
Distributed Maximum Likelihood
Estimation with Time-Varying Network

Topology

Giuseppe Calafiore ∗ Fabrizio Abrate ∗∗

∗ Dipartimento di Automatica e Informatica, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy, e-mail:

giuseppe.calafiore@polito.it
∗∗ Dipartimento di Automatica e Informatica, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy, e-mail:
fabrizio.abrate@polito.it

Abstract: We consider a sensor network in which each sensor may take at every time iteration
a noisy linear measurement of some unknown parameter. In this context, we study a distributed
consensus diffusion scheme that relies only on bidirectional communication among neighbor
nodes (nodes that can communicate and exchange data), and allows every node to compute an
estimate of the unknown parameter that asymptotically converges to the true parameter. At
each time iteration, a measurement update and a spatial diffusion phase are performed across
the network, and a local least-squares estimate is computed at each node. We show that the
local estimates converge to the true parameter value, under suitable hypotheses. The proposed
scheme works in networks with dynamically changing communication topology, and it is robust
to unreliable communication links and widespread failures in measuring nodes.
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1. INTRODUCTION

Recent technological improvements have allowed the de-
ployment of small inexpensive and low-power devices that
can perform local data processing and communicate with
other sensors being part of a network. Each sensor node
has limited storage capacity and processing power. How-
ever, when it is used together with a large number of
other nodes, the network as a whole has the ability to
perform complex tasks. These technological achievements
have allowed the growth of many and varied applications
of sensor networks, mainly in commercial and industrial
applications, to manage data that would be difficult or
expensive to deal with using wired sensors. Typical ap-
plications include monitoring, tracking, and controlling.
Some of the specific applications are habitat monitoring,
surveillance, object tracking, health-care applications, col-
laborative information processing, traffic monitoring and
mobile agents control, see for instance Akyildiz et al.
[2002], Chu et al. [2002], Martinez and Bullo [2006].

In each of these application fields, estimation and fusion
of data coming from sensors is one of the most challenging
tasks. Various schemes for sensor data fusion exist, both
centralized or distributed. In a centralized scheme, a sensor
has to send data (directly or by finding a suitable path in
the network) to a data fusion center. This center is able
to compute the best possible estimate of some unknown
parameter (e.g. the Maximum Likelihood (ML) estimate).
Depending on how data are sent to the data fusion cen-
ter, communication problems may arise, especially if the
network topology changes with time. In a distributed pro-
cessing scheme, instead, each sensor exchanges data only
with its neighbors, and carries out local computation in
order to obtain a good estimate of the unknown parameter
of interest. Distributed processing has several advantages
w.r.t centralized processing: there is no central data fusion

center, and each sensor can compute the estimates on its
own without having any knowledge of the whole network.
One of the most intuitive way to do distributed sensor
fusion is flooding. This technique assumes that each sensor
diffuses all its data to all the other nodes. In this way each
sensor becomes a fusion center, but high communication,
storage and computing capabilities need be allocated to
the nodes. Many sophisticated algorithms for distributed
estimation and tracking exist, see for instance Alanyali
et al. [2004], Delouille et al. [2004], Luo [2005], Tsitsiklis
[1993], R. Rahman and Saligrama [2007]. In Delouille et al.
[2004], an iterative distributed algorithm for linear mini-
mum mean-squared-error (LMMSE) estimation in sensor
networks is proposed, while in Alanyali et al. [2004] consen-
sus among distributed noisy sensors observing an event is
addressed. In Olfati-Saber [2004], Spanos et al. [2005a,b],
a distributed version of the Kalman filter (DKF) is an-
alyzed for distributed estimation of time-varying parame-
ters, while in R. Rahman and Saligrama [2007] distributed
tracking of a nonlinear dynamical system via networked
sensors is described.

In this paper we start from the setup of Xiao et al. [2006],
and analyze a distributed consensus diffusion scheme for
linear parameter estimation on networks with unreliable
links. Each node in the network is allowed to take at
each time t a noisy linear measurement of the unknown
parameter. The nodes measurement noise covariances are
time-varying, and also the network topology may change
with time, being connected at some instants and not
connected at other times. We prove that if the frequency
of connectedness of the communication graph is lower-
bounded by a quantity proportional to the logarithm of
time, then as t → ∞ the estimates at each local node
converge to the true parameter value in the mean square
sense. This result may be considered as an extension
of the results obtained in Xiao et al. [2006], where the
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convergence of estimation is rigorously proved only in the
case when sensors take a finite number of measurements
while performing an infinite number of “spatial” updates.

The rest of this paper is organized as follows. In §2 we
describe the distributed scheme for parameter estimation.
In §3 we prove our main convergence result for the dis-
tributed estimation scheme. In §4 we demonstrate our
approach with numerical examples. Finally in §5 we draw
the conclusions.

1.1 Notations

X� denotes the transpose of a square matrix X. X � 0
(resp. X � 0) means X is symmetric, and positive-definite
(resp. semidefinite). ‖X‖ denotes the spectral (maximum
singular value) norm of X, or the standard Euclidean
norm, in case of vectors. In denotes the n × n identity
matrix, and 1n denotes a n-vector of ones; subscripts with
dimensions are omitted whenever they can be inferred
from context.

2. CONSENSUS-BASED ESTIMATION SCHEME

2.1 Preliminaries

Consider n distributed sensors (nodes), each of which takes
at time t a measurement of an unknown parameter θ ∈ R

m

according to the linear measurement equation
yi(t) = Ai(t)θ + vi(t), i = 1, . . . , n; t = 0, 1, . . .

where yi(t) ∈ R
mi is the noisy measurement from the i-th

sensor at time t, vi(t) ∈ R
mi is measurement noise, and

Ai(t) ∈ R
mi,m is the time-varying regression matrix.

We assume vi(t) to be independent zero mean Gaussian
random vectors, with possibly time-varying covariances.
Allowing the covariance matrices to be time-varying helps
modeling realistic circumstances. If a sensor has a correct
measurement at time t, we set its covariance matrix to
Σi(t) = Σi, where Σi is fixed and determined by the the
technical characteristics of the i-th sensor. If instead the
sensor does not have a valid measurement at time t (for any
reason, including sensor failures), then we set Σi(t)−1 = 0,
thus neglecting the measurement.
Notice that if full centralized information were available,
the optimal Maximum Likelihood (ML) estimation θ̂ml of
the parameter θ could be obtained. Defining the quantities

Pml(t)
.=

t−1∑
k=0

n∑
j=1

A�
j (k)Σ−1

j (k)Aj(k), (1)

qml(t)
.=

t−1∑
k=0

n∑
j=1

A�
j (k)Σ−1

j (k)yj(k), (2)

the ML estimate of θ is
θ̂ml(t)

.= P−1
ml(t)qml(t),

and the ML error covariance matrix is
Qml(t)

.= P−1
ml(t). (3)

However, we assume it is not possible (due to communi-
cation constraints, etc.) to construct the optimal central-
ized estimate. Instead, our objective is to exploit peer-to-
peer information exchange among communicating nodes,
in order to build “good” local estimates of θ. We shall
prove in Section 3 that under suitable hypothesis, all local

estimates converge asymptotically to the true parameter
θ, in mean square sense.

Let V = {1, 2, . . . , n} denote the set of nodes of the sensor
network, and let E(t) denote the set of active links at
time t; i.e., nodes (i, j) can communicate at time t if and
only if (i, j) ∈ E(t) (note that E(t) contains only pairs of
distinct nodes). The time-varying communication network
is represented by the graph G(t) = (V, E(t)). We denote
with Ni(t) the set of nodes that are linked to node i at time
t (note again that it is assumed that i �∈ Ni(t)), and with
|Ni(t)| the cardinality of Ni(t); |Ni(t)| is called the spatial
degree of node i in graph G(t). Following the notation in
Xiao et al. [2006], we define the time degree of node i as
the number of measurements that node i has collected up
to time t, that is di(t) = t + 1, and the space-time degree
as

dST
i (t) = (1 + |Ni(t)|)(t + 1).

With this position, we introduce the weights that shall
be employed for information averaging among neighboring
nodes. To this end, we use the Metropolis weights (see Xiao
et al. [2006]), defined as

W̃ij(t) =
1

1 + max
(|Ni(t)|, |Nj(t)|

) · 1
t + 1

. (4)

The distributed space-time diffusion scheme is described
in the next section.

2.2 A distributed space-time diffusion scheme

Assume that every node collects a measurement at each
time t = 0, 1, . . . Note that this is done without loss of
generality, since one can assume that Σ−1

i (t) = 0 if sensor
i actually does not have an usable measurement at time t.
The proposed distributed iterative scheme performs a
temporal update phase and a spatial update phase. Using
the same notations of Xiao et al. [2006], we assume
that each node keeps as local information a composite
information matrix Pi(t) and a composite information
state qi(t).

At time t a measurement is collected at each node, and
a temporal (measurement) update phase is performed
locally at the nodes. This phase amounts to computing

Pi(t+) =
t

t + 1
Pi(t) +

1
t + 1

A�
i (t)Σ−1

i (t)Ai(t) (5)

qi(t+) =
t

t + 1
qi(t) +

1
t + 1

A�
i (t)Σ−1

i (t)yi(t), (6)

where each node only has to know its local information
Pi(t), qi(t), and the current time degree di(t), which is ac-
tually constant for all nodes and equal to di(t) = t+1. Note
that the temporal updates are finished instantaneously at
each node, thus t+ and t are essentially the same integer.

After the temporal update, each node has to broadcast its
space degree and its current values of Pi(t+) and qi(t+)
to its neighbors. At this point, a spatial update phase is
performed. Considering (4) and defining

Wij(t)
.=

⎧⎪⎪⎨
⎪⎪⎩

(t + 1)W̃ij(t) if (i, j) ∈ E(t)
1 −

∑
j∈Ni(t)

Wij(t) if i = j

0 otherwise,

(7)

the i-th node updates the composite information matrix
and composite information state at time t + 1 as follows:

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

2851



Pi(t + 1) = Pi(t+) +
∑

j∈Ni(t)

Wij(t)
(
Pj(t+) − Pi(t+)

)
(8)

qi(t + 1) = qi(t+) +
∑

j∈Ni(t)

Wij(t)
(
qj(t+) − qi(t+)

)
. (9)

Merging the temporal update phase and the spatial update
phase leads to the following proposition.
Proposition 1. For t = 1, 2, ... the composite information
matrix and composite information state at each node
i = 1, . . . , n are given by the expressions

Pi(t) =
1
t

t−1∑
k=0

n∑
j=1

Φij(t − 1; k)A�
j (k)Σ−1

j (k)Aj(k)

qi(t) =
1
t

t−1∑
k=0

n∑
j=1

Φij(t − 1; k)A�
j (k)Σ−1

j (k)yj(k),

where
Φ(t − 1; k) .= W (t − 1) · · ·W (k).

The proof for Proposition 1 can be found in Calafiore and
Abrate [2007].
Remark 1. Notice that the recursions in (8), (9) are well
suited for distributed implementation, since at each step
each node only needs to know the current time instant,
and the space-time degrees and local informations of its
neighbors. In particular, the nodes do not need global
knowledge of the communication graph, or even of the
number of nodes composing the network. Also, no matrix
inversion need be performed in this recursion. Notice
further that the expressions in Proposition 1, which are
useful for a-posteriori analysis, do not describe the actual
computations performed by the nodes, which use instead
the recursions (8), (9).

The properties of the local estimates are discussed in the
next section.

3. PROPERTIES OF LOCAL ESTIMATES

At each time when the composite information matrix
P−1

i (t) is invertible, each node i in the network is able
to compute its local estimate at time t as

θ̂i(t)
.= P−1

i (t)qi(t), i = 1, . . . , n.

The following fact holds.

Proposition 2. The local estimate θ̂i(t) is an unbiased
estimator of θ, that is

E
{

θ̂i(t)
}

= θ.

Moreover, the covariance of the local estimate is given by
the expression

Qi(t) =
1
t2

P−1
i (t)R(t)P−1

i (t). (10)

where

R(t) =

⎛
⎝t−1∑

k=0

n∑
j=1

Φ2
ij(t − 1; k)A�

j (k)Σ−1
j (k)Aj(k)

⎞
⎠

�

3.1 Mean square convergence results

We show in this section that, under suitable hypothesis, as
the number of measurements goes to infinity, all the local
estimates θ̂i(t) converge to the true parameter value θ, in
the mean square sense. That is, limt→∞ ‖Qi(t)‖ = 0, for
i = 1, . . . , n. This result holds for time-varying network
topology, and it is derived under two assumptions. The
first condition is a very natural one, and requires that
the centralized ML estimate mean square error goes to
zero at t → ∞. This condition is actually necessary, since
one cannot hope to make the local estimates converge
when even the centralized optimal estimate (who has all
the available information) does not converge. The second
condition is a technical sufficient condition needed for
proving convergence of the distributed scheme, and is
detailed in the sequel. Loosely speaking, this condition
requires that the time-varying communication graph is
connected at least “rarely” in time.

We first state some technical preliminaries in the next sec-
tion, whereas the main theorem is stated in Section 3.1.2.

Technical preliminaries Define

P̄i(t)
.= tPi(t) =

t−1∑
k=0

n∑
j=1

Φij(t − 1; k)Hj(k) (11)

Hj(k) .= A�
j (k)Σ−1

j (k)Aj(k).

The following result holds.
Lemma 1. Whenever P̄−1

i (t) is invertible, the covariance
matrix of the i-th local estimate satisfies

Qi(t) 	 P̄−1
i (t). (12)

A proof of This Lemma can be found in Calafiore and
Abrate [2007]. We now look more closely at the structure of
the W (t) matrices and of the transition matrix Φ(t−1; k).
Notice that Wij(t) ∈ [0, 1], ∀i, j, and Wii(t) > 0, i =
1, . . . , n. Also, W (t)1 = 1, 1�W (t) = 1�, hence the weight
matrices W (t) are symmetric and doubly stochastic. This
means that W (t): (a) is unitarily diagonalizable, that is
it has a set of orthogonal eigenvectors; and (b) all its
eigenvalues are real and have modulus no larger than one.
Since 1/

√
n is always an eigenvector of W (t) associated

with the eigenvalue λ1 = 1, we may write W (t) in the
form

W (t) =
1
n
11� + Z(t), Z(t) = V (t)D(t)V �(t)

where V (t) ∈ R
n,n−1 is such that

V �(t)V (t) = In−1,

V (t)V �(t) = In − 1
n
11�,

1�V (t) = 0,

and D(t) = diag(λ2(t), . . . , λn(t)) ∈ R
n−1,n−1 is a diago-

nal matrix containing the last n − 1 eigenvalues of W (t)
arranged in order of decreasing modulus. Since λ1 = 1 is
an eigenvalue of W (t) of maximum modulus, λ2(t) denotes
the second-largest-modulus eigenvalue of W (t). Moreover,
it is shown in §II.A of Xiao et al. [2005] (see also Xiao
et al. [submitted], Xiao and Boyd [2004]) that if the graph
is connected at time t, then the spectral radius of Z(t) is
strictly less than one. This means that, whenever the graph
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is connected, λ1 = 1 is a simple eigenvalue of W (t), and
|λ2(t)| < 1, thus the symmetric matrix Z(t) is contractive.

Observe now that from the definition
Φ(t − 1; k) .= W (t − 1) · · ·W (k),

follows that all entries of Φ(t − 1; k) lie in the interval
[0, 1], and that Φ(t−1; k)1 = 1, 1�Φ(t−1; k) = 1�, hence
also Φ(t− 1; k) is doubly stochastic. Further, since 11� is
orthogonal to all matrices Z(t), it results that

Φ(t − 1; k) =
1
n
11� + Υ(t − 1; k), (13)

where we defined
Υ(t − 1; k) .= Z(t − 1)Z(t − 2) · · ·Z(k). (14)

Note that for any t ≥ 1, Z(t) is symmetric, hence
‖Z(t)‖ = |λ2(t)|. Therefore, from (14) and from the sub-
multiplicativity of matrix norm, we have that

‖Υ(t − 1; k)‖ ≤ |λ2(t − 1)| · |λ2(t − 2)| · · · |λ2(k)|, (15)
where ‖ · ‖ denotes the spectral (maximum singular value)
matrix norm.

Main result We are now in position to state in the next
theorem our main result for convergence of distributed
least squares estimation. Our convergence proof hinges
upon the following assumption.

Assumption 1. (Frequency of connectedness). Let G(t) de-
note the connection graph at time t, and let W (t) be the
corresponding weight matrix, defined in (7). Let λ̄ < 1 be
a positive constant such that each time G(t) is connected,
it holds that |λ2(t)| ≤ λ̄.

We assume that for any interval of time [τ, τ +k) of length
k, the graph is connected at least N(k) times, with

N(k) =
2

log(1/λ̄)
log(k/α), for some α > 0. (16)

�

Notice that this assumption requires the time-varying
graph to be connected only quite “rarely”, since N(k)
grows slowly with the logarithm of the time length. The
following key result holds.

Theorem 1. Let Assumption 1 hold, and let ‖Hj(k)‖ ≤ C,
for all j = 1, . . . , n, k = 0, 1, . . .

If limt→∞ ‖Pml(t)‖ = ∞ (or, equivalently, if the central-
ized maximum likelihood error covariance goes to zero),
then

lim
t→∞ ‖Qi(t)‖ = 0, i = 1, . . . , n.

�

Proof. Consider the expression of P̄i(t) in (11), and
substitute (13) to obtain

P̄i(t) =
t−1∑
k=0

n∑
j=1

1
n

Hj(k) +
t−1∑
k=0

n∑
j=1

Υij(t − 1; k)Hj(k)

=
1
n

Pml(t) +
t−1∑
k=0

n∑
j=1

Υij(t − 1; k)Hj(k). (17)

Recall now that for any two matrices A, B and any
norm, applying the triangle inequality to the identity

A = (−B)+(B+A), it results that ‖A+B‖ ≥ ‖A‖−‖B‖.
Applying this inequality to (17), and taking the spectral
norm, we have

‖P̄i(t)‖ ≥ 1

n
‖Pml(t)‖ − ‖

t−1∑
k=0

n∑
j=1

Υij(t − 1; k)Hj(k)‖. (18)

Notice further that

‖
t−1∑
k=0

n∑
j=1

Υij(t − 1; k)Hj(k)‖ ≤
t−1∑
k=0

n∑
j=1

|Υij(t − 1; k)| · ‖Hj(k)‖

≤ C

t−1∑
k=0

n∑
j=1

|Υij(t − 1; k)|

≤ √
nC

t−1∑
k=0

‖Υ(t − 1; k)‖

[from (15)] ≤ √
nC

t−1∑
k=0

|λ2(t − 1)| · |λ2(t − 2)| · · · |λ2(k)|

=
√

nC

t∑
k=1

k∏
τ=1

|λ2(t − τ)|.

From Assumption 1, let N(k) denote the lower bound (16)
on the number of times in which the graph is connected in
any time interval of length k, and recall that |λ2(t)| ≤ λ̄ <
1, if the the graph is connected at t. Therefore, we have
that

k∏
τ=1

|λ2(t − τ)| ≤ λ̄N(k) = λ̄

2 log(k/α)
log(1/λ̄) =

α2

k2
.

Continuing the previous chain of inequalities, we thus have

√
nC

t∑
k=1

k∏
τ=1

|λ2(t − τ)| ≤√
nC

t∑
k=1

α2

k2

= α2
√

nC

t∑
k=1

1
k2

.

Going back to (18), we hence obtain that

‖P̄i(t)‖ ≥ 1
n
‖Pml(t)‖ − ‖

t−1∑
k=0

n∑
j=1

Υij(t − 1; k)Hj(k)‖

≥ 1
n
‖Pml(t)‖ − α2

√
nC

t∑
k=1

1
k2

.

Recalling now the value of the convergent series
∑∞

k=1

1

k2
=

π

6
, we have in the limit

lim
t→∞ ‖P̄i(t)‖ ≥ 1

n
lim

t→∞ ‖Pml(t)‖ − π

6
α2

√
nC.

Since by hypothesis limt→∞ ‖Pml(t)‖ = ∞, we obtain that
lim

t→∞ ‖P̄i(t)‖ = lim
t→∞ ‖Pml(t)‖ = ∞.

Finally, from (12) it follows that whenever P̄i(t) is invert-
ible

‖Qi(t)‖ ≤ ‖P̄−1
i (t)‖ =

1
‖P̄i(t)‖
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hence

lim
t→∞ ‖Qi(t)‖ ≤ lim

t→∞
1

‖P̄i(t)‖ = 0,

which concludes the proof. �

Remark 2. A few remarks are in order in respect to the
result in Theorem 1. First, we notice that it is not required
by the theorem that each individual node collects an
infinite number of measurements as t → ∞. Indeed, the
local estimate at a node may converge even if this node
never takes a measurement, as long as the other hypotheses
are satisfied. As an extreme situation, even if only one node
in the network takes measurements, then local estimates
at all nodes converge, if the hypotheses are satisfied.

Further, it is worth to underline that the convergence
result presented here is quite different from related results
given in Xiao et al. [2006]. The main situation considered
in Xiao et al. [2006] assumes that the total number of
measurements collected by the whole set of sensors remains
finite as t → ∞; contrary, we allow this number to grow
as time grows, which seems a more natural requirement.
Besides technicalities, considering the number of measure-
ments to remain finite essentially amounts to assuming
that, from a certain time instant on, the network evolves
with “spatial” iterations only. This in turn permits to ap-
ply standard tools for convergence of products of stochastic
matrices, and to give results under weaker hypotheses
of connectedness of the union of the infinitely occurring
graphs, see Xiao et al. [2006] and the references therein.
It appears instead that these results cannot be directly
applied to our setup, due to the persistent presence of new
measurements, which acts as a forcing term in the local
iterations (5), (6). ♦

4. NUMERICAL EXAMPLES

In this section, we illustrate the distributed estimation
algorithm on some numerical examples. We considered two
different situations:

• A first example shows the estimation performance in a
middle-sized network, in two different scenarios, with
increasing sensor measurement rate.

• The second example is built in order to show that
the proposed distributed scheme may converge even
under weaker hypothesis than the ones assumed in
Theorem 1.

4.1 Example 1

We considered a sensor network with n = 50 nodes chosen
uniformly at random on the unit square [0, 1] × [0, 1]. We
assumed that two nodes in the network are connected by
an edge if their distance is less than 0.25. In this particular
example we hence obtained a fixed-topology network with
184 edges.

The vector of unknown parameters has dimension m = 5,
and each sensor takes a scalar measurement yi = a�

i θ+vi,
where the vectors ai have been chosen from an uniform
distribution on the unit sphere in R

5. The noise is i.i.d.
Gaussian with unit variance. To quantify the estimation
performances in the network, we define an average index
of the local mean square estimation errors:

MSE(t) =
1

n

n∑
i=1

Tr (Qi(t)).

For the purpose of comparison, we also compute the
Maximum Likelihood Error (MLE) as

MLE(t) = Tr (Qml(t)).

Two experiments with increasing sensor measurement rate
have been carried out. The sensor measurement rate is, in
this context, the probability p with which a sensor takes a
measurement at any time iteration, meaning that at each
step, the inverse covariance matrix Σ−1

i (t) associated to
the i-th sensor is set to the identity with probability p or
to zero with probability 1-p. In the first experiment the
measurement rate of each node is p = 0.01 (Figure 1), in
the second one it is p = 1 (Figure 2).

In each plot, the MSE(t) and the MLE(t) are shown.
It can be noticed that, after a transient, the algorithm
performance appears to improve proportionally with the
sensors measurement rate.
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Fig. 1. Example 1: Sensor measurement rate equal to 0.01;
Dashed line: MLE(t); Solid line: MSE(t).
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Fig. 2. Example 1: Sensor measurement rate equal to 1;
Dashed line: MLE(t); Solid line: MSE(t).

4.2 Example 2

In a second numerical example, we considered a network
with three nodes and a switching connection topology.
The connection is as in Figure 3(a) for t odd, and as in
Figure 3(b) for t even.

The vector of unknown parameters is of dimension m = 2,
and only sensors 2 and 3 are able to collect measurements.
These sensors take at each iteration a scalar measurement
y2,3 = a�

2,3θ + v2,3 , where a2 = [ 1 0 ], a3 = [ 0 1 ], and
where the measurement covariance matrices are defined as
follows:
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Fig. 3. Example 2: When t is odd the occurring graph is
the shown in (a), while when t is even the occurring
graph is shown in (b).
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Fig. 4. Example 2: Dashed line: MLE(t); Solid line:
MSE(t).

Σ−1
2 (t) =

{
0 if t is odd
1 otherwise

, Σ−1
3 (t) =

{
1 if t is odd
0 otherwise,

that is, the two sensors take a valid measurement alterna-
tively in time. The weight matrix defined in (7) is

W (t) =

[
0.5 0.5 0
0.5 0.5 0
0 0 1

]
, for t odd, W (t) =

[
0.5 0 0.5
0 1 0

0.5 0 0.5

]
, for t even.

In this example, none of the occurring graphs is connected,
hence the assumptions of Theorem 1 are clearly violated.
However, analyzing the estimation performances on aver-
age in the network using the index MSE(t) adopted in
§4.1, we notice that it converges numerically to zero as
t → ∞, as can be seen in Figure 4. This fact suggests that
the distributed estimation scheme may converge under
weaker hypotheses than those assumed in Theorem 1. It
also confirms a conjecture along the lines of Xiao et al.
[2006] §6, that improvements in the theory could perhaps
be found in the direction of relaxing the connectivity
hypothesis, by requiring that only the union of the com-
munication graphs be connected.

5. CONCLUSIONS

In this paper we discussed a distributed estimation scheme
for sensor networks. The nodes can communicate with
their instantaneous neighbors and maintain a common
data structure. At each time iteration, a node may collect
a new measurement and compute a local estimate of
the unknown parameter. We showed in Theorem 1 that
all local estimates converge asymptotically to the true

parameter, even for nodes that collect only a finite number
of measurements. Convergence is proved under a necessary
condition of convergence of a virtual centralized estimate
and under an hypothesis on the frequency of connectivity
of the communication graphs. We conjecture that this
latter hypothesis can be further relaxed by requiring that
only the union of the repeatedly occurring graphs be
connected, and current research is being devoted to this
purpose.
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