
T

α
γθ2D

T

α
γθ3D

T

α
0 −γI









, (22)

and
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Φ11 = P̂β + (τ + 1)R̂ + N̂α1
+ N̂T

α1
+ XT

α + Xα

Φ21 =−(τ + 1)R̂ + N̂α2
− XαA′T

α − YαA′′T
α + θ2X

T
α

Φ22 = Q̂ − P̂α + (τ + 1)R̂ − θ2A
′
αXT

α − θ2A
′′
αY T

α

−θ2XαA′T
α − θ2YαA′′T

α + Ŝα

Φ31 = N̂α3
− N̂T

α1
− XαA′T

αd
− YαA′′T

αd
+ θ3X

T
α

Φ32 =−N̂T
α2

− θ2XαA′T
αd

− θ2YαA′′T
αd

−θ3A
′
αXT

α − θ3A
′′
αY T

α

Φ33 =−Q̂ − N̂α3
− N̂T

α3
− θ3A

′
αd

XT
α − θ3A

′′
αd

Y T
α

−θ3XαA′T
αd

− θ3YαA′′T
αd

,

then the teleoperation system described by (19), and (20)
will be MES stable with a bounded error for the control
gains Ki = Y ′T

i (X ′T
i )−1, i = 1, 2.

Proof: The Lyapunov functional is designed as

V (e, k, ik) =V1 + V2 + V3 (23)

V1 =eT
k Pik

ek , V2 =

τ
∑

j=1

eT
k−jQek−j ,

V3 =

0
∑

i=−τ

k−1
∑

j=i+k

∆eT
j R∆ej . (24)

Define ∆V = V (e, k+1)−V (e, k). Considering a transition
from State α to State β, E{∆V } can be computed as (25)

E{∆V } =
∑

α,β

p(ik = α, ik+1 = β)E{∆V |ik = α, ik+1 = β}

(25)

The goal of this section is to derive a convenient expression
for E{∆V |ik = α, ik+1 = β}. With zk = [eT

k+1, e
T
k , eT

k−τ ]T ,
E{∆V1} is developed as:

E{∆V1(e, k, ik)|ik = α, ik+1 = β} = eT
k+1Pβek+1 − eT

k Pαek

= zT
k

[

Pβ 0 0
0 −Pα 0
0 0 0

]

zk.

The terms ∆V2 and ∆V3 in the Lyapunov functional can be
derived similar as in (Walker et al., 2007), but the matrices
M , N , and P are now state dependent. They are omitted
here due to limited space. This yields (26)









Φ11 Φ
T

21
Φ

T

31
(τ + 1)N̂α1

γDα

Φ21 Φ22 Φ
T

32
(τ + 1)N̂α2

γθ2Dα

Φ31 Φ32 Φ33 (τ + 1)N̂α3
γθ3Dα

(τ + 1)N̂
T

α1
(τ + 1)N̂

T

α2
(τ + 1)N̂

T

α3
−(τ + 1)R̂ 0

γD
T

α
γθ2D

T

α
γθ3D

T

α
0 −γI









< 0,

(26)

where

Φ11 =P̂β + (τ + 1)R̂ + N̂α1
+ N̂T

α1
+ XT

α + Xα

Φ21 = − (τ + 1)R̂ + N̂α2
− XαAT

α + θ2X
T
α

Φ22 =Q̂ − P̂α + (τ + 1)R̂ − θ2AαXT
α − θ2XαAT

α + Ŝα

Φ31 =N̂α3
− N̂T

α1
− XαAT

αd
+ θ3X

T
α

Φ32 = − N̂T
α2

− θ2XαAT
αd

− θ3AαXT
α

Φ33 = − Q̂ − N̂α3
− N̂T

α3
− θ3Aαd

XT
α − θ3XαAT

αd
.

To solve for K1 and K2, break down the system matrices
as

A1 =

[

A 0
0 0

]

+

[

B 0
0 0

]

K1 , A′
1 + A′′

1K1 (27)

A1d
=

[

0 0
I 0

]

+

[

B 0
0 0

]

K1 , A′
1d

+ A′′
1d

K1 (28)

A2 =

[

A 0
0 I

]

+

[

B B
0 0

]

K2 , A′
2 + A′′

2K2 (29)

A2d
=

[

0 0
0 0

]

+

[

0 0
0 0

]

K2 , A′
2d

+ A′′
2d

K2, (30)

where

Ki =

[

Ki 0
0 Ki

]

, i = 1, 2. (31)

Define Yi , XiK
T

i where Xi and Yi have the following
block diagonal structure

Xi =

[

X ′
i 0

0 X ′
i

]

, Yi =

[

Y ′
i 0
0 Y ′

i

]

. (32)

The final expression for E{∆V |ik = α, ik+1 = β} is given
in (33): LMJLS(α, β) is









Φ11 Φ
T

21
Φ

T

31
(τ + 1)N̂α1

γDα

Φ21 Φ22 Φ
T

32
(τ + 1)N̂α2

γθ2Dα

Φ31 Φ32 Φ33 (τ + 1)N̂α3
γθ3Dα

(τ + 1)N̂
T

α1
(τ + 1)N̂

T

α2
(τ + 1)N̂

T

α3
−(τ + 1)R̂ 0

γD
T

α
γθ2D

T

α
γθ3D

T

α
0 −γI









, (33)

where

Φ11 =P̂β + (τ + 1)R̂ + N̂α1
+ N̂T

α1
+ XT

α + Xα

Φ21 = − (τ + 1)R̂ + N̂α2
− XαA′T

α − YαA′′T
α + θ2X

T
α

Φ22 =Q̂ − P̂α + (τ + 1)R̂ − θ2A
′
αXT

α

− θ2A
′′
αY T

α − θ2XαA′T
α − θ2YαA′′T

α + Ŝα (34)

Φ31 =N̂α3
− N̂T

α1
− XαA′T

αd
− YαA′′T

αd
+ θ3X

T
α

Φ32 = − N̂T
α2

− θ2XαA′T
αd

− θ2YαA′′T
αd

− θ3A
′
αXT

α

− θ3A
′′
αY T

α

Φ33 = − Q̂ − N̂α3
− N̂T

α3
− θ3A

′
αd

XT
α − θ3A

′′
αd

Y T
α

− θ3XαA′T
αd

− θ3YαA′′T
αd

. (35)

We can now conclude that the overall system will be stable
if (36) holds:

∑

j

∑

i

p(α = i, β = j)LMJLS(i, j) < 0. (36)

Theorem 1 provides a means of incorporating the packet
loss process into the design method. A stable system is
guaranteed, with a bounded error.

3.4 Simulation Results

For the master and slave manipulators, the inertia term
is J = 0.0203 kgm2 and the damping term is b =
0.0923 Nms/rad. The ideal spring in (Prokopiou and
Tzfestas, 1999), ke = 40N/m, with an additional damping
term, be = 5 Nms/rad, is used to simulate the environ-
ment.

We are using a sampling frequency of 1kHz to match the
human sense of touch (Tanner and Niemeyer, 2004). γ is
chosen as 1. The input is a sine wave with a frequency of
0.5Hz, satisfying the bounded derivative assumption. The
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time delay, τ , is 55 ms which is the average value of the
delay of all received packets from the network experiment.
The transition matrix was produced using the data from
the experiment mentioned in the modelling section.

The data was scanned sequentially and the conditional
probabilities were computed based on the fraction of the
time that, given that the current packet was received (or
lost), the next packet was received (or lost). This method
identifies parameters of the MC associated with the ob-
served process, which produced the transition matrix in
(37). This transition matrix corresponds to an equivalent
loss rate of approximately 7.5%.

T =

[

0.9258 0.0742
0.9200 0.0800

]

(37)

It is interesting to note that although packet loss often
occurs in bursts on IP networks, the transition matrix
shows that in this experiment the packet losses can be
described by a Bernoulli process since the rows of the MC
are almost identical.

Again, various values of θ2 and θ3 were considered to
produce gains which yield acceptable errors. In Figure 2,
a slight diagonal trough exists in which both position is
minimized.
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Fig. 2. Position Erorr vs. θ2 and θ3 with Packet Loss

Choosing θ2 = 0.6 and θ3 = 0.02, the control gains are
K1 = [−33.0526 −11.1172] and K2 = [−3.0011 −3.1232].
The system performance with those gains can be seen in
Figure 3. The high frequency oscillations in the control
signals represent the controller attempting to compensate
for an accumulated error after the occurrence of packet
losses. When the data is examined closely, a beat frequency
can be observed as the effects of a packet loss are reflected
back and forth between the master and slave.

In these simulation results, the error is once again bounded
and is related to the magnitude of the disturbances. The
designed system tracks both position and forces well.

4. CONTROL OVER LOSSY NETWORKS WITH
BOUNDED DELAYS

Often in practical applications it is impossible to know the
exact value of the delay, but we can frequently determine
an upper and lower bound. In this section an upper bound,
τM , and a lower bound, τm, are considered.

0 1 2 3 4

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Manipulator Positions

Time (s)

P
o

s
it
io

n
 (

m
)

 

 

x
m

x
s

0 1 2 3 4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Disturbances

Time (s)

F
o

rc
e

 (
N

)

 

 

d
h

d
e

0 1 2 3 4

−1

−0.5

0

0.5

1

1.5

2

Master Tracking

Time (s)

F
o

rc
e

 (
N

)

 

 

f
h

u
s

0 1 2 3 4

−1

−0.5

0

0.5

1

1.5

2

Slave Tracking

Time (s)

F
o

rc
e

 (
N

)

 

 

f
e

u
m

Fig. 3. Response with Proposed Controller

4.1 Control Design With Bounded Delay and Packet Loss

Theorem 2. If there exists symmetric positive definite ma-
trices P̂i ∈ R2n×2n, Q̂ ∈ R2n×2n, R̂ ∈ R2n×2n, and Ŝ ∈
R2n×2n, block diagonal structured matrices Xi ∈ R2n×2n

and Yi ∈ R2n×2m, positive scalar γ and arbitrary scalars
θ2 and θ3 with a lower bound τm on the delay and an upper
bound τM and with packet loss transition matrix T such
that (38) holds for i = 1, 2 :

∑

j

∑

i

p(α = i, β = j)Lbounded(i, j) < 0, (38)

and Lbounded(α, β) is








Φ11 Φ
T

21
Φ

T

31
(τM + 1)N̂α1

γDα

Φ21 Φ22 Φ
T

32
(τM + 1)N̂α2

γθ2Dα

Φ31 Φ32 Φ33 (τM + 1)N̂α3
γθ3Dα

(τM + 1)N̂
T

α1
(τM + 1)N̂

T

α2
(τM + 1)N̂

T

α3
−(τM + 1)R̂ 0

γD
T

α
γθ2D

T

α
γθ3D

T

α
0 −γI









,

where

Φ11 =P̂β + (τM + 1)R̂ + N̂α1
+ N̂T

α1
+ XT

α + Xα

Φ21 = − (τM + 1)R̂ + N̂α2
− XαA′T

α − YαA′′T
α + θ2X

T
α

Φ22 =(τM − τm + 1)Q̂ − P̂α + (τM + 1)R̂ − θ2A
′
αXT

α

− θ2A
′′
αY T

α − θ2XαA′T
α − θ2YαA′′T

α + Ŝα

Φ31 =N̂α3
− N̂T

α1
− XαA′T

αd
− YαA′′T

αd
+ θ3X

T
α

Φ32 = − N̂T
α2

− θ2XαA′T
αd

− θ2YαA′′T
αd

− θ3A
′
αXT

α − θ3A
′′
αY T

α

Φ33 = − Q̂ − N̂α3
− N̂T

α3
− θ3A

′
αd

XT
α − θ3A

′′
αd

Y T
α

− θ3XαA′T
αd

− θ3YαA′′T
αd

, (39)

then the teleoperation system described by (19) and (20)
will be MES stable with a bounded error for the control
gain Ki = Y ′T

i (X ′T
i )−1 , i = 1, 2.

The proof is omitted here due to the space limit. The
control gain is Ki = Y ′T

i (X ′T
i )−1 , i = 1, 2. Theorem

2 does not require exact knowledge of the delay, unlike
Theorem 1. Variability in the delay is permitted while
ensuring stability with a bounded error.

4.2 Simulation Results

The original data has a minimum delay of 44 ms and
it was found that roughly 97% of packets arrived in 64
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ms or less so the lower and upper bounds were chosen
to be τm = 44 and τM = 64. The original data is then
processed to count any packets with delays above τM as
lost. A sub-sample is then randomly chosen from the data
to provide the random delay and packet loss sequences
for the simulation. This technique was chosen since the
measured packet losses were independent events. This
results in the following packet loss transition matrix which
has slightly higher loss rates than the original transition
matrix in (37), with a loss rate of approximately 11%.

The transition matrix is : T =

[

0.8859 0.1141
0.8960 0.1040

]

. The

probability density functions of the original experimental
delays and the generated bounded delays are illustrated in
Figure 4. Because packets with large delays were dropped
for this simulation, the received packets have a smaller
average delay of 51 ms. Both distributions have a long
tail, which is typical in network communications.
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Fig. 4. Probability Density Function of Experimental and
Simluation Data

Choosing θ2 = 0.2 and θ3 = 0.004, the position error is
approximately 10%. For these values, the LMI produces
the control gains K1 = [−13.7599 − 7.4230] and K2 =
[−0.0049 −0.0026]. These gains result in the performance
shown in Figure 5. The chattering of the control signals,
um and us, is slightly worse than in Section 3.4 due to the
varying time delay. Packets arriving out of order induce
higher frequency components into the signal. The error
bound is related to the disturbances and the system is
stable, although the performance has degraded slightly
over Section 3.4 because of the unreliable channel.
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Fig. 5. Response with Proposed Controller

5. CONCLUSIONS AND FUTURE WORK

Moving from an ideal channel to one with delays and
packet losses requires more modelling effort and has a

negative impact on system performance. By incorporating
the imperfections of the communication channel into our
control design, stability can be assured under a variety of
conditions and the performance can be optimized.
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