
Positive invariance tests with efficient

Hessian matrix eigenvalues bounds
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Abstract: We investigate two simple sufficient criteria for positive invariance of sets in the
domain of n-dimensional nonlinear autonomous discrete time systems. These criteria are derived
from the exact Taylor expansion with linear and quadratic remainder terms. By a simple
example we demonstrate that systems exist for which positive invariance can be established
with the second order criterion but not with the first order criterion. Since the second order
criterion requires the Hessian matrices of the model equations, this criterion is computationally
expensive. We show, however, that the second order criterion can be evaluated at a surprisingly
low computational cost. Specifically, we show that the computational complexity is an order of
magnitude lower than the calculation of the Hessian matrices.

1. INTRODUCTION

The notion of positively invariant (p.i.) sets plays an im-
portant role in many problems in control theory (Blan-
chini, 1999). In the present paper we investigate positive
invariance of sets for nonlinear autonomous discrete time
systems. More precisely, let U ⊂ Rn be open and let
f : U → Rn be a twice continuously differentiable func-
tion. We are interested in establishing positive invariance
of balls around a locally stable fixpoint x0 of systems of
the form

x(tk+1) = f(x(tk)), x(0) = x0, (1)

if such a ball exist. In particular we are interested in
computational methods for establishing positive invariance
that can be carried out automatically. We present such a
method and discuss its computational complexity.

First we sketch the reason for using Hessian matrices of the
fi, i.e. we explain why it is of interest to use a second order
approximation of the r.h.s. of f in (1). Note the following
reasoning is informal at times. Section 2 treats the same
idea in a more formal fashion.

Let Q ⊂ U be convex and let ∆x := x − x0. According
to the mean value theorem or Taylor’s theorem we know
that for any x ∈ Q and any x0 ∈ Q

f(x) = f(x0) + S(x, x0) (2)

where the remainder to linear order, S(x, x0), can be
calculated (Heuser, 1991) from

Si(x, x0) =

n
∑

ρ=1

∆xρ

∫ 1

0

∂fi(x0 + s∆x)

∂xρ
ds, (3)

for i = 1, . . . , n. Similarly, according to Taylor’s theorem

f(x) = f(x0) + ∇f(x0)∆x + T (x, x0) (4)

where the remainder to quadratic order, T (x, x0), can be
calculated (Heuser, 1991) from

Ti(x, x0) =

n
∑

ρ,σ=1

∆xρ∆xσ

∫ 1

0

∂2fi(x0 + s∆x)

∂xρ∂xσ
(1 − s) ds,

(5)
for i = 1, . . . , n. By assumption of local stability of system
(1) the mapping is globally stable

x → f(x0) + ∇f(x0)∆x (6)

since ∇f(x0) has only eigenvalues in the unit circle. When
using the Taylor theorem with remainder to linear order,
however, ∇f(x0)∆x in the mapping (6) is replaced by
S(x, x0). In order to evaluate S(x, x0), the gradient ∇f(x)
needs to be evaluated not only at x0, but also away
from x0 according to (3). Therefore information on the
eigenvalues of ∇f(x) at x0 only is no longer sufficient to
infer stability. When using the second order approximation
(4), in contrast, the globally stable linear order is retained,
cf. the second term in the r.h.s. of (4), and information on
f away from x0 is only needed to second order. Loosely
speaking, the approximation to second order (4) therefore
makes better use of the fact that the system (1) is known
to be locally stable at x0. This idea is treated in more
detail in section 2.

Since the calculation of bounds to second order involves
second derivatives of f(x), the second order criterion must
be expected to be computationally more expensive than its
first order counterpart. In section 3 we show, however, that
the necessary second order information can be obtained
without ever calculating the Hessian matrices of the fi.
More generally, section 3 summarizes recent results on the
complexity of Hessian matrix eigenvalue bound calculation
that are likely to be useful beyond the purpose they serve
here.

Section 4 gives a simple illustrative example for which posi-
tive invariance on a set can be established with the second
order remainder but not with the first order remainder.
Conclusions are given at the end of the paper.
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2. SIMPLE SUFFICIENT CONDITIONS FOR
POSITIVE INVARIANCE ON BALLS

We call a set M ⊂ U positively invariant (p.i.) for system
(1) if for all x(t0) = x0 ∈ M the system stays in M
for all t, i.e. x(tk) ∈ M for all k > 0. There is a large
body of literature on positive invariance on polytopes
(see Blanchini (1999) and references therein). In what
follows we restrict ourselves to the simpler case of positive
invariance on balls.

Using bounds on the eigenvalues of the Jacobian of f
or on the eigenvalues of the Hessians of the fi, i =
1, . . . , n we can state criteria for positive invariance of
balls around a fixpoint. This is clarified in the following
simple propositions 1 and 2. Let || · ||2 denote the 2-
norm on Rn. By B(ρ) denote the closed ball B(ρ) =
{x ∈ Rn : ||x||2 ≤ ρ} with radius ρ > 0. Furthermore, for
any real symmetric matrix M denote the largest eigenvalue
of M by λmax(M).

Proposition 1. (suff. cond. from linear remainder S) Let
the assumptions be as for system (1). If there exists a
ρ > 0 such that for

σ := max
x∈B(ρ)

√

λmax ((∇f(x))T ∇f(x)) (7)

the inequality

||f(x0)||2 + σ ||∆x||2 ≤ ρ (8)

holds for all x ∈ B(ρ), then B(ρ) is p.i. for the dynamical
system (1).

Proof. We rewrite S(x, x0) as defined in (3) as S(x, x0) =
A(x0 + s∆x)∆x, where

Aij(x0, x) :=

∫ 1

0

∂fi(x0 + s∆x)

∂xj
ds,

for i, j = 1, . . . , n. Then

||S(x, x0)||2 ≤ ||A(x0 + s∆x)||2 ||∆x||2 (9)

where the vector and induced matrix 2-norm are used.
Furthermore

||A(x0 + s∆x)||2 ≤
(

λmax

(

AT (x0 + s∆x)A(x0 + s∆x)
))1/2

≤ σ (10)

where the first inequality is a standard result from linear
algebra and the second inequality holds by definition of σ.
By applying the 2-norm and the triangle inequality to (2)
and by combining (9) and (10) we get

||f(x)||2 ≤ ||f(x0)||2 + ||S(x, x0)||2
≤ ||f(x0)||2 + σ ||∆x||2 (11)

for all x in B(ρ). Combining (11) with (8) we get
||f(x)||2 ≤ ρ for all x ∈ B(ρ). Since this implies ||xk+1||2 =
||f(xk)||2 ≤ ρ for all xk ∈ B(ρ), trajectories that enter
the ball B(ρ) never leave it. Therefore B(ρ) is p.i. for the
dynamical system (1).

Similarly, we can state a sufficient condition for positive
invariance based on the quadratic remainder (5).

Proposition 2. (suff. cond. from quadratic remainder T ) If
there exists a ρ > 0 such that for

λi := min
x∈B(ρ)

λmin

(

H(i)(x)
)

, i = 1, . . . , n, (12)

λ̄i := max
x∈B(ρ)

λmax

(

H(i)(x)
)

, i = 1, . . . , n, (13)

and

τ :=

(

n
∑

i=1

max
(

λ2
i , λ̄

2
i

)

)1/2

(14)

the inequality

||f(x0)||2 + ||∇f(x0)||2 ||∆x||2 +
1

2
τ ||∆x||22 ≤ ρ (15)

holds for all x ∈ B(ρ), then B(ρ) is p.i. for the dynamical
system (1).

We use the following lemma to prove proposition 2.

Lemma 3. Let the assumptions be as for system (1) and
let the second order remainder T be defined as in (5). Then
for all i = 1, . . . , n and for all x and x0 in B(ρ)

1

2
λi||∆x||22 ≤ Ti(x, x0) ≤

1

2
λ̄i||∆x||22, (16)

where λi and λ̄i are defined as in (12) and (13), respec-
tively.

Proof. Let x ∈ B(ρ), x0 ∈ B(ρ), s ∈ [0, 1], and i ∈
{1, . . . , n} be arbitrary but fixed. Since B(ρ) is convex, all
points on the line x0 + s ∆x lie in B(ρ). According to a
standard result on quadratic forms we have, for all ξ ∈ Rn

and all s ∈ [0, 1],
n
∑

ρ,σ=1

ξρH
(i)(x0 + s∆x)ξσ ≤ ||ξ||22 λmax(H

(i)(x0 + s∆x)).

(17)
Furthermore for all s ∈ [0, 1]

λmax(H
(i)(x0 + s∆x)) ≤ max

x∈B(ρ)

x0∈B(ρ)

s∈[0,1]

λmax(H
(i)(x0 + s∆x))

= max
x∈B(ρ)

λmax(H
(i)(x)), (18)

where the equality in the last step holds because the set
V = {x0 + s∆x : x ∈ B(ρ), x0 ∈ B(ρ), s ∈ [0, 1]} is the set
of all points on all lines between arbitrary points x0 and
x in B(ρ). For this set we have, however, V = B(ρ). Since
(17) holds for all ξ ∈ R, it holds for ξ = ∆x = x − x0 in
particular. Combining (17) and (18) therefore yields the
upper bound in (16). The lower bound can be proved in
the same fashion.

Using lemma 3 we can now easily prove proposition 2.

Proof of prop. 2. From (16) we infer

0 ≤ T 2
i (x, x0) ≤

(

1

2
||∆x||22

)2

max
(

λ2
i , λ̄

2
i

)

.

By summing over i = 1, . . . , n and taking the square root
we get

0 ≤ ||T (x, x0)||2 ≤ 1

2
||∆x||22

(

n
∑

i=1

max(λ2
i , λ̄

2
i )

)1/2

(19)

On the other hand, applying the norm || · ||2 to both sides
of (4) and using the triangle inequality yields
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||f(x)||2 ≤ ||f(x0)||2 + ||∇f(x0)||2 ||∆x||2 + ||T (x, x0)||2
(20)

where || · ||2 in ||∇f(x0)||2 denotes the induced matrix
norm. Combining (19) and (20) yields

||f(x)||2 ≤ ||f(x0)||2 + ||∇f(x0)||2 ||x||2 +
1

2
τ ||∆x||22(21)

with τ as defined in (14). By assumption (15) the r.h.s.
of (21) is smaller than or equal to ρ for all x ∈ B(ρ).
Therefore ||f(x)||2 ≤ ρ for all x ∈ B(ρ). Since for any xk ∈
B(ρ) this implies ||xk+1||2 = ||f(xk)||2 < ρ, trajectories of
(1) never leave B(ρ) and therefore the dynamical system
(1) is p.i. on B(ρ).

Before proceeding to an example in section 4 we first
discuss the complexity of calculating bounds λi and λ̄i

on the spectrum of Hessian matrices ∇2fi(x).

3. HESSIAN MATRIX EIGENVALUE BOUNDS

Clearly, the computational complexity of the second order
criterion in proposition 2 is higher than that of the first
order criterion in proposition 1, since the calculation of
eigenvalue bounds for the Hessian matrices, ∇2fi(x), of
each fi, i = 1, . . . , n is required in the former, while
eigenvalue bounds on only one Jacobian matrix, ∇f(x),
is required for the latter. In this section we discuss the
complexity of the calculation of eigenvalue bounds of
Hessian matrices. To this end, we extend a result on the
complexity of eigenvalue bounds for real Hessian matrices
to interval Hessian matrices.

We briefly note that various other approaches to calculat-
ing eigenvalue bounds exist. Most notably, the calculation
of tight eigenvalue bounds of an interval Hessian matrix,
i.e. the calculation of the smallest possible upper bound
and the largest possible lower bound, has been shown to
be NP-hard (Blondel and Tsitsiklis, 2000). In fact tight
bounds on the spectrum of an n×n-dimensional symmetric
interval matrix can be established by calculating the eigen-
values of 2n−1 real vertex matrices of the interval matrix
(Hertz (1992); Rohn (1994)). Non-tight eigenvalue bounds
can also be calculated with methods of lower complexity.
For example, an interval variant of Gershgorin’s circle
method can be devised (Floudas, 1999). While this method
in general does not yield tight bounds, it requires only
O(n) arithmetic operations. Many other approaches with
computational complexities between those of the interval
Gershgorin and the vertex matrix approach exist. For an
introduction, we refer the reader to Floudas (1999).

3.1 Preliminaries and notation

Before stating the necessary result on spectra of Hessians,
we need to collect some preliminary results and introduce
some notation. We carry out calculations with bounds on
real numbers and borrow a compact notation from interval
arithmetics (see Kearfott (1996), for example). Let c and
c̄ ≥ c denote real numbers. If a variable c ∈ R is bounded
according to c ≤ c ≤ c̄ this is denoted by c ∈ [c, c̄] or
c ∈ [c], where [c] := [c, c̄] for short. Note intervals represent
real numbers if the lower and upper bounds are equal. If,
for example c = c̄, the interval [c, c̄] is identified with the
real number c = c̄. Intervals of this type are called flat

for short. Calculations with intervals can be carried out
according to the following rules.

Fact 4. (Kearfott, 1996) Assume real numbers c and d are
bounded according to c ∈ [c] and d ∈ [d] for some real
intervals [c] = [c, c̄] and [d] = [d, d̄]. Let a ∈ R be an
arbitrary real number. Then

c + d ∈ [c] + [d] := [c + d, c̄ + d̄],

c − d ∈ [c] − [d] := [c − c̄, c̄ − d],

a c∈ a [c] :=

{

[a c, a c̄] if a ≥ 0
[a c̄, a c] if a < 0

(22)

c d∈ [c] [d] := [min(c d, c d̄, c̄ d, c̄ d̄), max(c d, c d̄, c̄ d, c̄ d̄)]

If 0 6∈ [d], the interval division c/d ∈ [c]/[d], where

[c]/[d] := [min(c/d, c/d̄, c̄/d, c̄/d̄), max(c/d, c/d̄, c̄/d, c̄/d̄)],

is well-defined.

We state similar arithmetic rules for bounds on eigenvalues
of symmetric matrices.

Lemma 5. Let A and B be sets of symmetric real matrices.
Let [c, c̄], [α, ᾱ] and [β, β̄] be intervals and assume

λA ∈ [α, ᾱ], λB ∈ [β, β̄]

for all eigenvalues λA and λB of all matrices A ∈ A and
B ∈ B, respectively. Then

λ ∈ [c, c̄] [α, ᾱ], (23)

for all eigenvalues λ of all matrices from the set

{C : C = c A for some c ∈ [c, c̄] and some A ∈ A}
and

λ ∈ [α, ᾱ] + [β, β̄] (24)

for all eigenvalues λ of all matrices from the set

{C : C = A + B for some A ∈ A and some B ∈ B} .

The proof of lemma 5 is elementary and omitted for
brevity.

Finally, we state the following lemma as an example for
a Hessian matrix eigenvalue bound arithmetic rule. The
particular composition of functions, f(x) = h3(x), treated
in the lemma is chosen because a term of this form occurs
in the example stated further below.

Lemma 6. Let h : U → R be a twice continuously
differentiable function on an open U ⊆ Rn. Let f(x) =
h3(x). Assume S ⊂ U is compact and assume there exist
real numbers h, h̄, λh, λ̄h, and σ, σ̄ such that

h(x) ∈ [h, h̄] for all x ∈ S,

λ ∈ [λh, λ̄h],

for all eigenvalues of ∇2h(x) for all x ∈ S, and

σ ∈ [σ, σ̄] (25)

for all eigenvalues σ of ∇h(x)(∇h(x))T for all x ∈ S. Then

λf ∈ 3 [h, h̄]
(

2 [σ, σ̄] + [h, h̄] [λh, λ̄h]
)

(26)

for all eigenvalues λf of ∇2f(x) for all x ∈ S.

Proof. Using the chain rule we get

∇2f(x) = 3 h(x)
(

2∇h(x)(∇h(x))T + h(x)∇2h(x)
)

.
(27)
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+ (1)

(2) (4)

x2 (3) (5)

x2 (6) (·)3 (7)

c1 c2

r(x) (1)

u(x) (2) v(x) (4)

g(x) (7)h(x) (6)

s(x) (3) f(x) (5)

Fig. 1. Binary tree of the sample function r(x) = c1 x2 +
c2 x3

2 where c1 = 9
10 and c2 = 1

10 . The numbering
of nodes is arbitrary. The symbol ◦ denotes the
composition of two functions, i.e. g(h(x)) = (g◦h)(x).
Function names to the left and right are not part of
the binary tree but listed for ease of reference only.

By assumption the spectrum of ∇2h(x) and the function
h(x) are confined to [λh, λ̄h] and [h, h̄] for all x ∈ S,
respectively. Using rule (23) we infer that, for all x ∈ S,
the eigenvalues of the matrix (h(x)∇2h(x)) are confined
to

[h, h̄] [λh, λ̄h]. (28)

Applying rule (23) to the flat interval [c, c̄] = [2, 2]
and using assumption (25) we infer the eigenvalues of
2∇h(x)(∇h(x))T to be confined to

2 [σ, σ̄]. (29)

Adding (28) and (29) according to rule (24) results in
bounds

2 [σ, σ̄] + [h, h̄] [λh, λ̄h] (30)

on the eigenvalues of the matrix defined by the term in the
bracket on the r.h.s. of (27) for all x ∈ S. Using rule (22)
we infer 3 h(x) ∈ 3 [h, h̄]. Multiplying this result with (30)
according to rule (23) gives the desired bounds (26).

3.2 Motivating example

The following example demonstrates how fact 4 and lem-
mata 5 and 6 can be used to calculated bounds on eigenval-
ues with a simple recursion. The purpose of this recursion
is to split a function into simpler and simpler subfunctions
until trivial subfunctions of the form x → xi are obtained.

Example 7. Let x = (x1, x2)
T ∈ R2, r(x) = 9

10 x2 + 1
10 x3

2,
and

S =
{

(x1, x2)
T ∈ R2 : x1 ∈ [−1/2, 1/2], x2 ∈ [−1/2, 1/2]

}

.

The function r can recursively be split into simpler func-
tions. Specifically, r(x) = u(x) + v(x) where u(x) =
9
10 s(x), s(x) = x2 and v(x) = 1

10 g(h(x)) where h(x) = x2

and g : R → R, g(ξ) = ξ3. A natural representation of this
recursive splitting is a binary tree, cf. figure 1.

Based on this binary tree, eigenvalue bounds can be
determined without calculating a Hessian matrix of any
but the trivial functions s(x) and h(x). In the numbering
Nn used in what follows, n corresponds to the node number
in figure 1.

N1 Assume the spectra of ∇2u(x) and ∇2v(x) are known
to be confined to intervals [λu] = [λu, λ̄u] and [λv] =

[λv, λ̄v] for all x ∈ S. Then for all eigenvalues λr of
∇2r(x) we can infer λr ∈ [λu] + [λv] for all x ∈ S
according to rule (24). We have to descend into node
2 and node 4 to calculate [λu] and [λv], respectively.

N2 Assume the spectrum of ∇2s(x) is known to be
confined to an interval [λs] for all x ∈ S. Then for all
eigenvalues λu of ∇2u(x) we can infer λu ∈ 9

10 [λs] for
all x ∈ S using rule (23). We have to descend into node
3 to calculate [λs].

N3 Since s(x) = x2 implies

∇2s(x) =

(

0 0
0 0

)

all eigenvalues of ∇2s(x) are zero for all x ∈ S. Con-
sequently, we have the trivial result [λs] = [0, 0]. Since
the binary tree ends at node 3, no further descending is
necessary.

N4 Assume the spectrum of ∇2f(x) is known to be
confined to an interval [λf ] for all x ∈ S. Then the
spectrum of ∇2v(x) = 1

10 ∇2f(x) is confined to [λv] =
1
10 [λf ] according to rule (23). We have to descend into
node 5 to calculate [λf ].

N5 Assume bounds [h, h̄], [λh, λ̄h], and [σ, σ̄] are known
on the range of h(x), the spectrum of ∇h(x) (∇h(x))T ,
and the spectrum of ∇2h(x) for all x ∈ S, respec-
tively. Then bounds [λf ] on the spectrum of ∇2f(x) =
∇2g(h(x)) can be calculated according to (26) in lemma
6. We have to descend into node 6 to calculate [h], [σ],
and [λh].

N6 Nodes 3 and 6 are equal, therefore [λh] = [0, 0].
Since x2 ∈ [−1/2, 1/2] by assumption, h(x) = x2 ∈
[−1/2, 1/2]. Since ∇h(x) = (0, 1)T ,

∇h(x) (∇h(x))T =

(

0 0
0 1

)

.

This matrix has eigenvalues 0 and 1, therefore [σ] can
be set to [σ, σ̄] = [0, 1] where σ and σ̄ are as defined in
lemma 6.

Using the results for the terminal nodes we can now
proceed to calculate bounds on the spectra of the Hessian
matrices of the functions defined at the other nodes of the
tree. Using the result for node 6 and rule (N5) we infer

[λf ] = 3

[

−1

2
,
1

2

](

2 [0, 1] +

[

−1

2
,
1

2

]

[0, 0]

)

= [−3, 3].

Using this result and (N4) we find [λv] = 1
10 [λf ] =

[−3/10, 3/10].

Using the result for node 3 and rule (N2) we find [λu] =
[0, 0]. Using this result and the result for node 4, [λv] =
[−3/10, 3/10], we infer

[λr ] = [−3/10, 3/10] (31)

with rule (N1). This concludes the example.

Note this recursion by construction always ends at func-
tions for which eigenvalue bounds can be found trivially.

3.3 Computational complexity

At first sight the calculation of the eigenvalue bounds for
example 7 looks quite elaborate. A closer look reveals,
however, that calculations of this type can easily be
carried out automatically at a low computational cost.
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In the remainder of this section we state a result on
the computational complexity of an eigenvalue bound
calculation.

Let r : U → R be an arbitrary function on an open U ⊂ Rn

that can be represented by a tree of binary and unary
operations ω,

ω ∈ Sω {+,−,×, /, sin, exp, . . . } . (32)

The set Sω can be extended by any other binary or unary
operation ω on real operands for which ω and its first and
second derivative are well-defined, continuous, and can be
implemented in a computer language. Other extensions are
possible (Kearfott, 1996).

As a preparation we state a result on the complexity of
the calculation of bounds on the spectrum of ∇2r(x0)
at an arbitrary but fixed point x0 ∈ U . In what follows
we carefully need to distinguish between two cases: (i)
bounds on the spectrum of ∇2r(x) for all x ∈ S in some
hyperrectangle S ⊂ U , and (ii) bounds on the spectrum
of ∇2r(x0) at a particular point x0 ∈ U . We denote the
former bounds by [λr ] and the latter by [λr ]point. By N(r)
denote the number of operations ω ∈ Sω that are necessary
to evaluate r at a point x0. By N([λr]point) denote the
number of operations necessary to compute bounds on
the spectrum of ∇2h(x0) at a point x0. Note N(r) is
determined by the number of nodes in the binary tree used
for the computation of r(x0) but independent of the choice
of the point x0. Likewise, N([λr ]point) is determined by
the number of nodes in the binary tree and the number of
operations per node, but independent of x0. The numbers
N(r) and N([λr ]point) are related as stated in the following
lemma.

Lemma 8. (Mönnigmann, 2007) There exist positive inte-
gers α and β such that

N([λr]point)

N(r)
= α n + β, (33)

for all twice-continuously differentiable r(x) that can be
represented by a tree of operations ω ∈ Sω.

While the proof of lemma 8 is beyond the present paper,
we give a sketch of it. At each node of the binary tree,
one operation ω ∈ Sω needs to be carried out in order to
evaluate the function at x0. By N(∇r(x0), r(x0)) denote
the number of operations ω ∈ Sω that are necessary to
evaluate both the functions value r(x) and the gradient
∇r(x) at x0. From a standard result in automatic differ-
entiation (Rall, 1981) we know

N(∇r(x0), r(x0)) = O(n)N(r(x0)).

On the other hand we know (Kearfott, 1996) that

N([∇r], [r]) = O(1)N(∇r(x0), r(x0))

operations are necessary to compute interval enclosures
of ∇r(x) and r(x) on a hyperrectangle S in the domain
of r. Using rules like (26) we can calculate bounds on
the spectrum of the Hessian of each node. Since this
calculation involves only interval arithmetics operations
on real intervals but not on vectors or matrices of intervals
(cf. (26)), the number of operations is independent of n.
Therefore the number of operations necessary at each node
increases by a factor O(1). In summary the complexity is

N([λr]point) = O(1)N([∇r], [r]) = O(1)O(n)N(r),

and this is the desired result (33).

Based on lemma 8 we can now state the desired result
on the complexity of computing eigenvalue bounds for
Hessian matrices on hyperrectangles.

Proposition 9. There exist positive integers α̃ and β̃ such
that

N([λr])

N(r)
= α̃ n + β̃ (34)

for all twice continuously differentiable r(x) that can be
represented by a tree of operations ω ∈ Sω.

Proof. The operations necessary in each node of the
binary tree of r can be augmented by their corresponding
interval arithmetics operations (Kearfott, 1996). At each
node of the binary tree of r, the computational cost
increases by a factor independent of n (Kearfott, 1996).
Therefore N([λr]) = O(1)N([λ]point). Substituting into
(33) we obtain the desired result.

Loosely speaking, proposition 9 tells us that we can
compute bounds [λr] on the spectrum of ∇2r(x) that hold
for all x ∈ S ⊂ Rn at a computational cost that is only
linearly (in n) more expensive than the computation of
r(x) at a point x ∈ S. This result is surprising when
compared to the complexity of computing an interval
Hessian matrix, i.e. a matrix with elements

[Hij , H̄ij ], i, j = 1, . . . , n

such that
∇2h(x)ij ∈ [Hij , H̄ij ] (35)

for all x ∈ S and all i, j ∈ {1, . . . , n}. The computational
complexity of evaluating a Hessian matrix ∇2fi(x) at a
point x0 is

O(n2)N(r)

if the same techniques from interval arithmetics and auto-
matic differentiation are used as for the calculation of [λr]
(Rall, 1981). Since the use of interval arithmetics instead
of floating point arithmetics increases this cost by a factor
of order O(1) as in lemmata 8 and 9, the computational
cost of calculating (35) is

O(1)O(n2)N(r) = O(n2)N(r).

According to proposition 9, this is one order (in n) more
expensive than the calculation of [λr].

4. ILLUSTRATIVE EXAMPLE

In this section we show that systems exist such that p.i. can
be shown for some domain with the second order criterion
from proposition 2 but not with the first order criterion
from proposition 1.

Consider system (1) where n = 2 and

f1(x) =
9

10
x1 +

1

10
x3

2,

f2(x) =
9

10
x2 +

1

10
x2

2

(36)

with fixpoint x0 = (0, 0)T . Since the Jacobian matrix of f ,

A =

(

9
10

3
10x2

2

0 9
10 + 1

5x2

)

(37)

is an upper triangular matrix, its eigenvalues are equal
to its diagonal elements, i.e. λ1 = 9/10 and λ2 = 9/10 +
1/5 x2. At the fixpoint x = (0, 0)T the eigenvalues evaluate
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Fig. 2. One time step evolution of sample system (36) for
some initial conditions on the boundary of B(1/2).

to λ1,2 = 9/10. Since the eigenvalues lie strictly inside the
unit circle, the fixpoint is locally stable.

Figure 2 shows single time steps x1 = f(x0) for a number
of initial points x0 on the boundary of B(1/2). This figure
suggests that B(1/2) is p.i. for the dynamical system
(36). We show that the positive invariance on B(1/2)
can be established with the bounds on the eigenvalues
of the Hessian matrices, but not with the bounds on the
eigenvalues on the Jacobian matrix.

We begin with the linear order and therefore attempt
to apply proposition 1. The eigenvalues of ∇f(x)T∇f(x)
evaluated at x = (0, 1)T are λ1 ≈ 0.83 and λ2 ≈ 1.19
(calculation not shown). This implies σ > 1 for σ as
defined in (7). For the point (1/2, 0) ∈ B(1/2), for
example, the l.h.s. of condition (8) evaluates to

σ ||∆x||2 = σ
1

2
>

1

2
Since ρ = 1/2, condition (8) is violated. Positive invariance
of B(1/2) can therefore not be inferred with the linear
remainder condition stated in proposition 1.

In order to apply the second order criterion, we need
bounds λi, λ̄i on the spectra of the Hessian matrices of
f1 and f2. The function f1 is equal to the function r(x)
treated in example 7. Since B(1/2) ⊂ S for S as defined
in example 7, the eigenvalues of ∇2f1(x) are bounded by
the interval given in (31), i.e.

[λ1, λ̄1] = [−3/10, 3/10].

Since f2 as defined in (36) is quadratic, its Hessian matrix
is independent of x and bounds on its eigenvalues can
easily be obtained. Specifically,

H2(x) =

(

0 0

0
1

5

)

, (38)

for all x ∈ R with eigenvalues 0, 1/5. Therefore, λ2 = 0
and λ̄2 = 1/5. The quantity τ as defined in (14) is equal to

τ =
√

(3/10)2 + (1/5)2 =
√

13/10. Finally, ||∇f(x0)||2 =
(

λmax(∇f(x0)
T∇f(x0))

)1/2
is equal to 9/10 (calculation

not shown). Having collected the necessary intermediate
results, criterion (15) can be evaluated to give

9

10
||∆x||2 +

1

2

√
13

10
||∆x||22 ≤ 1/2 (39)

for the example. Since
√

13/10 < 0.361 and since

max
x∈B(1/2)

||∆x||2 = 1/2 and max
x∈B(1/2)

||∆x||22 = 1/4,

the l.h.s. of (39) is bounded above by 9
20 +

√
13/4
20 which is

approximately equal to, but smaller than, 0.4951. There-
fore the second order criterion (15) is fulfilled.

In summary we are able to show that B(1/2) is p.i. for
the example with the second order criterion and bounds
on the eigenvalues of the Hessian matrices of the fi, while
we cannot establish positive invariance with the first order
criterion and eigenvalue bounds on Jacobian of f .

5. CONCLUSION

We introduced two simple criteria for the positive in-
variance of balls around fixpoints of general nonlinear n-
dimensional autonomous discrete time system. These cri-
teria are based on well-known linear and quadratic remain-
ders, respectively, for Taylor‘s theorem. We investigate the
Taylor series expansion to second order, because the linear
part of expansion to second order is globally stable if the
original system is only locally stable. We demonstrated
that systems exist for which the second order criterion can
be used to infer positive invariance while the first order
criterion fails.

Future work will have to address several extensions. The
proposed approach is currently restricted to discrete time
systems without inputs. Therefore an extension discrete
time systems with inputs and to continuous time systems
with and without inputs must be called for. Secondly,
the conditions for positive invariance are sufficient but
not necessary. Necessary conditions will become important
in particular if an efficient computational procedure for
testing for positive invariance is to be devised in the future.

The author thanks D. Kastsian for careful reading of
the manuscript and one of the anonymous reviewers for
pointing out a mistake in the first draft.
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