
     

Hierarchical and Distributed Embedded Control Kernel 
 

R. Simarro*, J. Coronel**, J. Simó**, J.F. Blanes** 
*Departamento de Ingeniería de Sistemas y Automática (DISA) 

**Departamento de Informática de Sistemas y Computadores (DISCA) 
 Universidad Politécnica de Valencia, Camino de Vera, s/n. 46022 Valencia (Spain) 

 (e-mail: rausifer@ai2.upv.es, jacopa@ai2.upv.es, jsimo@disca.upv.es, pblanes@disca.upv.es) 

Abstract: This paper presents how to get a high control performance and a reliable operation, by means of 
a suitable combination of several Embedded Control Systems. For this purpose, a hierarchical and 
distributed control model is proposed. The model holds a set of activities that should be executed on it, 
such as change, switch and delegate new code of controllers into embedded nodes. All of these activities 
are managed by a middleware component following the control kernel concept. This model was tested on 
real processors interconnected in a CAN network, using a XScale microcomputer with a real time 
operating system (RTLinux) running a high level controller (GPC) and a dsPIC microcontroller for signal 
acquisition and delivering of control actions.  
Keywords: Embedded Systems, Control Kernel, Distributed Control, General Predictive Controller, Real 
Time Control. 

 
 

1. INTRODUCTION1 

Distributed Control Systems (DCS) are used in industrial and 
civil engineering applications to monitor and control 
distributed equipment with remote human intervention. 
Moreover, these systems use a network to interconnect 
sensors, controllers, operator terminals and actuators. 

While computing power of embedded systems is increasing 
over time, the networking technology trend is to move from 
control-specific networks to Ethernet based infrastructures 
and wireless communication. In this scenario the control 
strategy should be tolerant to variations in the message delays 
as well as bandwidth availability. Some work has been done 
in communication protocols with traffic characterisation, 
bandwidth allocation and clock synchronisation (Coronel et 
al., 2005). But this kind of cyber-physical interaction 
motivates a big amount of innovations in many Information 
Technology related fields including DCS architectures and 
controller design (Lee, 2006).   

The DCS architecture assumed in this work is based on the 
“control kernel” concept (Albertos et al., 2006). These 
principles of organisation are intended to the automatically 
distribution of control code in a DCS insuring safe operation. 
The functionalities are provided by a specific middleware 
responsible of information and code distribution over the 
communication infrastructure.  

Section 2 presents a distributed control model and gives an 
overview of the main components of the architecture. In the 
section 3, the main elements of the experimental platform are 
presented. Afterward, in section 4, two experimental cases 
studies are presented using the developed experimental 

                                                 
1 This work is part of the KERTROL project DPI2005-09327-C02-
01/02 under the sponsorship of the Spanish Ministry of Education 
and Science. 

platform depicted in section 3. The first experiment illustrates 
the controller switching mechanism while the second 
experiment present the implementation of a more complex 
hierarchical controller that uses a predictive controller (GPC) 
to develop a safe control system. Finally, section 5 
summarizes the conclusions of the work. 

 2. AN APPROACH TO DISTRIBUTED EMBEDDED 
CONTROL 

Safety is a crucial issue in embedded control systems. 
Independently of the number of variables to be controlled by 
the same processor, the systems with hard real time 
requirements must ensure the delivering of control actions to 
all actuators. The quality of the delivered signal can depend 
on the processing level: used data, the computational 
algorithms, resources availability, among other, but always 
must ensure the safe performance of system (Albertos et al., 
2006). 

Apart from components malfunction, in complex DCS, safety 
can be affected by the variation of the controlled system 
dynamics that requires controllers switching, missing 
execution deadlines, loosing messages and variation of 
communications delays. In this context, for running control 
applications in a safe mode, the following activities should be 
taken into account: 

• Communication links with other activities should be 
activated.  

• Some data should be recorded, displayed, stored and 
updated.  

• It exist at least one controller that computes the control 
action based on available data at each time instant and 
using the predefined algorithms. 

• According to the system behaviour, it must advance 
actions such as: disconnect and switch controllers. 
Controllers are parts of code that run spread in a 
distributed environment. 

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 10692 10.3182/20080706-5-KR-1001.1268



 
 

     

 

• If the control action has not been delivered by the current 
controller on time, a safe control action should be 
delivered at time required to the process. This signal may 
be the result of a simple calculation (but sufficiently safe) 
an emergency shutdown or simply a safe back-up 
response such as: keep unchanged. Note that this 
operation can be interpreted as a controller switching. 

For this purpose, a distributed embedded control model can 
be defined as composed by two node types: light nodes and 
Service nodes (Fig.1). Service nodes are powerful embedded 
computers running a full featured RTOS and complete 
networking with I/O capabilities. Light nodes are small and 
low power consumption SoC processors with limited 
computing and networking capabilities but complete I/O 
features.  

Fig. 1. Architecture of the Proposed Control Model 

Control Applications run in service nodes on top of a full 
featured Control Kernel Middleware (CKM). This 
middleware offer abstractions and functionalities related to 
control tasks real time execution, access to sensors and 
actuators, and communications management. The 
programming model of CKM follows the concept of code 
delegation. In this sense, a control application delegates the 
execution of some control code to the CKM that provides 
computational resources to execute it. Note that a control 
task, once inside the CKM, can run on whatever service node 
of the DCS that have access to the communications space of 
the task. 

Light nodes are a cost-effective solution to have some 
computer power as close as possible of each actuator. This is 
mandatory in order to reduce the indeterminism in the time of 
delivering control actions to the controlled process. Light 
nodes run a retail of the CKM: the CKM Runtime. This 
Runtime communicates with the CKM offering interfaces for 
management, sensing and acting and code upload. Features of 
CKM Runtime include network interfacing to sensors and 
actuators and controller code pages upload. A light node can 
be used as simple slave component to interface DCS or can 
run locally controllers in a cyclic executive environment.  

Any controller of a Control Application that has been 
delegated to the CKM with attached native code page for the 

light node type, can be delegated to this light node by 
uploading this codepage and asking for switching. Controller 
pages can be uploaded through the CKM Runtime without 
any interference with the controllers currently running in the 
node. The uploaded pages are activated for running by the 
switching mechanism provided by the CKM Runtime. 

In particular, service nodes may include supervising and 
optimising control activities and light nodes can run activities 
to drive the system to a safe position or run simple algorithm 
that guarantees a minimum of stability in the system at any 
time.  

Light node ensures that always exist a control action (uf(k)) to 
be sent to the process. This signal may be just a safe action 
(disconnect, open, close, unchange, etc.) or the result of a 
simple calculus (computed locally in the node) (us(k)) or it 
may be the signal calculated (uo(k)) and received from a 
service node. 

 
Fig. 2. The light node ensures that always exist a control 
action to be sent to the process (uo(k) or us(k)) 

Let’s consider the model depicted in figure 2. Two modes are 
defined for this control model: 

• The service node produces high-quality control 
responses (uo(k)) which are sent to the light node to 
be applied on the plant. If uo(k) is not received or it 
has some delay, then, the light node will apply his 
calculated control action us(k).  

• The light node controls directly the process and the 
service node only monitors and analyzes the sensory 
data and the control action us(k) to determine if it is 
suitable.  

When us(k) is not detected or is wrong, immediately the 
signal uf(k) is switched to a safe signal uo(k). This switching 
may be executed into a light or a service node. Under these 
circumstances, the service node can determine if it is 
necessary to change and delegate new code into light node to 
execute other controller.  

3. EXPERIMENTAL PLATFORM ELEMENTS 

3.1 Embedded Nodes 

The light and service nodes are based respectively on a dsPIC 
microcontroller and a XScale microprocessor.  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10693



 
 

     

 

The Microchip dsPIC (Microchip 2006) combines the huge 
computation speed of a Digital Signal Processor (DSP) with a 
powerful 16-bit microcontroller (MCU), to produce a tightly 
coupled single-chip single-instruction stream solution for 
embedded systems design. This dsPIC device achieves 
speeds of up to 30 MIPS, is efficient for C programming and 
has Flash program memory, data EEPROM, data SRAM, 
powerful peripherals and a variety of software libraries. 

On the other hand, the XScale embedded architecture has 
been chosen as development platform for our service node 
due to their low power consumption, their high performance 
and their low cost. All the generations of XScale are 32-bit 
ARM v5TE processors manufactured with a 0.18 µm process 
technology. This processor support changes of core 
frequencies between 100 MHz and 400 MHz for optimization 
of power consumption with a top of computing power of 700 
MIPS.  

Service node uses the Real Time Operative System 
“RTLinux” (Yodaiken and Barabanov, 1996) which offers 
characteristics of a hard real-time system in a multi-threaded 
real-time kernel and which can be used as embedded O.S. 
But, for this it was necessary to make a porting to adapt the 
original RTLinux source code to XScale architecture. We 
have developed an RTLinux version with support to XScale 
architecture, available on http://rtportal.upv.es/ 

3.2 Communication protocol 

Although there is a great variety of real time buses, CAN 
(Controller Area Network) (CiA, 1996) is one of the 
preferred solutions to communicate distributed real time 
systems (Coronel et al., 2005). Therefore, for our 
experimental case, the communication middleware will use 
CAN as infrastructure to interconnect the two units. 

In order to incorporate this communication protocol into 
XScale node, it has been designed an expansion board with a 
PIC microcontroller which has an embedded CAN chip. This 
PIC communicates with the XScale through a double port 
RAM memory. Moreover, the respective CAN drivers have 
been developed for RTLinux. On the other hand, the dsPIC 
node already has an embedded CAN chip. 

4. EXPERIMENTAL WORK 

In order to test the characteristics and capabilities of the 
proposed distributed control kernel model (Crespo et al., 
2006), two cases study will be presented in this section: first, 
we evaluate the ability to switching simple controllers located 
on different computation nodes interconnected through a 
shared communication channel, and after that, we take 
advantage of the distributed computing availability to run a 
predictive control algorithm to control a real process and 
provide fault tolerance to communication sporadic error. 

4.1 Case Study 1. Switching of Process Controllers 

The switching of controllers is one of the key features in the 
control kernel model to run control applications in a safe 
mode. For this case study the light node is directly connected 
to a simulated process and it send information about process 
state to the service node through the CAN communication 
bus. 

4.1.1 Description of the Simulated Process 

The light node has been connected through a DAQ card to a 
PC running a simulated system in MatLab with Simulink and 
Real-Time WorkShop toolboxes (MathWorks 2006). The 
system is a simulation of the real HUMUSOFT CE 152 
Magnetic Levitation educational scale model. The simulated 
model transforms the error signal into a real analog one 
through the DAQ analog output. An analog input of the DAQ 
is used to get the control or feedback signal. 

As shown the figure 3, the error signal (e(k)) is directly 
sampled by the dsPIC and its value is transmitted to service 
node by means of the communication bus. The light node 
also applies directly the final feedback signal (uf) on the 
control process, whose uf can be the uo or us signal. This last 
depend of the switching mode. 

 
Fig. 3. Distributed System Diagram with Simulated Process 
Model 

4.1.2 Regulator design 

In this first test, for simplicity and in order to illustrate the 
controllers switching, the light node gets the tracking error 
signal of the system through an A/D converter pin and solves 
a simple proportional derivative PD discrete regulator. The 
control algorithm on the light node is: 

௦ሺ݇ሻݑ ൌ ݍ · ݁ሺ݇ሻ  ଵݍ · ݁ሺ݇ െ 1ሻ   (1) 
The service node receive the error signal and executes a PID 
discrete regulator. The control algorithm on the service node 
uses the following difference equation (2): 

ሺ݇ሻݑ ൌ ሺ݇ݑ െ 1ሻ  ݍ · ݁ሺ݇ሻ  ଵݍ · ݁ሺ݇ െ 1ሻ  ଶݍ · ݁ሺ݇ െ 2ሻ    (2) 
where e(k) is the error in the instant “k”, and uo(k) is the 
calculated control signal to apply to the simulated system. 

Several tests have been made on a simulated environment to 
obtain the optimal coefficient values for the given process. 
With that result a local control for the simulated plant could 
be done at 5ms control cycles. 

The result is sent from the light node to the system by a 
PWM output, though a RC low-pass filter to be converted 
into an analog continuous signal. 

4.1.3 Running  Modes 

Two types of situations are defined for this control model 
(see figures 2 and 3): first, when the service node produces a 
high-quality control response (uo(k)) which is sent to the light 
node to be applied on the plant, and therefore the light node 
acts only as an interface; and second, when the control is 
performed by the light node and the service node only 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10694



 
 

     

 

monitors and analyzes the sensory data and the control action 
us(k) received through the CAN bus. 

For the first situation, if uo(k) is not received or has some 
delay, then, the light node (dsPIC) will apply his calculated 
control action (us(k)) (see figure 2). Thus, if an internal timer 
is up to a critical time delay, then CKM Runtime switches to 
the local PD controller into the dsPIC. A communication 
delay may represent that the light node is not working 
properly or the communication network is busy or down. 
This switching ensures that always exists a control action 
(uf(k)) to be sent to the process. The figure 4 shows that the 
switching no affect the evolution of the process. 

 
Fig. 4. Process signals evolution when some control CAN 
messages are lost and the system controller is switching from 
the service node to the light node. 
For the second situation, the control action produced by the 
light node (us(k)) is analyzed to determine if it is suitable to 
control the system. When us(k) is detected as wrong, 
immediately the signal uf(k) is switched to a safe signal uo(k) 
(see figure 2). The present and accumulated error signal 
values is analysed on the dsPIC, and if the error parameter 
exceeds a programmed value, the regulator changes to the 
service node controller. In the figure 5, the regulation is 
working successfully until the second 5 a lost data is 
simulated, then the process begins to be unstable, and 
therefore the regulator switches to service node controller to 
command it. 

These nodes get the sensory data and deliver the control 
actions to the system through the communication 
middleware.  

4.2 Case Study 2. Supervising control with local 
compensating 

In this case the idea is to use the distributed computing 
availability to run a predictive control algorithm. This piece 
of control will provide future control actions that can be used 
by the local processor to feed actuators in the case of 
unexpected communications delays or missing data. 

The predictive control algorithm is a Generalized Predictive 
Control (GPC). Next the developed strategy is explained. 

4.2.1 Developed Strategy 

The developed structure basically involves a distributed 
control system made by a service node, with a supervisor 

control GPC, and a light node. The service node is a system 
with wide capacity in computation and communication 
resources, whereas the light node is an embedded system 
with limited computation resources. 

 
Fig. 5. Evolution of the process signals when a control error 
is detected and the controller is changed from the light node 
to the service node. 

The service node manages the GPC control actions 
calculation that applies the light node. The service node 
sends, in each sampling period, the trajectories of control 
actions and outputs. If the light node applies the sequence of 
control actions that have calculated the GPC from the 
iteration “k”, an open loop strategy would be done during the 
prediction horizon [N1, N2]. Therefore, the receding horizon 
strategy will be applied, so the light node uses only the first 
control action u(k) that has been sent by supervisor control, 
and this is a close loop strategy. This procedure is repeated in 
every sampling instant.  

Nevertheless, the control actions sequence obtained by GPC 
is optimal, since it is obtained as a result of minimizing a cost 
function. In an embedded system with limited computation 
resources, the information of future control actions is very 
valuable, since it could be used, within the prediction 
horizon, to apply them under scarce measurements or 
excessive calculation time for that period. 

In case of missing data in communication channel which 
becomes is to apply at the previous sampling instant, with the 
information received until instant k. For this strategy the 
prediction horizon are N1=1 and N2=N. 

4.2.2 Generalized Predictive Control 

The Generalized Predictive Control (GPC) is a Model-Based 
Predictive Control (MBPC) strategy. Their main 
characteristics are (Clarke et al., 1987): 

• GPC use a process model of explicit form 
• From minimize a cost function, is obtained the 

sequence of optimal control signals at every instant. 
• Receding horizon strategy is applied. That is, 

although an optimal sequence of control is obtained, 
is only used the first control action signal of all of 
them, discount the others. At the next sampling 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10695



 
 

     

 

instant, the calculations are repeated again using the 
new information. 

In the GPC design an index of quadratic cost is considered, 
expressed normally in the form: 
ሺܬ ଵܰ, ଶܰ, ௨ܰሻ ൌ ∑൛ܧ ߰ · ሾݕොሺ݇  ݆|݇ሻ െ ሺ݇ݓ  ݆ሻሿଶேమ

ୀேభ
 ∑ ߣ · ሾ∆ݑሺ݇  ݆ െ 1ሻሿଶேೠ

ୀଵ ൟ (3) 

The first term considers the error between the outputs and the 
references in the prediction horizon, whereas the second 
penalizes the control effort. ߰ and ߣ are the weights of the 
output error and the control effort, respectively. ݕොሺ݇  ݆|݇ሻ is 
the prediction of the output in the instant k+i with the 
information available in the sampling instant k. 

And minimizing this index with respect to ∆U analytically, 
the control law is obtained:  

∆ܷ ൌ ሾ்ܩ · ߰ · ܩ  .ߣ ሿିଵܫ · ்ܩ · ߰ · ൣܹ െ Γ · Δܷ െ F · ܻ൧ ൌ 

ൌ ௨௫ܪ · ൣܹ െ Γ · Δܷ െ F · ܻ൧   (4) 

and a prediction model: 

ܻ ൌ ܩ · ∆ܷ  Γ · Δܷ  F · ܻ  (5) 

G, F and ߁ are arrays with the coefficients calculated 
recursively (Clarke et al., 1987), ߰ and ߣ are the arrays with 
the weights ߰ and ߣ, and W is the array with the references. 

The control law is transformed with the receding horizon 
strategy, as explained above. Considering this, a linear 
expression for the regulator is obtained. 

4.2.3 Control and output postulates trajectories 

Now the GPC must calculate the control actions postulated 
and the output trajectory for the applied prediction horizon. 
From prediction model matrices and the control law result a 
set of equations in differences (Camacho et al., 2004).  

From the control law (4), the values of postulated control 
actions for the control horizon are obtained: 


ሺ݇ሻݑ∆

ሺ݇ݑ∆  1ሻ…
ሺ݇ݑ∆  ௨ܰ െ 1ሻ

 ൌ ௨௫ܪ ·

ۏ
ێ
ێ
ۍ


ሺ݇ݓ  ଵܰሻ
ሺ݇ݓ  ଵܰ  1ሻ…

ሺ݇ݓ  ଶܰሻ
 െ Γ · 

ሺ݇ݑ∆ െ 1ሻ

…
ሺ݇ݑ∆ െ ݊௧ሻ

 െ ܨ · 
ሺ݇ሻݕ

…
ሺ݇ݕ െ ݊ሻ



ے
ۑ
ۑ
ې
 (6) 

From the prediction model (5), the output trajectories for the 
prediction horizon are obtained: 


ሺ݇ݕ  ଵܰሻ

ሺ݇ݕ  ଵܰ  1ሻ…
ሺ݇ݕ  ଶܰሻ

 ൌ ܩ ·

ۏ
ێ
ێ
ۍ


ሺ݇ሻݑ∆
ሺ݇ݑ∆  1ሻ…

ሺ݇ݑ∆  ௨ܰ െ 1ሻ
  ߁ · 

ሺ݇ݑ∆ െ 1ሻ

…
ሺ݇ݑ∆ െ ݊௧ሻ

  ܨ · 
ሺ݇ሻݕ

…
ሺ݇ݕ െ ݊ሻ



ے
ۑ
ۑ
ې
  (7) 

Therefore, for every sampling instant k, and for the prediction 
horizon N1=1 and N2=N, the following trajectories are 
obtained: 

ܻ ൌ ሼݕොሺ݇  1|݇ሻ, … , ොሺ݇ݕ  ܰ|݇ሻሽ   (8) 
ܷ ൌ ሼݑሺ݇|݇ሻ, … , ሺ݇ݑ  ௨ܰ െ 1|݇ሻሽ   (9) 

output and control trajectories are those that the supervisor 
control GPC will send to the local control in each period. 

4.2.4 Light Node. Compensation of control action 

Since it has been seen previously, this way to act has the 
problem of open loop strategy, with the usual problems as 
stability due to possible errors in the modelling of the plant 
and the inevitable disturbances in the measurement. 

In order to minimize these problems, in case of using the 
postulated control actions calculates by the GPC, the light 
node makes modifications in the propose control actions, 
considering the discrepancy between the output calculated 
trajectory and the real output is applied. 

݁௬ ൌ ොሺ݇ݕ  ݅|݇ሻ െ ሺ݇ݕ  ݅ሻ,   ݅ ൌ 1, … , ܰ  (10) 

݅ ݂ܫ ൏ ௨ܰ െ 1, ݑ ݄݊݁ݐ ൌ ሺ݇ݑ  ݅|݇ሻ  ܭ ·  ሺ11ሻ  ݕ݁
݅ ݂ܫ  ௨ܰ െ 1, ሺ݇ݑ ݄݊݁ݐ  ݅|݇ሻ ൌ ሺ݇ݑ  ௨ܰ െ 1|݇ሻ  ሺ12ሻ 

where yොሺk  i|kሻ and uሺk  i|kሻ are elements of the Y and U 
vector, respectively. Kgain is the local compensator gain that 
is due to determine of empirical method, studying the 
influence of error “ey” in the final control action. The propose 
strategy is shown in figure 6. 

 
Fig. 6. Distributed control structure. 

The advantage of these systems is that service node can make 
the supervision of several light nodes. 

Considering that the maximum horizon calculated by the 
GPC corresponds to sampling instant k+N2, it is necessary to 
design this horizon so that all the system dynamics is 
included, thus is case of missing all data makes sure that the 
output arrive at the reference. 

In case of massive missing data, further the designed control 
horizon, it is necessary to apply a safe control strategy, that 
according to the controlled process it can consist of constant 
control action application or an emergency shutdown (Crespo 
et al., 2006). 

Finally, it is necessary to consider that when recovering the 
communications between light and service node, the 
supervisor control GPC must known the control action 
applied during missing data and the real output, for 
recalculate the trajectories with the real data. 

4.2.5 Implementation Example 

The plant tested is an electronic process of second order with 
a stable overshoot response in open loop. The transfer 
function is: 

ሻݏሺܩ ൌ .଼ଵ଼
.ଵଶଵ·௦మା.ଽହ଼଼·௦ା.଼ଵ଼

  (13) 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10696



 
 

 

Th

N1=

Fol
nod
nod
com
exc
com
cha
200

Ba
com
ele
sen
pre
bas

4.2

Th
fau
in t
ligh
the
tha
con
dat
los

Bo
sho
fol
con
GP

Fig

Th
the
wit
Alt
con
evo
nod
bet
out

 

e parameters o

=1, N2=8, Nu=

llowing the fi
de, it has bee
de a XScale
mputes the G
change betwee
mmunication 
aracteristics o
07). 

sically, light 
mputed by the
ectronic proce
nt to light nod
edicted action
sed on the GP

2.6 Results 

e main advan
ult tolerance f
the figure 8, w
ht node (data 

e next sample 
an control ho
ntrol action v
ta. This is sho
st during five s

oth figures are
ows the evolu
low the refer
ntrol signal a
PC and the dif

g 8. Process E

e higher diffe
e GPC compu
thin the tran
though this i
ntrol in the 
olution as it i
de corrects th
tween the ca
tput, minimizi

of the GPC ar

=3, ψ=1, λ=0.1

figure 6, a dsP
en directly co
e embedded 

GPC algorithm
en the nodes a

bus (Coron
f these nodes 

node gets, 
e GPC on serv
ss with its an
de are the pre
ns, and eigh
C process mo

ntage of this di
for sporadic e
when the cont
lost), it has t
times. If the c

orizon, the lig
value accordi
own in the fig
sample period

e from the sa
ution of the 
rence value), 
applied, the c
fference betwe

volution when

erence betwee
uted value oc
sitory respon
is the worst 

light node 
s shown in fi

he action valu
alculated outp
ing the output

re: 

1, T(z)=1 and T

PIC microcon
onnected to p

computer h
m. The interco
are carried ou
nel et al., 2
are described

via CAN, th
vice node, and

nalogue output
esent control 

ht predicted o
odel.  

istributed syst
error commun
trol action is 
to apply the p
communicatio
ght node has 
ing to the pr
gures 8 and 9
ds (50 millisec

ame experime
process (syst
whereas figu

control value 
een them. 

n some data is

en the applied
ccurs when th
nse (third sec

situation for 
overcomes 

igure 8. The c
ues considerin
put trajectory
t error. 

    

Ts=0.05 seconds

ntroller act as 
rocess. As se

has been use
onnection and
ut through the 
2005). The 

d in (Martínez 

he control v
d apply them t
ts. The data v
action, two f

output traject

tem approach
nication. As sh
not received a

predicted actio
on errors are lo

to apply the
redicted traje
, where the d

conds). 

ental test, figu
tem signal tri
ure 9 display

computed by

 
s lost 

d control value
he data is los
cond in figur

loosing data
with the pr

control in the 
ng the discrep
y and the pr

s 

light 
ervice 
ed, it 
d data 
CAN 
main 
et al. 

values 
to the 

values 
future 
tories 

 is its 
hown 
at the 
ons at 
onger 
e last 
ectory 
data is 

ure 8 
ies to 
ys the 
y the 

e and 
t just 

re 9). 
a, the 
rocess 

light 
pancy 
resent 

Fig. 
and t

In th
contr
the 
mod
safe 
contr
contr
perm
unde
of s
impl
KER

REF

Alber

Cama

CiA 
I

Coro

Clark
p

Cresp

Lee, 
F

Mart

Math

Micr
F

Yoda

9. Control Sig
their discrepan

his paper a di
rol applicatio
implementati
el permits to 
operation of t
rol algorithm 
rol scheme, th

mits to ensure 
er control. Thi
some of the
lemented in 
RTROL  

FERENCES 

rtos, P., Crespo
concept in e
Symposium on
acho, E.F. an
Control”. Ed. S
(CAN in Auto
Industrial Appl
nel, J.O, F. B
“CAN-based 
SCoCAN Comm
Emerging Tech
vol 1. 

ke, D.W., Moh
predictive cont
137-160. 
po, A., Albertos
Simó, J. (2006
control systems
Computer Aide
Edward A. (20
Foundations A
On Cyber-Phys
ínez, P.J., Coro
Benet, G. (200
Systems”. In 4t

hWorks Inc 
Workshop®. T
ochip (2006) d
Family Referen

aiken, V., Bara
Journal. 

gnal Applied, 
ncy when data

5. CONCL

istributed con
ons has been 
on point of 
perform a set
the system un
GPC is descr

hrough a comb
a safe and su

is work is inte
e characteris

the middlew

o, A., Simó, J.
embedded con
n Mechatronic S
nd Bordóns, 
Springer. 
omation), (199
lications”, Doc

Blanes, G. Ben
Distributed C
munication Pro
hnologies and F

htadi, C. and T
trol”, parts I an

s, P., Balbastre
6). “Scheduabi
s.” Proceedings
ed Control Syst
006) “Cyber-Ph
Adequate?” Po
sical Systems. A
onel, J.O., Blan
07). “Low-cos
th IFAC Sympo
(2006) MATL

The MathWorks
dsPIC™ Digita
nce Manual” w
abanov, M., (1

GPC Control
a is lost. 

LUSIONS 

ntrol kernel m
presented. Fu
view, the p

t of basic activ
nder control. A
ibed. The pro
bination of em
uitable operati
ended to be a 
stics that ar
ware kernel 

. (2006). “Con
ntrol systems”
Systems. 
C. (2004). “

6). “CAN App
cuments No.: DS
net, P. Pérez, J
Control Archit
otocol”, Proc. I
Factory Autom

Tuffs, P.S. (19
nd II. Automati

, P., Vallés, M.
ility issues in c
s of the 2006 IE
tems Design. M
hysical Systems
sition Paper fo
Austin, TX. 
nes, J.F., Simó
t Distributed E
osium on Mech
LAB®, Simul
s Inc. www.mat
al Signal Cont

www.microchip.
1996) “Real Ti

 
l Value compu

model to comp
urthermore, fr
proposed con
vities to ensur
A realization o
posed distribu

mbedded syste
ion of the sys
proof of conc
e going to 
of the proj

trol Kernel: A 
”. In 4th IF

“Model Predic

plication Layer
S-201...207, v 1
J.E. Simó, (20
tecture using 
IEEE Int'l Conf

mation, ETFA'20

987). “General
ica, vol.23, nº2

, LLuesma, M. 
complex embed
EEE Conferenc

Munich, German
s - Are Compu
or NSF Works

ó, J.E., Albero, 
Embedded Con

hatronic System
link®, Real-T
thworks.com 
troller. “dsPIC
com 

ime Linux”, Li

 

uted 

plex 
from 
ntrol 
re a 
of a 
uted 
ems, 
tem 
cept 

be 
oject 

key 
FAC 

ctive 

r for 
1.1. 
005). 

the 
f. on 
005, 

lized 
2, pp 

and 
dded 
e on 

ny. 
uting 
shop 

M., 
ntrol 
s. 

Time 

C30F 

inux 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

10697


