
     

Defect Classification Using Bayesian Approach 

for Tape Substrate Inspection System 
 

 

YoungJun Roh*, CheolWoo Kim, ChangOok Jung, and Daehwa Jeong. 
    

* Production Research Institute, LG Electronics.  

Korea (Tel: 82-31-660-7860; e-mail : behero71@lge.com, ) 

 

Abstract: The inspection of ultra-fine pitch patterned tape substrate (TS) requires high resolution optics. 

In the process of picking out defects at the level of the critical dimension through image processing, 

however, trivial blemishes formed by dust or micro particles may be detected simultaneously. This leads to 

unnecessary work on the part of operators reviewing and verifying the additional detected points. To 

maximize the efficiency of the inspection process, we need to identify and classify the defect candidates 

whether it is a real pattern defect or simply a trivial blemish by dust. In this article, we propose a Bayesian 

approach to classify the defective images based on the measures of the image features. The features of the 

defective region in terms of shape and brightness are obtained from a series of proper image analysis with 

FFT. Based on the data collected from experiments, we devised a statistic model for classification. 

 

1. INTRODUCTION 

Tape substrate (TS) products, as illustrated in Fig. 1 (a), such 

as tape carrier package (TCP) and chip on film (COF) 

comprise of fine electric circuit pattern printed on a very thin 

and flexible polyimide (PI) film. Due to their compactness 

and high density, they are used for packaging display drive 

ICs in flat panel display products such as PDP and LCD 

(Thompson et al., 1999). In accordance with the advancement 

in electronic packaging technologies, TS products are 

nowadays becoming increasingly fine; in critical regions of 

the circuit pattern, the dimension is less than 25µm pitch with 

8µm circuit width. Like printed circuit boards (PCB), TS is 

produced through a series of etching processes, and defects in 

the pattern such as open/short and nick and protrusion that 

can cause malfunctions in final products (Fig. 1. (b)). When a 

product’s dimension goes down to micrometer scale as in our 

application, foreign particles in the order of micrometers 

within the substrate materials and dust adhesion during the 

production process can deter reliable defect detection. Due to 

the lack of intelligence in the inspection process, these 

particles tend to be detected as defect candidates. For this 

reason, in most high resolution inspection for products such 

as LCD, PDP and lead frame, an additional review and 

verification process by operators is required added after the 

automated inspection (Moganti, 1996, Lim et al., 2001). To 

reduce the effort in verifying these trivial points, a video 

defect classification (VDC) approach has been investigated 

by researchers, where a high magnified colour image is 

utilized for automatic classification with more clues (Lim et 

al., 2001). In the subsequent section, we introduce the 

architecture of a network structured inspection system, where 

a server and client systems are used for review and 

verification. And we briefly describe defect detection 

algorithms based on graph matching and design rule 

approach. 
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(b) Pattern defects 

Fig. 1. Chip on film and the defect types 

 

To minimize the number of points to be reviewed by the 

operators and make the process more efficient, we propose an 

image feature based classification method in the subsequent 

sections. In chapter 3, the image features and the processing 

methods that describe whether a defective point is a dust or a 

real defect are discussed. To discriminate real defects and 

dust among the defect candidates, we propose two indices 

that indicate the likelihood of pattern defect in the view point 

of shape and brightness. By utilizing the measures on the 

image features, Bayesian approach is implemented in this 

work for the classification (Bayes, 1763).  The statistic 
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models for Bayesian inference are obtained from the 

experiments on a number of images. The performance of the 

proposed classifier is tested on another image set and the 

results are discussed in chapter 4. 

2. TAPE SUBSTRATE INSPECTION 

2.1 TS Inspection System. 

Fig. 2 shows a network structured TS inspection system, 

which consists of TS visual inspection machines, punching 

machines, a server, and client verification systems. In the 

inspection machines, tape products are inspected by using a 

series of line cameras while they pass through the inspection 

zone by a reel-to-reel transfer unit. We utilized four line 

cameras with different illumination to detect not only pattern 

defects such as open, short, nick and protrusion but also 

exterior blemishes like scratches or discoloration on the 

product surface. The optical resolution for detecting pattern 

and surface defects is 1.9um and 3.5um, respectively, which 

gives rise to huge inspection images exceeding 600MB per 

unit. A high computation power processing module equipped 

with 128 DSPs makes it possible to process the massive 

information real time by parallel processing. The output 

defective image clip, made up of small sized images 

(128x128 pixels) encompassing the detected points, called 

defect candidates, are transferred to a server system in run 

time (Roh et al., 2005).  
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Fig. 2. A network structured inspection system. 

 

Since not only actual defects but also numerous trivial 

blemishes due to dust or foreign substances may be included 

among the defect candidates, they need to be checked for 

their authenticity. For this purpose, operators review the 

candidate images and verify them at the client desks, and the 

judged results are sent back to the server system. The fact 

that the verification is conducted on a network without 

interfering the inspection process itself allows the inspection 

and verification processes be run in a parallel and efficient 

way. When the inspection is completed, the reel is transferred 

to a punching machine along with the operator-judged results 

from the server. Finally, at the punching machine, units that 

have been judged as being defective during the verification 

process are punched and are no longer usable.  

2.2 Defect detection. 

To inspect the pattern from a captured image, we utilize both 

the referential and non-referential method. To check for the 

soundness of the circuit connection, we utilize a graph 

matching method, where the designed connectivity rules of 

the circuit are collected from a master image, and then are 

compared to those in the inspection image. For this purpose, 

we represent a circuit pattern as a path that links between two 

or more distinct points, thereafter a pattern lk is modeled by a 

set of linked N link points Pn like as:  

 

1 2{ , ,...., }k Nl = P P P
  (1) 

 

Considering that the inspection here is made tile-wisely, a set 

of link points of a pattern can be defined where a pattern 

meets the border of the tile.  
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(a) a master image    (b) an inspection image 
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(c) a graph model of (a)    (d) a graph model of (b) 

Fig. 3. Graph representation of patterns 

 

Fig. 3 (c) shows an graph model representation of a tile 

image Fig. 3 (a), where we can intuitively find that 6 lines 

l1,l2,…,l6 are present with 15 endpoints P1,P2,…,P15. The end 

points on the borders of the tile are defined as link points, and 

an exceptional case of point P15 is called as a terminal point 

in this work. Graphically, the lines are represented by a line 

or a polygon according to the number of the endpoints as 

shown in Fig. 3 (c), where the terminal point is marked as a 

symbol of diamond. Once the patterns are graphically 

represented in this manner, a misconnection defects like open 

and short can be easily detected by checking the number of 

link points: when an inspected pattern is modeled with a 

smaller (or a larger) number of link points compared to that 

of its master pattern, it can be regarded as an open (or a short) 

defect. Let us investigate a defective image of Fig. 3 (b) as an 

example, where an open and a short defect are present. The 

inspection image is modeled with a graph model with six 

lines la,lb,…,lf and 17 link points, Q1,Q2,…,Q17, which is 

graphically represented by Fig. 3 (d). When the 

correspondence of each line is found by a proper searching, 

and the end points of each graph are compared to the 
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reference one in Fig. 3. (c), we can find the difference 

between the graphs. The pattern lc is composed of five link 

points, on the other hand, the corresponding pattern l3 in the 

master graph has three link points, and therefore it is 

determined as a short defect. In case of  la or le, they have one 

link and one terminal point, which is less than two link point 

of its corresponding pattern l1, and therefore are decided as 

open defects. The graph matching method is described in 

detail in reference (Roh et al., 2006). In addition to the 

critical open or short defects, TS products can have latent 

defects such as nick and protrusion caused by over and under 

etching, respectively. Although these defects do not cause 

any immediate electrical malfunction, they can become a 

critical open or short defect in future when the TS product is 

bent during integration. These defects on the pattern’s 

boundary are detected on the inspection image itself, which is 

called as a non-referential method. Over-etching and under-

etching points are determined as defects when more than 1/3 

of the designed pattern width ω or spacer σ is intruded, 

respectively. For defect detection according to this criterion, 

the dimension of pattern and spacer width is measured by 

counting pixels along horizontal or vertical direction. Due to 

the variations in pattern line width among the products, a 

fixed dimension for reference is not available here. Instead of 

using a reference dimension, we investigate the pattern width 

along the lines and detect the singularity point, if any, where 

a sudden change in pattern width is found as illustrated in Fig. 

4.  
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(a) protrusion on spacer (b) nick on pattern 

Fig. 4. Singularity point detection by dimension measurement 

 

3. FEATURE ANALYSIS ON DEFECTIVE AREA 

As we try to identify defects at the level of several 

micrometers through image processing as in our application, 

the presence of dust and foreign particles, though do not 

affect the quality of the final product, can have a critical 

effect on the production efficiency. Even if the manufacturing 

process is conducted in a clean environment of below class 

1,000, it is almost impossible to eliminate all unwanted 

micrometer-ordered particles. Fig. 5 shows the defective 

images that have been identified in the inspection system and 

sent to the server for verification. In the inspection system, 

since all distinct points along the circuits are detected, we 

pick out not only real pattern defects but also foreign 

particles among the images.  

 

 

(a) Under-etching defects 

 

(b) Blemishes by foreign materials (Non defect) 

Fig. 5. Typical defective images 

 

When the process, materials, or environment is not controlled 

in the right way, and thereafter the products are exposed to 

the more unwanted foreign substances or particles, the more 

images due to blemishes are needed to be reviewed and 

judged by operators. To reduce unnecessary effort in 

verification and increase the efficiency of the system, these 

non defect blemishes need to be filtered before verification. 

As a mean to improve the efficiency for the inspection 

process, we came up with a statistic model based on the 

image features to discriminate and filter out the blemishes 

from the defective images. Fortunately, there are two 

noticeable differences between them and can be 

discriminated as a defective or a proper unit. Since most of 

the pattern defects related to short and protrusion are caused 

by unexpected local under-etching, they are represented by 

common, inherent features in shape: under etching produces a 

fluent curves along the pattern edge. On the other hand, 

blemishes due to particle adhesion are arbitrary shaped and 

produce abrupt edge changes around the pattern boundary. 

The second difference is on the view point of brightness of 

the defective area: protrusion or short is also a part of pattern 

and bears the same intensity as on the normal pattern, 

whereas particles tends to have high permeability to the light 

and are imaged brighter than the circuit region. Fig 6 depicts 

the overall procedure of the image analysis for feature 

extraction. The first step is segmentation of the defective 

region, a protrusion or a short, from an image for analysis. 

The segmentation is carried out by subtracting the reference 

image from the defective one, where the reference image is 

obtained through self-generation process based on fast-

Fourier transform (FFT) technique. In this work, we consider 

only the defective images that are found in the straight 

patterned area for simplicity. Through the frequency domain 

analysis by FFT, the outline features of the pattern can be 

identified. In case of a straight pattern, the main component is 

placed along the pattern’s orientation axis. Therefore, as we 

cut off the off-axis component in the frequency domain and 

perform inverse of the filtered FFT, a defect free image is 

revealed. 
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Fig 6. Image analysis for assessment index 

 

To evaluate the pattern features and discriminate defects from 

blemishes, we define an index ms that indicates the 

smoothness of variation in the edge orientation along the 

boundary.  

 

1 N

s i

i

m
N

δθ= ∑
,     (2) 

Here, δθι is the orientation difference between the adjacent 

edge points. The orientation of an edge point is computed  

using Sobel operator as: (Davis) 
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To evaluate the brightness in the defective region, we define 

another index mb that indicates the discrepancy of the 

intensity for the specific region compared to that of the 

pattern. 

 

d

b

p

I
m

I
=

  (4) 

,where Id and Ip are the average of the defective and pattern 

area, respectively. 
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Fig.7. Defects and dust distribution in feature domain 

 

To achieve a statistical model of the defect classifier we 

collected the indices, ms and mb, on test samples U (total 859 

images), among which 571 blemish and 288 defect images 

are included. Fig. 7 shows a plot of the measured data in two 

dimensional spaces, where we can observe that the samples 

in the defect group GDft are distributed in a limited local area, 

whereas the samples belonging to the dust group GDust are 

scattered over a wide range.  

 

4. BAYESIAN BASED CLASSIFICATION 

4.1 Bayesian model. 

Bayesian inference is a statistical data fusion algorithm based 

on Bayes’ theorem of a posteriori probability to estimate a 

measure X with the pre-knowledge or the observation Z (Luo 

and Su, 1999) (Clark, and Yuille, 1990). Bayes’ theorem 

provides the posterior conditional distribution of X=x, given 

Z=z, as  

( | ) ( )
( | )

( )

P Z z X x P X x
P X x Z z

P Z z

= = × =
= = =

=
.  (5) 

 

When two observation z1 and z2 are available for the 

inference of a state x, and they are independence, the 

equation (3) can be extended as (Kumar et al., 2006):  

 

1 2
1 2

1 2

( , | ) ( )
( | , )

( , )

P Z z z x P x
P x Z z z

P Z z z

= ×
= =

=
.        (6) 

 

The numerators and denominator could be achieved through 

the past observation, which describe the sensor model. A 

sensor output containing uncertainties is usually modeled as a 

mean about a true value with a variance. And Gaussian 
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distribution is frequently used to describe the sensor 

uncertainties, which is given by  

 
2

2

( )

2
1

( | )
2

x z

P Z z X x e σ

σ π

− −

= = =
.       (7) 

 

To incorporate the Bayesian inference model in our 

applications, the state and the sensory observations become 

X=Dft and Z=ms,mb , respectively, and the inference model 

(6) is rewritten as equation (8). Here, we assume that the 

observations ms and mb  on  defective images are independent 

for simplicity. 

 

( ) ( ) ( )
( , )

( , )

s b

s b

s b

P m Dft P m Dft P Dft
P Dft m m

P m m

× ×
=

  (8) 

 

Equation (8) implies a probability that a defect candidate 

image, of which the measures are observed as ms and mb, is a 

real defective one. A priori information about P(ms|Dft), 

P(mb|Dft), P(Dft), and P(mb,ms) are obtained from the 

collected test data in the previous chapter. Since the 

probability P(Dft) is the defect ratio among the defect 

candidates, it is regarded here as constant 0.335 (=288/859). 

The distributions of the measures of defect images, P(ms|Dft) 

and P(mb|Dft), in feature domain are formulated here by using 

Gaussian functions for simplicity. Since the denominator 

term P(mb,ms) is described with two observations, it is 

modeled by a two-dimensional joint Gaussian function which 

is given by  

 

2 2( ) ( )

2 21
( , )

2

s s b b

s b

m m m m

s b

s b

P m m e
σ σ

πσ σ

− − − −
+

=

.     (9) 

 

The parameters of the Gaussian probability models, the mean 

and variance, are computed from the collected measures in 

the previous chapter, which are listed in table 1. Fig. 8 

illustrates the final probability density function of the 

Bayesian inference model according to the measures ms and 

mb.  

 

Table 1. the parameters of the sensor model 

 Mean Variance 

P(ms|Dft) ms,Dft  = 5.239 σs,Dft= 2.592 

P(mb|Dft) mb,Dft = 1.755 σb,Dft = 0.413 

P(mb,ms) 
ms  = 8.203 

mb = 2.207 

σs= 4.545 

σbt = 0.823 

 

Fig. 8. Bayesian Probability model 

 

We tested the Bayesian classifier on another image set of 

2,083 defect candidate images, where 274 real defects are 

included. For the classification, we regard a defective image 

as a real defect when the probability output by the Bayesian 

model is larger than the threshold we set. The threshold, here, 

means the upper limit of the probability that a defect 

candidate is allowed to be filtered out as a dust image. Table 

2 and Fig. 11 depict the test result.  

Table 2. Experimental results on 2,083 images 

Threshold(%)filtered units overkill ratefiltered units filtering rate

0.08 0 0.0 678 37.5
0.10 2 0.7 688 38.0
0.50 4 1.5 860 47.5
1.00 8 2.9 954 52.7
1.50 10 3.6 1015 56.1
2.00 11 4.0 1058 58.5
2.50 15 5.5 1095 60.5
3.00 17 6.2 1122 62.0
3.50 17 6.2 1142 63.1
4.00 21 7.7 1160 64.1
5.00 24 8.8 1172 64.8
6.00 26 9.5 1189 65.7
7.00 29 10.6 1200 66.3
8.00 30 10.9 1212 67.0
9.00 37 13.5 1227 67.8

10.00 39 14.2 1242 68.7
11.00 44 16.1 1256 69.4
12.00 46 16.8 1266 70.0
13.00 51 18.6 1273 70.4

Defect images
(274 images)

Dust images
(1809 images)
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Fig. 9. Filtering and overkill rate according to threshold 
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As we increase the threshold, more and more dust images are 

filtered out, while a part of the real defects also are 

misclassified into dust ones. The performance of the 

classifier can be evaluated by the filtering rate for dust 

images, and the failure rate for real defects identification. The 

undesirable misclassification of real defects is considered 

here as failure, and is evaluated as over-kill rate. From the 

graph, as we place the priority on minimizing the over-kill 

rate along with a meaningful filtering rate, a threshold can be 

decided a value within 0.5% for this case.  

Fig. 10 shows the over killed defects with a probability 

threshold of 0.5%, where we can find several exceptional 

cases in the defective areas: small particles or substance 

materials in nearby areas produce erroneous results. On the 

other hand, some dust bears such similar features to defects 

that they are hard to be discriminated and filtered out. 

 

 

(a) over-killed images (real defects) 

 

(b) under-killed images (dust) 

Fig. 10. Mis-classified images with threshold 0.5 

 

5. CONCLUSIONS 

In this research we reported on increasing the efficiency of 

the TS inspection system by filtering unwanted trivial 

blemishes caused by dust or foreign substances. Three main 

achievements were made through this research. Firstly, we 

proposed a defective region segmentation algorithm by 

utilizing a self-generated reference image, which made it 

possible to extract image features of the local area in a 

reliable way. Secondly, the defined indices indicating the 

properties of under-etching defects gave us good clues to 

whether the defective image contains a pattern defect or a 

blemish by dust. Finally, the Bayesian inference model was 

successfully implemented for the classification of the defects 

and dust based on the image features. The experimental 

studies validated the proposed method: we could filter out 

about 47% of the defect candidate caused by dust, trivial 

blemishes which otherwise would have been singled out to be 

verified by operators, while limiting the overkill rate to below 

0.15%. For future works, an investigation on another image 

feature to increase the classification accuracy will be 

conducted. And the proposed method, which is at this point 

confined to straight pattern areas, needs to be extended to 

general pattern areas.  
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