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Abstract: In the average consensus problem the states of a set of agents, linked according to a
directed graph, have to be driven to their average. When the communication between neighbors
is uniformly quantized, such a problem can not be exactly solved by a linear time-invariant
algorithm. In this work, we propose a probabilistic estimate of the error from the agreement, in
terms of the eigenvalues of the evolution matrix describing the algorithm.

1. INTRODUCTION

In the last years, an increasing interest in the control
theory community has been devoted to the study of the
so-called consensus problems.

In the average consensus problem a set of linear systems
has to be driven to the same final state, equal to the
average of their initial states. This mathematical problem
can be seen as the simplest example of coordination task.
In fact it can be used to model either the control of
multiple autonomous vehicles which all have to be driven
to the centroid of the initial positions Cortés et al. [2006],
or the decentralized estimation of a quantity from multiple
measures coming from distributed sensors Xiao et al.
[2005], or the load balancing procedure between processors
Cybenko [1989], Elsässer et al. [2006]. Thanks to the work
of Tsitsiklis [1984], Jadbabaie et al. [2003], Olfati-Saber
and Murray [2004], Moreau [2005], Olfati-Saber et al.
[2007], we are now able to solve the average consensus
problem with mild conditions on the graph and on the
evolution matrix.

Our contribution presents a consensus strategy in which
the systems can exchange information through a time
invariant strongly connected digital communication net-
work. Beside the decentralized computational aspects in-
duced by the choice of the communication network, here
we also have to face the quantization effects due to the
digital links. Similar ideas are already known in the control
community, thanks to many works on quantized control
and to the branch of the consensus literature, which studies
systems whose states are themselves quantized Kashyap
et al. [2007], Elsässer et al. [2006]. Compared to these
works, anyway, our approach is different because we sup-
pose that the agents’ states are real numbers, but they
can only exchange quantized information: communicated
information will be quantized by a uniform quantizer.

With this goal, we assume the links to allow the communi-
cation of integer numbers and we study a simple adapta-
tion of the classical diffusion algorithm which is able, with
such a constraint, to preserve the average of states and to
drive the system near to the consensus. Its performance
is thus defined in terms of the (asymptotical) distance of
the states from the average of the initial conditions. A
special attention is devoted to the scalability in N of its
features. This algorithm, which is detailed in Section 2,
has been first introduced in Carli et al. [2007a]: in this
note we develop a probabilistic analysis of it, based on
modelling the quantization error as an additive random
noise. It comes out that the expected behavior depends
only on the assumed distribution of the quantization errors
and on the spectral properties of the evolution matrix.

1.1 Preliminaries and notations

In this section we collect some definitions and notations
which are used through the paper: the reader can refer
to Godsil and Royle [2001], Gantmacher [1959] for further
readings.

The communications between agents are modelled by a
directed graph G = (V, E). V = {1, . . . , ...N} is the set of
vertices and E is the set of (directed) edges, i.e. a subset of
V ×V . We say that the vertices i and j are communicant,
or connected, if (j, i) ∈ E. This means that j can transmit
information about its state to i. In this case we also say
that j is a neighbor of i. The adjacency matrix A of G
is a {0, 1}-valued square matrix indexed by the elements
in V defined by letting Aij = 1 if and only if (j, i) ∈ E
and j 6= i. Define the in-degree of a vertex i as

∑

j Aij

and the out-degree of a vertex j as
∑

i Aij . A graph is
called in-regular (out-regular) of degree k if each vertex
has in-degree (out-degree) equal to k. A graph is said a
undirected (or symmetric) graph if (i, j) ∈ E implies that
(j, i) ∈ E. A graph is strongly connected if for any given
pair of vertices (i, j) there exists a path (i.e. an ordered
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list of edges) which connects i to j. It is said to be fully
connected or complete if for any couple of vertices there
exists an edge joining them.

A matrix M ∈ RN×N is said compatible or supported by
the graph G if Mij > 0 implies (j, i) ∈ E. Given the matrix
M , we can define an induced graph GM by taking N nodes
and putting an edge (j, i) in E if Mij > 0. A matrix is said
to be nonnegative if Mij ≥ 0 for all i and j, and is said
doubly stochastic if it is nonnegative and the sums along
each row and column are equal to 1. We remember that a
matrix M is normal if MT M = MMT , or equivalently if
it can be represented by a diagonal matrix with respect to
a properly chosen orthonormal basis of CN .

Now we give some notational conventions. Given a matrix
M ∈ RN×N , diag(M) means a diagonal matrix with the
same diagonal elements of the matrix M and out(M) =
M − diag(M). We denote by ρ(M) the spectral radius of
M : ρ(M) = max{|λ| : λ ∈ σ(M)}, where σ(M) is the set
of the eigenvalues of M (its spectrum). When the matrix
is doubly stochastic, it is also worth to define the essential
spectral radius as ρess(M) = max{|λ| : λ ∈ σ(M) \ {1}}.

2. PROBLEM STATEMENT

In the standard consensus algorithm we have that the
agent i updates its state according to the formula

xi(t + 1) =

N
∑

j=1

Pijxj(t),

More compactly we can write

x(t + 1) = Px(t), (1)

where x(t) is the column vector with entries xi(t) and P is
the matrix with entries Pij . The matrix P , called evolution
matrix, or diffusion matrix, has to be adapted to the graph
describing the communication network. From now on we
will assume that P satisfies the following condition.

Hypothesis 1. P is a doubly stochastic matrix with posi-
tive diagonal and with GP strongly connected.

It is well known in the literature Olfati-Saber and Murray
[2004], Carli et al. [2006], that, if Hypothesis 1 holds, then
the algorithm (1) solves the average consensus problem,
namely

lim
t→+∞

x(t) =
1

N

(

N
∑

i=1

xi(0)

)

1, (2)

where 1 is the (column) vector of all ones. This can be
shown because the previous conditions imply that

(A) 1 is the only eigenvalue of P on the unit circle centered
in 0;

(B) the eigenvalue 1 has algebraic multiplicity one and 1
is its eigenvector;

(C) all the other eigenvalues are strictly inside the unit
disk centered in 0.

Differently from most of the literature, in this work we
assume that the communication network is constituted
only of digital links. This implies that perfect exchange
of information between the agents is not allowed. In fact,
through a digital channel, the j-th agent can only send
to the i-th agent symbolic data. In general, since there

is a lack of communication, no algorithm is expected to
converge in the usual sense (2): we will provide a suitable
definition of convergence later in this paragraph.

To deal with the uniform quantization constraint, up to re-
scaling, we can suppose that the agents exchange integer
numbers: these numbers are the integer approximation of
the agents’ states. Then the quantizer is q : Rd → Zd and
map each component of x into the nearest integer.

We propose the evolution scheme

xi(t + 1) = xi(t) − q(xi(t)) +

N
∑

j=1

Pij q(xj(t)) (3)

or, more concisely,

x(t + 1) = x(t) + (P − I) q(x(t)). (4)

Proposition 2. Let xa(t) = 1
N

(

∑N

i=1 xi(0)
)

. Then

xa(t) = xa(0).

Proof. Since P is doubly stochastic we have that

xa(t + 1) = N−11T x(t + 1) =

N−11T x(t) + N−11T (P − I) q(x(t)) =

N−11T x(t) = xa(t),

for all t. 2

That is, the algorithm (4) preserves the average of the
initial conditions.

We have proved that if the algorithm (4) converges, it
converges to average of the initial states, but we still have
to study its convergence properties. In general, since the
agents do not have an exact knowledge of their neighbors’
states, the system is not expected to converge in the
sense (2). Instead, the states will reach a neighborhood
of the hoped consensus value. Then, our definition of
performance lies on the (asymptotical) distance from the
average agreement, normalized by the number of agents.
We define the performance index to be the limit in time of
a scaled norm of the disagreement vector ∆(t) = Y x(t),
with Y = I−N−111T . Notice that ∆(t) = x(t)−xa(t)1 =
x(t) − xa(0)1. We then define

d(P, x(0)) = lim sup
t→∞

1√
N

||∆(t)||2.

If we suppose to know the statistics of x(0), then we can
take the expectation with respect to the initial conditions,

d(P ) = E[d(P, x(0))].

In any case, it’s possible to consider

d∞(P ) = sup
x(0)

d(P, x(0)).

It’s trivial to remark that d(P ) ≤ d∞(P ).

We start with a remark about the best achievable perfor-
mance. It is clear that, when all states lie in the same quan-
tization interval, that is q(xi(t)) = Q for all i, differences
are not perceivable and states do not evolve. Therefore
the best it can happen is that the algorithm reaches such
an equilibrium in which q(xi(t)) = Q for all i and for all
t ≥ T . In this case we can only argue that |∆i(t)| ≤ 1 for
all t ≥ T .

Then the algorithm will at best assure the convergence into
an interval of unitary size: ∀ ǫ < 1 initial conditions can
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be found such that ‖∆(t)‖∞ > ǫ ∀ t > 0. Unfortunately,
in several cases the error from the agreement can be much
bigger.

We shall see in the sequel that it’s possible to find an upper
bound on the performance index, which is independent
of the initial conditions, but eventually dependent on the
number of agents.

3. WORST CASE BOUNDS

Studying the exact evolution of (4) is very difficult, be-
cause of nonlinearities induced by q(·), but it is possible
to obtain some upper bound on d∞(P ) using a worst case
approach. The results of this section are stated without
proof: they will appear in a forthcoming paper Frasca et al.
[2008].

Proposition 3. Define e(t) = x(t)− q(x(t)). Then the time
evolution of ∆(t) is given by the recursion

∆(t + 1) = P∆(t) + (I − P )e(t),

which gives

∆(t) = P t∆(0) +

t−1
∑

s=0

P s(I − P )e(t − s − 1). (5)

Remark that by definition ||e(t)||∞ ≤ 1
2 ,and then

||e(t)||2 ≤ 1
2

√
N. Then, forgetting about the origin of e(t),

we can just consider (5) as an asymptotically stable linear
dynamical system with an unknown, but bounded, forcing
term.

The following results, based on this approach, state that
the asymptotic error of the algorithm is bounded, and
the bound does not depend on the initial conditions, but
depends, in general, on P and, namely, on N .

Proposition 4. Consider the evolution equation (4). Then

d∞(P ) ≤ ‖I − P‖2

2

∞
∑

t=0

‖PY ‖t
2. (6)

where the series converges if the Hypothesis 1 holds.

Theorem 5. If P is a normal matrix, then

d∞(P ) ≤ 1

2

+∞
∑

s=0

ρ (P s(I − P )) ≤ 1

1 − ρess(P )
. (7)

Since we are interested in studying the dependence of
the performance on N , we shall consider a sequence of
matrices PN of dimension N : in general their essential
spectral radius is a function of N , which we denote ρN .
Consequently, the above theorem gives a bound which
depends on N .

For some sequences, it is known that there exists 0 < B <
1 such that ρN ≤ B < 1 uniformly in N . Then, (7) gives
a bound uniform in N ,

sup
N∈N

d∞(PN ) ≤ 1

1 − B
.

Instead, there are other interesting sequences, like those of
Cayley graphs with fixed degree k studied in ], for which
ρN → 1 for N → ∞ at polynomial speed, and the bound
(7) is polynomial in N . In such cases, a deeper analysis is
needed to improve this bound.

Lemma 6. Let P be a symmetric matrix such that

σ(P ) \ {1} ⊂ [L, U ] − 1 < L ≤ 0 ≤ U < 1.

Then
+∞
∑

s=0

ρ (P s(I − P )) ≤ 4

1 + L
+

1

2
log

(

1

1 − U

)

. (8)

We shall see in Section 5 how this lemma allows to improve,
asymptotically in N , the estimate given by (7), in many
examples.

4. PROBABILISTIC RESULTS

In this section, instead of considering the worst case with
respect to the quantization errors, we suppose that we
have statistical information on e(t). We consider it to be a
random variable with bounded support and we perform a
mean square analysis similar to that in Xiao et al. [2007]
and Carli et al. [2007a]. To do that, we define a new
performance index, which is likely to show some features
of the original one.

Let n(t) be a stochastic process such that ni(t) are i.i.d.
random variables of zero mean and known variance σ2 and
have their supports inside [−1/2, 1/2]. Let P̃ = PY and

∆̃(0) = ∆(0)

∆̃(t + 1) = P̃ ∆̃(t) + (I − P )n(t).

The performance is given by

dr(P ) = lim sup
t→∞

√

1

N
E[‖∆̃(t)‖2

2].

Remark that dr(P ) should in principle depend on x(0),
too. We did not write dr(P, x(0)) because the following
theorem proves that there is no such dependence.

Theorem 7. Let P be a matrix satisfying Hypothesis 1.
Then

[dr
∞(P )]2 =

σ2

N
tr
[

(I − P )(I − P )∗ (I − P̃ ∗P̃ )−1
]

.

where P̃ = PY . In particular, if P is normal, and σ(P ) =
{1, λ1, . . . , λN−1} denote the spectrum of P , we have that

[dr(P )]2 =
σ2

N

N−1
∑

i=1

|1 − λi|2
1 − |λi|2

. (9)

Proof. Define Q(t) = E[∆̃(t)∆̃(t)∗], and remark that
1
N

E[||∆̃(t)||2] = 1
N

tr Q(t). Using the facts that Y k = Y
for all positive integer k and Y (P − I) = P − I it is easy

to see that ∆̃ satisfies the following recursive equation

∆̃(t + 1) = P̃ ∆̃(t) + (P − I)n(t).

Now, thanks to the hypotheses on ni(t),

Q(t + 1) = E[∆̃(t + 1)∆̃(t + 1)∗]

= E[P̃ ∆̃(t)∆̃(t)∗P̃ ∗] + (I − P )E[n(t)n(t)∗](I − P )∗

= P̃ Q(t) P̃ ∗ + σ2(I − P )(I − P )∗,

and by a simple recursion

Q(t) = P̃ t Q(0) (P̃ ∗)t + σ2
t−1
∑

s=0

P̃ s(I − P )(I − P )∗(P̃ ∗)s.

Recall now that, since P satisfies Hypothesis 1, then
ρess(P

∗P ) < 1. Moreover we have that ρ(P̃ ) = ρess(P ) <
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1 and ρ(P̃ ∗P̃ ) = ρess(P
∗P ) < 1. Using the linearity and

cyclic properties of the trace,

tr Q(t) = tr
[

P̃ t Q(0) (P̃ ∗)t
]

+

+ tr

[

σ2
t−1
∑

s=0

(PP ∗ − (P + P ∗) + I)(P̃ ∗P̃ )s

]

= tr
[

P̃ t Q(0) (P̃ ∗)t
]

+

+ σ2 tr
[

(PP ∗ − (P + P ∗) + I)(1 − (P̃ ∗P̃ )t)(1 − P̃ ∗P̃ )−1
]

.

and hence

lim
t→∞

tr Q(t) = σ2 tr
[

(PP ∗ − (P + P ∗) + I)(1 − P̃ ∗P̃ )−1
]

.

If moreover P is normal, we can find a unitary matrix O of
eigenvectors and a diagonal matrix of eigenvalues Λ, such
that P = OΛO∗. This implies

tr
[

(PP ∗ − (P + P ∗) + I)(1 − P̃ ∗P̃ )−1
]

=

N−1
∑

i=1

|1 − λi|2
1 − |λi|2

.

2

Theorem 7 says that, for every matrix P which assures the
convergence in the ideal communication case, the mean
squared error tends in time to be equal to the variance of
the communication noise times a simple functional of the
matrix P ,

Φ(P ) =
1

N

N−1
∑

i=1

|1 − λi|2
1 − |λi|2

.

Then we study this functional 1 , which is finite for every
matrix P , but can depend on N . From now on, we state
our results in terms of Φ(P ).

Remark 8. If P is symmetric,

Φ(P ) =
1

N

N−1
∑

h=1

1 − λh

1 + λh

.

Remark 9. Since under Hypothesis 1 all |λi| with i ≥ 1
are different from 1, then Φ(P ) is finite for any matrix P .

Let us consider a sequence of matrices (PN )N∈N. If the
essential spectral radius is uniformly bounded away from
one, then Φ(PN ) is clearly bounded. Instead, if ρ(PN ) → 1
for N → ∞, the bound could eventually diverge in N .
Anyway, we are able to prove that this does not happen
under mild conditions.

Lemma 10. Let Bc,r ⊂ C denote the closed ball of complex
numbers with center c and radius r. Let R = inf{r :
B1−r,r ⊇ σ(P )}.
Then 0 < R < 1, and Φ(P ) is bounded by

Φ(P ) ≤ R

1 − R
. (10)

Proof. 0 < R < 1 is clear from (A), (B), (C), and means
that the spectrum is contained in a disc of radius R
internally tangent in 1 to the unit disc of the complex
plane. See Figure 1.

1 It is worth to remark that the functional Φ(P ) also arises, with
a rather different meaning, in Delvenne et al. [2007], as a cost
functional describing the transient of the diffusion methods for
average consensus over Cayley graphs with ideal communication.
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Fig. 1. The eigenvalues of a matrix P (x’s) lie inside the
ball B1−R,R (dashed circle), contained in the unit disk
(solid) of the complex plane.

Then, we need to prove (10). For all i, the eigenvalue
λi ∈ B1−R,R, so λi = (1 − r) + r eiθ with θ ∈ [0, 2π[
and 0 ≤ r ≤ R. Moreover, if i ≥ 1, then θ > 0. Hence,

|1 − λi|2
1 − |λi|2

=
|r − reiθ |2

1 − |1 − r + r eiθ|2 =

=
r2|1 − eiθ|2

1 − (1 − r)2 − 2r(1 − r) cos θ − r2
=

=
r22(1 − cos θ)

2r(1 − r)(1 − cos θ)
=

r

1 − r
≤ R

1 − R
∀ i.

Then 1
N

∑N−1
i=1

|1−λi|
2

1−|λi|2
≤ R

1−R
N−1

N
and we have completed

the proof. 2

We have the following useful corollary.

Theorem 11. Let p = mini Pii and R as above. Then,

R ≤ 1 − p

and

Φ(P ) ≤ 1 − p

p
. (11)

Proof. By Gershgorin theorem,

σ(P ) ⊆
⋃

i

BPii,1−Pii
⊆ Bp,1−p.

2

If in a family of matrices p is lower bounded uniformly in
N , or just independent of N , then (11) gives a finite bound,
uniform in N , on the asymptotic error. This is a useful
hint to construct sequences of matrices whose performance
scales well with N .

5. EXAMPLES AND SIMULATIONS

Examples are intended to investigate the dependence on
N of d and d∞, to compare simulative results with the
theoretical ones and to validate our models.

Our plots are obtained running the algorithm from an
adequate number of random initial conditions, for increas-
ing N . To have a wide range of significant examples, we
consider four different topologies, showed in Figure 2.

The undirected circuit, or ring (Figure 4) is the undirected
graph in which each node communicates with two neigh-
bors, and we take P = (A+I)/3, where A is the adjacency
matrix. Then, the eigenvalues are
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λh =
1

3
+

2

3
cos (

2π

N
h) h = 0, . . . , N − 1.

Namely, recalling Theorem 6, we remark that L ≥ − 1
3 and

U = 1 − 4π2

3
1

N2 + o( 1
N3 ) for N → +∞ and hence we get

∑∞
s=0 ρ(P s(I − P )) ≤ 9/2 + 1

2 log
(

3
4π2 N2

)

. Then

d∞(P ) = O(log N) for N → +∞.

Instead, the probabilistic analysis gives Φ(P ) ≤ 2, by (11).

The hypercube graph (Figure 3) is the graph on N = 2n

nodes obtained drawing the edges of a n-dimensional
hypercube. 2 As P we simply choose P = 1

n+1 (A + I).

Then its eigenvalues are λk = 1 − 2k
n+1 k = 0 . . . n, each

with multiplicity
(

n
k

)

. Hence, by Theorem 6,

d∞(P ) ≤ 1

2

(

3(n + 1)

2
+

1

2
log

n − 1

2

)

= O(log N).

In this case, Φ(P ) can be exactly computed,

Φ(P ) =
1

2n

n
∑

k=1

(

2k
n+1

)2

1 −
(

n+1−2k
n+1

)2

(

n

k

)

=

=
1

2n

n
∑

k=1

k

n + 1 − k

(

n

k

)

=
1

2n

n
∑

k=1

(

n

k − 1

)

=
N − 1

N
.

Remark that in both examples, the worst case performance
possibly worsen with N , while the probabilistic one does
not.

Then we consider two examples of random graphs: in these
cases our plots come from several realizations of both the
graphs 3 and the initial conditions. The random d-regular
graph (Figure 5) is a randomly chosen d-regular graph on
N nodes, and we take P = 1

d+1 (A + I).

The random geometric graph (Figure 5), is build by
randomly placing N nodes in the unit square, which are
neighbors whenever their distance is below a threshold 4

R =
√

log N/(πN). P is constructed so that it is doubly
stochastic, exploiting the symmetry of the graph by the
method explained in Carli et al. [2006]. In both these cases,
the quantities (7) and (9) are numerically evaluated from
the matrices P .

Even though the theoretical results suggest that the per-
formance could worsen with increasing N , simulations
show a nicer behavior. In all the considered cases, the
errors d(P ) and d∞(P ) are small, compared to the quanti-
zation step, and (almost) not increasing with N . Moreover,
the prediction of the probabilistic 5 model fits very well
the simulated d(P ). Hence, we argue that the worst case
analysis is too pessimistic, taking into account potential
combinations of quantization errors which do not appear
in practice. Instead, the probabilistic approach finds an a
posteriori justification in its better agreement with simu-
lations.

2 Such a graph is widely used in networks of processors Elsässer
et al. [2006].
3 Disconnected realizations have been discarded.
4 With this choice of R we are in the so-called connectivity regime

Penrose [2003].
5 The plots assume σ2 = 1/12, as the distribution of quantization
error was uniform.
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Fig. 2. Example graphs. Above, the hypercube graphs of
dimension n = 3 and n = 4. In the middle, the
undirected circuit with N = 12 and a 4-regular graph
on 15 nodes. Below, a random geometric graph on 16
nodes.
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Fig. 3. Performance of the n-dimensional hypercube graph
(of order N = 2n).

6. CONCLUSION

In this paper we studied by a probabilistic model the
quantized consensus algorithm (4) proposed in Carli et al.
[2007a], arguing that its performance in driving the system
near to consensus depends on the spectral properties of the
evolution matrix P . Such a probabilistic model seems to
fit simulative evidence better than a worst case approach.
From the design point of view, we obtain with Theorem 11
a simple and distributed criterion to control the average
asymptotic error of the method, uniformly in N . It would
be enough to prescribe the agents a minimum weight to
assign to their own values while averaging, that is a lower
bound on the diagonal of the matrices.
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Fig. 4. Performance of the undirected circuit.
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Fig. 5. Performance of the random 4-regular graph.
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Fig. 6. Performance of the random geometric graph.

Further developments of this work will include the refine-
ment of the above analysis and the interplays between
worst case and probabilistic approach. Moreover, it will
be interesting to construct methods with time varying
quantization steps, following the spirit of Brockett and
Liberzon [2000]: a first attempt in this direction is Carli
et al. [2007b].
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