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Abstract: This paper addresses the fault detection problem based on H∞ performance and
L2-gain performance. Two improved approaches compared with the recent results (Wang et al.,
2005, Ding et al., 2000) are presented. One uses the inverse transfer function and state space
representation to consider the H∞ performance. The other uses dilated matrix formulation to
handle different Lyapunov matrices based on L2-gain performance. All these conditions can be
efficiently solved by LMI techniques.
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1. INTRODUCTION

The fault detection and diagnosis (FDD) problem has
received considerable attention, as modern engineering
systems are large-scale and sophisticated, and safety and
reliability are of practical concerns. Many fault detection
approaches have been suggested in both frequency and
time domains (see, e.g., the survey papers (Isermann, 2005,
Venkatasubramanian et al., 2003, Patton et al., 2000) and
books (Patton et al., 2000, Chiang et al., 2001, Isermann,
2006, Chen and Patton, 1999, Gertler, 1998) for a detailed
classification and discussion). Among these approaches,
the model-based fault detection is often used when the
physical model is known. Particularly, the observer-based
design approach, in which an observer plays the key role,
is one of the most important and popular techniques
(Isermann, 2006, Chen and Patton, 1999).

The fault detection problem commonly involves two as-
pects: 1) robustness to modeling errors and disturbances;
and 2) sensitivity to the faults (Zhong et al., 2003). Many
different performance indexes are used to measure these
two aspects. For the robustness aspect, a lot of H∞/H2-
based techniques have been introduced (see (Henry and
Zolghadri, 2005a) for a survey). For the sensitivity as-
pect, both H∞, H2 and H− norm are used. For example,
in (Henry and Zolghadri, 2005a), generalized H2 perfor-
mance, as well as regional constraints on filter poles, are
also included. The final formulation therein is a multi-
objective optimization problem with linear matrix inequal-
ity (LMI) conditions.

The present paper is motivated by the recent works (Wang
et al., 2005, Henry and Zolghadri, 2005a,b). In (Wang
et al., 2005), both robustness and sensitivity are based

⋆ This work is supported by Defence Science & Technology Agency
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either on H∞ performance index or on L2-gain index.
However, their formulations actually yield bilinear matrix
inequality (BMI) conditions. Furthermore, the H∞-based
design needs a pre-assigned sharp filter, which introduces
additional complexity and conservatism. Besides, the LMI
formulation therein for L2-gain based design is conserva-
tive because additional constraints are made, which is not
necessary. In this paper, we will attempt to overcome these
obstacles using some different techniques. In fact, by using
inverse transfer function and its realization, we can avoid
to introduce the auxiliary dynamics, and by employing
dilated LMI, we relax the design conservatism.

The rest of this paper is organized as follows. Section 2
presents the system and the design objectives. Section 3
addresses the main results. Section 4 gives several numer-
ical examples to illustrate the advantages our approaches
and Section 5 draws a conclusion.

2. PROBLEM STATEMENT

Consider the following system:

ẋ = Ax + B1w + B2f (1)

y = Cx + D1w + D2f (2)

where x ∈ Rn is the state vector, w ∈ Rm is the
unknown input vector including modeling error, uncertain
disturbance, process and measurement noises, y ∈ Rℓ is
the measurement vector, and f(x, t) ∈ Rr is the bounded
fault vector. All the matrices are properly dimensioned.
We assume that the system in (1) is asymptotically stable.
The fault detection observer under consideration is as
follows:

˙̂x(t) = Ax̂ + K(y − ŷ) (3)

ŷ = Cx̂ (4)
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We define the residual vector rwf as rwf (t) = y(t) − ŷ(t).
We further denote:

rw = rwf |f≡0

rf = rwf |w≡0

The error system can be represented as

ė(t) = Ãe + B̃1w + B̃2f (5)

rwf (t) = Ce + D1w + D2f (6)

where Ã = A−KC, B̃1 = B1−KD1 and B̃2 = B2−KD2.

The fault detection problem commonly requires that the
system (5) be asymptotically stable and satisfies some
performance indexes. In this paper, we only consider two
kinds of such indexes: H∞ performance index and L2-gain
performance index (Ding et al., 2000, Wang et al., 2005).

2.1 H∞ Performance Index

The index denoted J∞ below is widely used for the FD
problems. The objective is to make J∞ as small as possible
(Ding et al., 2000, Wang et al., 2005):

J∞ =
‖Twr(s)‖∞
‖Tfr(s)‖∞

where Twr = C(I − Ã)−1B̃1 + D1, Tfr = C(I − Ã)−1B̃2 +
D2. This objective can be cast into the following multiple
objective problem:

min γ1 and max γ2, s.t. (8) and (9) (7)

‖Twr(s)‖∞ < γ1 (8)

‖Tfr(s)‖∞ > γ2 (9)

Inequality (8) can be easily reformulated as an LMI
problem, which is due to the following bounded real lemma
(Boyd et al., 1994).

Lemma 1. (Boyd et al., 1994) The system (5) is asymp-
totically stable and satisfies condition (8) if there exists
P1 > 0 such that (10) is satisfied.

AT
1 P1 + P1A1 + Ψ1 < 0 (10)

where A1 =

[

Ã B̃1

0 0

]

,Ψ1 =

[

CT C CT D1

DT
1 C DT

1 D1 − γ2
1I

]

,P1 =
[

P1 0
0 I

]

.

However, it is difficult to solve (9) efficiently, since it
is not a convex problem. A well-known technique is to
introduce a sharp filter/weighting function and then use
the following lemma.

Lemma 2. (Henry and Zolghadri, 2005b,a, Wang et al.,
2005) Given stable transfer function W (s) and Tfr(s) such
that

inf
w∈R

σ[W (jw)] = δ > 0, ‖W (s) − Tfr(s)‖∞ = ̺

where ̺ and δ are scalars. Then σ[Tfr(jw)] ≥ δ − ̺.

Based on Lemma 2, ‖Tfr(s)‖∞ ≥ σ[Tfr(jw)] ≥ δ −
‖W (s)− Tfr(s)‖∞. Hence the condition (9) is guaranteed
if the following standard H∞ problem holds

‖W (s) − Tfr(s)‖∞ < δ − γ2 (11)

Note that the conservativeness of this approach lies in the
facts that the inverse procedure is generally not true and
no systematic method for the choice of W (s) is available.
Furthermore, the filter order increases as the weighting
function becomes more complex. Besides, it is still difficult
to obtain a less conservative LMI-based method due to the
complexity of the augmented system. Hence, in (Wang
et al., 2005), only a BMI-based method is proposed. In
this paper, in order to avoid introducing W (s) which
brings conservatism, we shall propose a novel method
based on inverse transformation. Instead of a sharp filter,
an auxiliary matrix variable will be used to relax the
conservatism.

2.2 L2-gain Performance Index

This index is based on the L2 norm of rwf , w and f ,
i.e., the fault detection “unknown input signal” gain ratio
J2 = γ1

γ2
is made small where

‖rw‖L2
< γ2

1‖w‖L2
+ v1(·), w 6= 0 (12)

‖rf‖L2
> γ2

2‖f‖L2
+ v2(·), f 6= 0 (13)

where v1(·) and v2(·) are bounded functions related to
initial conditions and satisfy v1(0) = v2(0) = 0. We assume
that D2 has full-column rank. In (Wang et al., 2005), an
LMI based approach has been proposed. However, in the
formulation, conservatism results from using same Lya-
punov matrix for (12)-(13). In this paper, by introducing
an auxiliary matrix variable, we will improve the result.

3. MAIN RESULTS

3.1 Inverse State Space and H∞ Performance

A realization of Tfr(s) is

Tfr(s) =

[

Ã B̃2

C D2

]

(14)

It is possible to formulate its left/right-inverse state space
realization when D2 has full column/row-rank.

Lemma 3. (Zhou et al., 1996) There exists a T +
fr(s) such

that T +
fr(s)Tfr(s) = I (respectively, Tfr(s)T

+
fr(s) = I):

T +
fr(s) =

[

Ã − B̃2D
+
2 C −B̃2D

+
2

D+
2 C D+

2

]

∆
=

[

Ā B̄2

C̄ D̄2

]

(15)

where D+ is the left inverse of D2, i.e., D+
2 D2 = Ir

when D2 has full column-rank (respectively, the right
inverse of D2, i.e., D2D

+
2 = Iℓ when D2 has full row-

rank). Especially, when D2 is invertible, we have T +
fr(s) =

T−1
fr (s).

Remark 4. In the case where D2 does not have full
column/row-rank, we can easily make a transformation
on y or f , such that D2 has full rank, i.e., introducing
a new variable y1 = Ey such that ED2 has full row-rank,
or, Ff1 = f , such that D2F has full column-rank. Note
that these transformation may only be applicable for fault
detection.

It is easy to see that

1 = ‖T +
fr(s)Tfr(s)‖∞ ≤ ‖T +

fr(s)‖∞‖Tfr(s)‖∞
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Hence, if

‖T +
fr(s)‖∞ <

1

γ2
(16)

we have ‖Tfr(s)‖∞ > γ2, i.e., the condition (9) is satis-
fied. 1 So we can discuss the properties of (15) instead of
considering (14).

Lemma 5. The system (15) is asymptotically stable and
satisfies condition (16) if there exists P2 > 0 such that
(17) is satisfied.

AT
2 P2 + P2A2 + Ψ2 < 0 (17)

where A2 =

[

Ā B̄2

0 0

]

, Ψ2 =





C̄T C̄ C̄T D̄2

D̄T
2 C̄ D̄T

2 D̄2 −
1

γ2
2

I



,

P2 =

[

P2 0
0 I

]

.

Based on Lemmas 1 and 5, we can infer that if P1 > 0
and P2 > 0 exist for (10) and (17), then the system (5) is
asymptotically stable and satisfies the H∞ performance
J < γ1

γ2
. Hence we can obtain a BMI-based solution.

Although there exist some algorithms (e.g.,(Kanev et al.,
2004, Apkarian and Tuan, 2000)), BMI problems are
generally inefficient. Hence LMI approaches are preferred.
A simple result can be obtained by forcing P1 = P2 = P :

Lemma 6. The system (5) is asymptotically stable and
satisfies conditions (8)-(9) if there exist matrices P > 0
and W such that

Ψi + Λi + ΛT
i < 0, i = 1, 2 (18)

where

ΛT
1 =

[

PA − WC PB1 − WD1

0 0

]

ΛT
2 =

[

PA − WC − (PB2 − WD2)D
+
2 C

0
(19)

−(PB2 − WD2)D
+
2

0

]

Furthermore, if the solution of (18) exists, the observer
gain can be obtained as K = P−1W .

In Lemma 6, we force P1 = P2 = P , which introduces
additional conservatism. In the following, we will propose
our less conservative algorithm based on the so-called
dilated matrix technique (Xu and Xie, 2006, de Oliveira
et al., 1999). Due to the space limitation, we omit the
proof.

Theorem 7. The system (5) is asymptotically stable and
satisfies conditions (8)-(9) if there exist matrices Pi >
0, i = 1, 2, W and Gij , i = 1, 2; j = 1, 2, 3 such that
[

Ψi + ǫi1(Λ̂i + Λ̂T
i ) Pi − ǫi1Ĝ

T
i + Λ̂i

∗ −Ĝi − ĜT
i

]

< 0, i = 1, 2 (20)

where Ĝi =

[

Gi1 ǫi2Gi1χi

Gi2 Gi3

]

, G11 = G21,

Λ̂T
1 =

[

GT
11A − WC GT

11B1 − WD1

ǫ12χ
T
1 (GT

11A − WC) ǫ12χ
T
1 (GT

11Bi − WD1)

]

1 H
−

norm cannot be treated in the same way, because it is not an
induced norm.

Λ̂T
2 =

[

GT
21A − WC − (GT

21B2 − WD2)D
+
2 C

ǫ22χ
T
2 (GT

21A − WC − (GT
21B2 − WD2)D

+
2 C)

(21)

−(GT
21B2 − WD2)D

+
2

ǫ22χ
T
2 (GT

21B2 − WD2)D
+
2

]

where, χi are given full column-rank matrices properly
dimensioned and ǫij , i = 1, 2, j = 1, 2 are given scalars. 2

Furthermore, if the solution of (20) exists, the observer

gain can be obtained as K = G−T
11 W .

Remark 8. The choice of D+
2 is not unique. In order to ob-

tain a small ratio of J∞, the following optimization should
be performed before the design procedure in Lemma 6:

min
D+

2

ρ s.t. (22) and (23)

[

−I D+
2

D+T
2 −ρ

]

< 0 (22)

D+
2 D2 = Ir or D2D

+
2 = Iℓ (23)

Also, we shall note that the multi-objective problem (7)
is generally difficult to solve. A possible solution is to use
the so-called weighted sum method (Ehrgott, 2005).

Remark 9. In (Wang et al., 2005, Proposition 1), W (s)
stated in Lemma 2 is viewed as the desired transfer
function (of a sharp filter) from fault f to residual rf which
Tfr is designed to match. A realization of W (s)−Tfr(s) is
an expanded system of the state x and auxiliary variable
from W (s). The main difficulties of this proposition lie
in two facets. One is that it is generally hard to get an
ideal realization of W (s). The other is that the design
procedure is actually a BMI problem. The same problem
lies in (Henry and Zolghadri, 2005b). However, in our
formulation, it is not necessary to find such a W (s).
Besides, the LMI condition is much less conservative
because different Lyapunov matrices are employed.

Remark 10. (Henrion and Garulli, 2005) propose a H∞

controller design technique for SISO linear systems based
on the properties of positive polynomial matrices and
LMI algorithms. This result can be also applied to the
fault detection observer design using the inverse transfer
functions. This kind of design method has two advantages:
1) it is suitable for fixed-order filter; 2) it is also possible to
include the uncertainties into the design, such as bounded
parameter uncertainties or polytope-type uncertainties.
By applying the techniques introduced in (Henrion and
Lasserre, 2006), this method is also applicable for MIMO
systems with LMI formulations.

3.2 Dilated Matrix and L2 Performance

Lemma 1 actually also guarantees that the performance
index (12) holds (Boyd et al., 1994, Wang et al., 2005). As
for the performance index (13), (Wang et al., 2005) give
the following condition with the assumption that D2 has
full column-rank:

ÃT
2 P2 + P2Ã2 + Ψ̃2 < 0 (24)

2 All these given parameters χi and ǫij can be used to adjust the
performance of fault detection observer.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10138



where Ψ̃2 = −

[

CT C CT D2

DT
2 C DT

2 D2 − γ2
2I

]

, P2 > 0 and Ã2 =
[

Ã B̃2

0 0

]

.

Now the fault detection problem based on L2-gain perfor-
mance can be stated as follows: If Pi > 0, i = 1, 2 exist for
(10) and (24), then the system (5) is asymptotically stable
and satisfies the L2-gain performance (12)-(13).

Remark 11. In (Liu et al., 2005), a performance index

named H− index is introduced as follows: ‖G(s)‖
[0,∞]
− =

infω∈[0,∞]σ[G(jw)]. It is easy to see that the condition
(24) without requiring P2 to be sign definite coincides with

‖G(s)‖
[0,∞]
− > γ2 . Hence we can easily design the observer

based on the performance objective J∞/− = ‖Twr‖∞

‖Twf‖−

.

It is noted that the design based on L2-gain performance
is also a BMI problem. In (Wang et al., 2005), the authors
simply let P1 = P2 to obtain an LMI-based algorithm.
In the following, we propose a method using the dilated
matrix technique to alleviate the conservatism.

Theorem 12. The system (5) is asymptotically stable and
satisfies conditions (12)-(13) if there exist matrices Pi >
0, i = 1, 2, W and Gij , i = 1, 2; j = 1, 2, 3 such that
[

Ψ̃i + ǫi1(Λ̃i + Λ̃T
i ) Pi − ǫi1Ĝ

T
i + Λ̃i

∗ −Ĝi − ĜT
i

]

< 0, i = 1, 2 (25)

where Ψ̃1 = Ψ1, Λ̃1 = Λ̂1, Ψ̃2 is given in (24),

Λ̃T
2 =

[

GT
21A − WC GT

21B2 − WD2

ǫ22χ
T
2 (GT

21A − WC) ǫ22χ
T
2 (GT

21B2 − WD2)

]

,

χi are given full column-rank matrices properly dimen-
sioned and ǫij , i = 1, 2, j = 1, 2 are given scalars. Further-
more, if the solution of (25) exists, the observer gain can

be obtained as K = G−T
11 W .

Remark 13. Theorem 12 actually provides an improved
LMI approach over (Wang et al., 2005, Proposition 4) in
the sense of the performance index J2, due to the fact that
different Lyapunov matrices and additional free variables
are appended. In fact, if we let ǫi2 = 0, ǫi1 = 1

ǫ , Gi21 = ǫP ,
Gi22 = 0, Gi23 = ǫI and Q = P where ǫ is a sufficiently
small scalar, then we can recover (Wang et al., 2005,
Proposition 4).

Remark 14. Since we do not require the exact decoupling
between the residual and disturbance, rwf = 0 may not
hold when f(t) = 0. Hence, a proper threshold (commonly
denoted as Jth) is necessary. However, an exact threshold
seems to be rather arduous to obtain, thus we propose
an approximation using a cumulative sum. We assume
the noise w has independent Gaussian distribution (zero
mean and variance [σ2

1 , ..., σ2
ℓ ]). In the fault-free case, if the

condition of Lemma 1 is satisfied, we can actually deduce
that ‖rw‖L2[0,T ] < γ2

1‖w‖L2[0,T ] during a time window

T . Let Exp{‖w‖L2[0,T ]} = T
∑ℓ

i=1 σ2
i

∆
= φw. To obtain

‖rw‖L2[0,T ], we choose a sufficiently small sampling rate δt,

such that ‖rw‖L2[0,T ] = δt

∑

T
δt

i=1 rw(ti)
T rw(ti)+ǫ

∆
= ϕr +ǫ,

where ǫ is a sufficient small scalar. Now we can define
the threshold as Jth = γ2

1φw and propose the following
algorithm:

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

γ
2

γ 1/γ
2

Wang et als method
Our method with ε

1
=ε

Our method with ε
i
≠ 0

Fig. 1. Comparison of a linear system

ϕr

{

≤ Jth, if f = 0
> Jth, if f > 0

(26)

However, our experience shows that this threshold does not
work well if T is not long enough. Hence, we may apply
the confidence level in statistic theory and choose β such
that Prob{|wi| < β} > ρ, where ρ ≥ 95% experimentally,

and redefine φw = T
∑ℓ

i=1 β2. Of course, the adaptive
threshold may be more useful (Shi et al., 2005).

4. NUMERICAL EXAMPLES

Example 1. Consider the following example borrowed
from (Wang et al., 2005):

A =





−10 0 5 0
0 −5 0 2.5
0 0 −2.5 0
0 5 0 −3.75



 , B1 =





0.8 0.04
−2.4 0.08
1.6 0.08
0.8 0.08



 ,

B2 =





4
4
8
−8



 , C =

[

1 0 0 1
1 0 1 1

]

, D1 =

[

0.2 0.04
0.4 0.06

]

, D2 =

[

2
−1

]

We compare the performance index J2 using (Wang et al.,
2005, Proposition 4) and Theorem 12. Instead of the
multiple-objective optimization problem of searching for
the sub-optimal J2, we fix parameter γ2 while finding
minimum γ1. Figure 1 shows the comparison result. The
performance of our method actually depends on the choice
of parameter ǫij , i = 1, 2, j = 1, 2. It can be easily seen
from the figure that the performance of our method with
ǫ21 = ǫ22 = 0 has no advantage over (Wang et al., 2005,
Proposition 4) until γ2 > 1.7. If we do a search involving
all four parameters, we obtain the minimum J2 = 0.230,
which is superior to minimum J2 = 0.265 (when γ2 =
1.712) from (Wang et al., 2005, Proposition 4). Note that
we can use the routine “fminsearch” in Matlab to search
the corresponding parameters. We assume that the noise
is independent Gaussian noise with zero mean and 1 vari-

ance. The fault is f =

{

0 t < 5
α t ≥ 5

. We choose a sampling

time as 0.01s and time window T = 0.1. It is known
that the possibilities of |w| < β = 1.96, 2.24, 2.58, 3.29
are 95%, 97.5%, 99%, 99.9%, respectively. We may choose
0.2β2 as the approximation of φw of the thresholds.
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Fig. 2. Simulation results of ‖rw‖
2

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

time

re
s
id

u
a

l

0 2 4 6 8 10
0

2

4

6

8

10

12

time

re
s
id

u
a

l

α = 2 α = 1.5

0 2 4 6 8 10
0

1

2

3

4

5

6

time

re
s
id

u
a
l

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

re
s
id

u
a

l

α = 1 α = 0.5

Fig. 3. Simulation results of 0.01
∑10

i=1 rT
w(ti)rw(ti)

When we choose γ2 = 0.2, we have minimum γ1 = 0.4529
based on (Wang et al., 2005, Proposition 4) or our method.

A possible K is





2.23138 0.878856
−0.249055 −5.72884
4.48168 1.73555
−2.32028 3.10911



.

The simulation results with α = 2, 1.5, 1, 0.5 are shown
in Figures 2 and 3, where Figure 2 gives the ac-
tual value of ‖rw‖

2 while Figure 3 gives the value of

0.01
∑10

i=1 rT
w(ti)rw(ti). It is clear that the cumulative sum

performs better than actual value. Note that the value of
v(0) is rather big when e0 is big. Hence it is not suitable
for the threshold. That is the reason why we often assume
the zero initial state conditions.

Based on (Wang et al., 2005, Proposition 4), when we
choose γ2 = 1.712, we have minimum γ1 = 0.4540 and

K =





2.43827 0.817969
−0.419836 −5.65537
4.81894 1.63411
−2.67894 3.2116




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Fig. 4. Simulation results of 0.01
∑10

i=1 rT
w(ti)rw(ti) based

on (Wang et al., 2005, Proposition 4)
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Fig. 5. Simulation results of 0.01
∑10

i=1 rT
w(ti)rw(ti) of our

method

where the minimum J2 = 0.265 is obtained.

However, using Theorem 12 with ǫ12 = ǫ22 = 0, we can
obtain the smaller J2 = 0.236, if we choose γ2 = 2.21,
where we have minimum γ1 = 0.5254 and

K =





2.4238 0.8532
−0.7407 −5.5031
4.8334 1.6776
−2.4766 3.0464





Figures 4 and 5 show the simulation results.

Example 2. Consider the following example borrowed
from (Wang et al., 2005):

A =





−5.2 0.65 6.5 1.3
−1.56 −2.6 0 2.6
−1.3 0 −1.3 0
−0.26 0 3.9 −1.95



 ,

B1 =





0.5 0.03
−1.5 0.02

1 −0.04
0.5 0.01



 , B2 =





2
2
4
−4



 , C =

[

−0.3 0.3 0 0.3
0.3 0 0.3 0

]
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Fig. 6. Simulation results of sum of residuals

D1 =

[

0.15 0.012
0.3 0.015

]

, D2 =

[

1.6
−0.8

]

In (Wang et al., 2005), a sub-optimal solution is obtained
when γ1 = 0.3400 and γ2 = 1.785, so that γ1/γ2 = 0.1905.
However, because this example actually provides much
”space” for design, using Lemma 6, we already obtain

the optimal value 0.1878 = ‖D1‖
‖D2‖

= γ1

γ2
= 0.3359

1.1788 with the

following parameters:

D+

2
=

[

0.5 −0.25
]

, K =





1.6746 0.841445
−0.99546 −4.48664
3.33271 1.65711
−1.32948 2.33682





Figure 6 shows the simulation results of our method with
the same fault and noise setting of last example.

5. CONCLUSION

In this paper, we have discussed the fault detection ob-
server design problem based on both H∞ and L2-gain per-
formances. Several efficiently LMI-based approaches have
been proposed. Compared with the results from (Wang
et al., 2005), the formulations herein are more efficient and
less conservative. In our continuing work, the FDI problem
in finite domain frequency and of descriptor systems will
be addressed.

ACKNOWLEDGEMENT

The authors wish to thank Prof Carlos E. de Souza for
valuable discussions and comments.

REFERENCES

P. Apkarian and H. D. Tuan. Robust control via concave
minimization local and global algorithms. IEEE
Trans. on Automatic Control, 45(2):299–305, 2000.

S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan.
Linear Matrix Inequalities in System and Control
Theory. Studies in applied mathematics. SIAM, 1994.

J. Chen and R. J. Patton. Robust model-based fault di-
agnosis for dynamic systems. Massachusetts: Kluwer
Academic Publishers, 1999.

L. H. Chiang, E. L. Russell, and R. D. Braatz. Fault de-
tection and diagnosis in industrial systems. Advanced
textbooks in control and signal processing. Springer,
2001.

M. C. de Oliveira, J. Bernussou, and J. C. Geromel. A
new discrete-time robust stability condition. Systems
and Control Letters, 37:261–265, 1999.

S. X. Ding, T. Jeinsch, P. M. Frank, and E. L. Ding. A
unifed approach to the optimization of fault detection
systems. International Journal of adaptive control
and signal processing, 14(7):725–745, 2000.

M. Ehrgott. Multicriteria optimization. Springer, Berlin
Heidelberg New York, 2 edition, 2005.

J. Gertler. Fault detection and diagnosis in engineering
systems. Marcel Dekker. Inc, New Year, USA, 1998.

D. Henrion and A. Garulli, editors. Positive polynomials
in control, volume 312 of LNCS. Springer, 2005.

D. Henrion and J. B. Lasserre. Convergent relaxations
of polynomial matrix inequalities and static output
feedback. IEEE Trans. on Automatic Control, 51(2):
192–202, 2006.

D. Henry and A. Zolghadri. Design of fault diagnosis fil-
ters: A multi-objective approach. Journal of Franklin
Institute, 342:421–446, 2005a.

D. Henry and A. Zolghadri. Design and analysis of
robust residual generators for systems under feedback
control. Automatica, 41:251–264, 2005b.

R. Isermann. Model-based fault-detection and diagnosis
- status and applications. Annual reviews in control,
29:71–85, 2005.

R. Isermann. Fault-diagnosis systems: an introduction
from fault detection to fault tolerance. Springer, 2006.

S. Kanev, C. Scherer, M. Verhaegen, and B. de Schutter.
Robust output-feedback controller design via local
BMI optimization. Automatica, 40:1115–1127, 2004.

J. Liu, J. Wang, and G. Yang. An LMI approach to
minimum sensitivity analysis with application to fault
detection. Automatica, 41:1995–2004, 2005.

R. J. Patton, P. M. Frank, and R. N. Clark, editors. Issues
of fault diagnosis for dynamic systems. Springer-
Verlag, London, U.K., 2000.

Z. Shi, F. Gu, B. Lennox, and A. D. Ball. The development
of an adaptive threshold for model-based fault detec-
tion of a nonlinear electro-hydraulic system. Control
Engineering Practice, 13:1357–1367, 2005.

V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri,
and K. Yin. A review of process fault detection and
diagnosis part III: Process history based methods.
Computers and Chemical Engineering, 27:327–346,
2003.

H. Wang, J. Lam, S. X. Ding, and M. Zhong. Iterative
linear matrix inequality algorithms for fault detection
with unknown inputs. Proc. IMechE part I: Systems
and Control Engineering, 219:161–172, 2005.

J. Xu and L. Xie. Dilated LMI characterization and a new
stability criterion for polytopic uncertain systems.
In IEEE World Congress on Intelligent Control and
Automation, pages 243–247, Dalian, China, Jun 2006.

M. Zhong, S. X. Ding, J. Lam, and H. Wang. An lmi
approach to design robust fault detection filter for
uncertain lti systems. Automatica, 39:543–550, 2003.

K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal
control. Prentice Hall, 1996.

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10141


