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Abstract: We are considering the problem of controlling AC/DC switched power converters of the Boost 
type. The control objectives are: (i) guaranteeing a regulated voltage for the supplied load, (ii) enforcing 
power factor correction (PFC) with respect to the main supply network. The considered problem is dealt 
with using a nonlinear controller that involves two loops in cascade. The inner-loop is designed, using the 
backstepping technique, to cope with the PFC issue. The outer-loop is designed to regulate the converter 
output voltage. Experimental tests show that the proposed controller actually meets the objectives it has 
designed for. While different controllers can be found in the relevant literature, it is the first time that a 
complete rigorous analysis of the controller performances is developed. Such a theoretical contribution is a 
major feature of this paper.  

 

1. INTRODUCTION 

From a dynamic viewpoint, an AC/DC converter is a 
nonlinear and hybrid system. Then, undesirable current 
harmonics may be generated when the converter is connected 
to an AC source. To avoid the above drawbacks, an AC/DC 
converter should be controlled bearing in mind, not only 
output voltage regulation, but also rejection of undesirable 
current harmonics. The last objective is referred to ‘power 
factor correction’. It is only recently that output regulation 
and PFC have been simultaneously and explicitly accounted 
for in the control design, (Escobar and al., 2001-Karagiannis 
and al., 2003-Abouloifa and al., 2003-Giri and al., 2005). In 
(Escobar and al., 2001-Karagiannis and al., 2003) these 
objectives have been achieved for a second-order standard 
boost rectifier. However, the effect of the output voltage 
ripples, observed in closed-loop, has not been formally 
analyzed. In (Abouloifa and al., 2003-Giri and al., 2005), 
boost and buck-boost diode-based converters, containing 
input (LC or LCL) filter, have been considered. The obtained 
4th order circuits have been controlled using the 
backstepping technique. A theoretical analysis of the output 
voltage ripples effect has been attempted in (Giri and al., 
2005); however, the proposed analysis was not complete. 

 In the present paper, we consider the problem of controlling 
PWM AC/DC full-bridge converters (Fig.1). The complexity 
of the problem is twofold: the PFC requirement and the 
output regulation should be simultaneously achieved; the 
converters dynamics are 4th order, nonlinear and hybrid. The 
last feature is usually coped with basing the control design on 
average models. Based on such average model, we will 
develop a nonlinear cascade controller including two loops. 
The inner-loop is designed using the backstepping technique 
in such a way that the input current be sinusoidal and in 

phase with AC-voltage. The involved control issue is 
formulated as a problem of regulating the ratio 
current/voltage (at the converter input) to a desired value β  
by acting on the duty ratio α  (control signal). The purpose 
of the outer-loop is specifically to tune β  so that the output 
voltage 4x  coincides with its desired value despite the load 
changes. It is formally established that the nonlinear cascade 
controller thus constructed actually meets its objectives. It is 
the first time that the controller performances are so 
rigorously analyzed. Such a theoretical analysis is a major 
feature of this paper, compared to former works (e.g. 
(Escobar and al., 2001-Karagiannis and al., 2003-Abouloifa 
and al., 2003-Giri and al., 2005)).   

The paper is organized as follows: the class of converters 
under study is presented and modelled in Section 2, the 
controller design and analysis are dealt with in Section 3, the 
control performances are experimentally illustrated in Section 
4, a conclusion and a reference list end the paper. 

2. CONVERTER DESCRIPTION AND MODELING 

The full-bridge PWM boost rectifier under study is 
represented by Fig.1. It includes two main parts namely, a 
L1CL2-filter and a commutation-cell ( )41 s-s . The circuit 
operates according to the well known Pulse Width 
Modulation (PWM) principle, (Krein and al., 1990), 
(Andrieu and al., 1996, Tse and al., 2000, Erickson and al., 
1990). Accordingly, time is shared in intervals of length T, 
also called cutting period. Within a given period, ( )41  s,s  are 
both ON while ( )32  s,s  are OFF during αT, for some 0≤α≤1. 
During the rest of time, i.e. ( )T1 α− , ( )41  s,s  are OFF and 
( )32  s,s  are ON. The value of α varies from a period to 
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another and its time-variation law determines the trajectory of 
output voltage 4x . The variable α  thus defined is called 
‘duty ratio’ and serves as the control signal for the converter. 

 

Fig. 1. PWM boost rectifier under study. 

The average model thus obtained is described by the 
following equations, where x  denotes the average value of 
x , over cutting periods (Abouloifa and al., 2003): 
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3. CONTROLLER THEORETICAL DESIGN AND 
ANALYSIS 

The controller synthesis is carried out in two major steps. 
First, a current inner loop is designed to cope with the PFC 
issue. In the second step, an outer loop is built-up to achieve 
voltage regulation. 

3.1 Current inner loop design 

The PFC objective means that the current entering the 
converter should be sinusoidal and in phase with the AC-
voltage. We therefore seek a regulator that enforces the 
current 1x  to track a reference signal of the form n

*
1 v x β= . 

At this point the quantity β is any positive real. The regulator 
will now be designed using the backstepping technique 
(Krstic and al., 1995), based on the partial model (1-3). 

Step 1: Output regulation of subsystem (1) 
Let us introduce the tracking error on the current: 

*
111 xxz −=                                  (5) 

Using (1), time-derivation of (5) yields the following error 
dynamics: 
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In (6), ( )12 Lx−  stands as a virtual control variable. Then, 

1z  can be regulated to zero if ( ) 112 Lx σ=−  where 1σ , 
called stabilizing function, is defined by: 

11

*
1

1

n
1 zc

dt
dx

L
v

−+−=σ                   (7) 

where c1>0 is a design parameter. Indeed, this choice would 
imply that: 111 zcz −=�  which clearly establishes asymptotic 
stability of (1) with respect to the Lyapunov function: 

2
11 z5.0W =                               (8) 

Then, time-derivation of 1W would imply: 

0zcW 2
111 <−=�                          (9) 

which is negative definite with respect to 1z . As  ( )12 Lx−  
is not the actual control input, a new error variable, denoted 

2z , between the virtual control and its desired value ( 1σ ) is 
introduced: 

( ) 1122 Lxz σ−−=                       (10) 

Then, equation (6) becomes, using (7) and (10): 

2111 zzcz +−=�                           (11) 

Also, the derivative of Lyapunov function (9) becomes: 

21
2
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Step 2: Stabilization of the ( )21 z,z - subsystem 

Achieving the PFC objective amounts to enforcing the errors 
( )21 z,z  to vanish. To this end, one needs the dynamics of 2z . 
Deriving (10), it follows from (2) that: 
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In the above equation, the quantity ( )CLx 13  stands as a new 
virtual control input. We now need to select a Lyapunov 
function 2W  for the ( )21 z,z -system. As the objective is to 
drive its states ( )21 z,z  to zero, it is natural to choose the 
following function: 

2
212 z5.0WW +=                           (14) 

Using (12)-(14), one gets the following derivative: 
( )212

2
112 zzzzcW �� ++−=                 (15) 

For the ( )21 z,z -system to be globally asymptotically stable, 
it is sufficient to choose the virtual control input so that 

2
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Comparing (16) and (13) and solving with respect to 
( )CLx 13 , yields ( ) 213 CLx σ=  with: 
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As ( )CLx 13  is not the actual control input, a new error 
variable z3 between the above virtual control and the 
stabilizing function 2σ  is introduced: 

( ) 2133 CLxz σ−=                                (18) 

Then, equation (13) becomes, using (17) and (18): 

32212 zzczz +−−=�                         (19) 

Also, the Lyapunov function derivative (15) becomes:  

32
2
22

2
112 zzzczcW +−−=�                     (20) 

Step 3: Stabilization of the ( )321 z,z,z - subsystem 

Time-derivation of 3z  gives, using (18) and (3): 
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The actual control variable, namely α , appears for the first 
time in equation (21). An appropriate control law for 
generating α  has now to be found for the system (11), (16) 
and (21) whose state vector is ( )321 z,z,z . Let us consider the 
Lyapunov function 3W : 

2
323 z5.0WW +=                          (22) 

Using (30), the time-derivative of W3 can be rewritten as: 
( )323

2
22

2
113 zzzzczcW �� ++−−=             (23) 

This shows that, for the ( )321 z,z,z -system to be globally 
asymptotically stable, it is sufficient to choose the control α  
so that 2
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2
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2
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to ensuring that:  

3323 zczz −−=�                         (24) 

Comparing (24) and (21) yields the following backstepping 
control law: 
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Since the above control law involves the reference signal 

n
*
1 vx β= , it follows from (17) and (7) that  the ratio β  and 

its three first derivatives should be available. The results thus 
established are summarized in the following proposition. 
 
Proposition 1. Consider the system, next called inner closed-
loop, consisting of the subsystem (1)-(3) and the control law 
(25). If the ratio β   and its three first derivatives are 
available, then the inner closed-loop system undergoes, in the 
( )321 z,z,z -coordinates, the following equation: 
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−−

−
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

3

2

1

3

2

1

3

2

1

z
z
z

c10
1c1
01c

z
z
z

dt
d             (26) 

 

Furthermore, (26) is globally asymptotically stable with 
respect to the Lyapunov function ( )2

3
2
2

2
13 zzz5.0W ++= . 

Finally, as (26) is linear, the error vector ( )1 2 3z , z , z  
converges exponentially fast to zero. 

3.2 Voltage outer loop design 

The aim of the outer loop is to generate a tuning law for the 
ratio β in such a way that the output voltage 4x  be regulated 

to a given reference value *
4x . 

Relation between β  and 4x  

The first step in designing such a loop is to establish the 
relation between the ratio β (control input) and the output 
voltage 4x . This is carried out in the following proposition. 
 

Proposition 2. Consider the power converter described by 
(1)-(4) augmented with the inner control law defined by (25). 
Under the same assumptions as in Proposition 1, one has: 

   1) The output voltage 4x  varies in response to the tuning 
ratio β according to the following equation: 
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where nv̂  denotes the amplitude of the network (sinusoidal) 

voltage nv . 

    2) Then, the squared-voltage 2
4xy =  varies, in response to 

the tuning ratio β , according to the following first-order 
time-varying linear equation: 
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Proof. 1) The first step consists in replacing the circuit part 
above the set ( )oo R,C , by an equivalent current generator, as 
shown by Fig. 2.  In view of equation (4), the underlying 
current value equi coincides with ( ) 3x12 −α . So, (4) becomes: 
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Fig 2. Equivalent current 
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The equivalent current iequ will now be expressed in function 
of the tuning ratio β, using power conservation arguments. 
From (5) one has 1n1 zvx += β . Then, the instantaneous 
power entering the converter turns out to be the following: 

( ) ( )( ) ( ) 1nnn

2
n
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2

nn ztsinv̂t2cos1
2
v̂

zvvp ωω
β

β +−=+=      (30) 

On the other hand, the power that is actually transmitted to 
the load is equ4load ixp = . But, the entering power is 
integrally transmitted to the load (which is the only 
dissipative element). Then, the quantity Pload does coincide 
with pn.This yields: ( ) ( )( ) 41nn4

2
nequ xzvt2cos1x2v̂.i +−= ωβ , 

which together with (29) establishes (27). 

2) Deriving y  with respect to time and using (27), yields the 
first-order differential equation (28) and completes the proof 
of Proposition 2  

Squared output voltage control  

The ratio β  stands as a control input in the first-order system 
(38). The problem at hand is to design for β  a tuning law so 

that the squared voltage 2
4xy =  tracks a given reference 

signal ( )2*
4

* xy = . Ignoring the linear time-varying feature of 
the first-order system, a PI control is invoked. Bearing in 
mind the fact that β  and its three first derivatives should be 
available (Proposition 1), a filtered PI control law is resorted 
to, namely: 
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where s may denote as well the Laplace variable or the 
derivative operator ( )dtds = . At this point, the regulator 
parameters ( )ip k,k,b  are any positive real constants. The 
next analysis will make it clear how these should be chosen 
for the control objectives to be achieved. 

3.3 Control system analysis 

In the following Theorem, it is shown that, for a specific class 
of reference signals, the control objectives are achieved (in 
the mean) with an accuracy that depends on the network 
frequency nω . The following notations are needed to 
formulate the results: 
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Theorem 1 (main result). Consider the AC/DC Boost power 
converter shown by Fig.1, represented by its average model 
(1)-(4), together with the controller consisting of the inner-
loop regulator (25) and the outer-loop regulator (31a-b). 
Then, the closed-loop system has the following properties: 

1) The error *
111 xxz −=   vanishes exponentially fast (where 

n
*
1 v x β= ), 

2) Let the reference signal *y  be nonnegative and periodic 
with period nN ωπ , where N  is any positive integer. Let 
the positive regulator parameters ( )ip k,k,b  satisfy the 
following inequalities: 
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Proof. 1) Equation (31a) guarantees that β  and its 
derivatives (up to the third order) are available. Then, Part 1 
of the Theorem follows directly from Proposition 1. This also 
guarantees that equation (28), in Proposition 2, holds. In 
order to prove the second part of Theorem l, let us introduce 
the following state variables: 
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Then, it follows from (26), (28) and (31a-b) that the state 
vector ( )T8,01,0o xxX …= undergoes the following state 
equation: 
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Stability of the above system will now be dealt with using 
averaging. As *y  is periodic with period nN ωπ , it will 
prove to be useful introducing the following auxiliary 
reference function: 

( ) ( )n
*r 2Ntyty ω=                       (37) 

This readily implies that ( ) ( )Nt 2yty n
r* ω=  and that ry  is 

periodic, with period 2π. Let us now introduce the time-scale 
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becomes: 
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where 
ry  denotes the mean value of 

ry  (which is the same 

as for 
*y ). Note that the mean value over [ ]π2N 0, , of the 

derivative in the first line of (36) is zero because 
ry  is 

periodic with period 2π. In order to get stability results 
regarding the system of interest (35)-(36), it is sufficient 

(thanks to averaging theory) to analyze the following 
averaged system: 
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On the other hand, as (42) is linear, the stability properties of 
its equilibrium are fully determined by the state-matrix: 
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More specifically, the equilibrium Z* will be globally 
asymptotically stable if the matrix A is Hurwitz. It has 
already noted (see Proposition 1) that 2A  is Hurwitz. So, it is 
sufficient to check that 1A  is also Hurwitz. To this end, note 
that its eigenvalues are the zeros of the following polynomial: 
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where the ai’s are defined by (32). Applying for instance the 
well known Routh’s algebraic criteria, it follows that all zeros 
of the polynomial (45) have negative real parts if the 
coefficients (a0 to a4) satisfy (33a-c). Now, invoking 
averaging theory, e.g. Theorem 4.1 in (Zhi-Fen and al., 
1992), one concludes that there exists a 0* >ε  such that for 

*εε < , the differential equation (35)-(36) has a harmonic 
solution ( )ε,tXX oo =  that continuously depends on ε . 

Moreover, one has ( ) *
o

0
Z,tX lim =

→
ε

ε
. This, together with 

(39), yields in particular that ( ) 0,te   lim 1
0

=
→

ε
ε

. The Theorem 

is thus established    

4. EXPERIMENTAL EVALUATION  

4.1. Experimental setup. 

The performances of the proposed controller are now 
experimentally evaluated using a real PWM rectifier with the 
following characteristics: L1=1,5mH, L2=1mH,  C=7µF,  
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Co=4.5mF, Ro=40Ω, network:  Hz50/V50 , DSP-card with 
sampling frequency of Khz20 .Inner-loop  parameters: 

4
321 10ccc ===  , Outer-loop design parameters: 

-5
p 10 73.2k = , -4

i 10 20.3k =  and 310b = .  

4.2. Experimental protocol. 

The experiments aim at illustrating the behavior of the 
controller in response to step changes on both the voltage 
reference *

4x  and the load resistance oR .  More specifically, 
the voltage reference goes from V 100  to V 120  and then 
back to V 100 .  The load resistance steps from its nominal 
value ) 40( Ω  up to infinity (unload converter) and then 
down to its nominal value.    

4.3. Experimental results. 

 The controller performances are illustrated by figures 3 to 6. 
As expected by theorem 1, the output voltage 4x  converges 
in the mean to its reference value (Fig. 3). Furthermore, it is 
observed that voltage ripple oscillates at the frequency 2ωn 
with amplitude that is much smaller than the average value of 
the signals. Finally, Fig 4 shows that the input current 1x  and 
the network voltage nv  are in phase. Hence, the converter 
connection to the supply network is made with a unitary 
power factor. 
 

          
 

Fig. 3. Response of the 
            output voltage 

   Fig. 4. Unity power 
               factor   

  

Figs 5 and 6 illustrate the variation of the output voltage and 
the input current in response to load changes. The other 
converter characteristics are kept unchanged. It is seen by Fig 
5 that the disturbing effect due to load changes is well 
compensated by the controller. Furthermore, Fig 6 shows the 
correlation of the current amplitude with the output voltage. 
Robustness of the proposed controller with respect to load 
changes is thus established. 

           
  

  Fig. 5. Voltage transient             Fig. 6. Current 1x   

5. CONCLUSION 

In this paper we have considered the problem of controlling a 
full-bridge rectifier of boost type. The control objectives are 
power factor correction and voltage regulation. The converter 
dynamics have been described by the 4th order nonlinear 
state-space averaging (1)-(4). Based on such a model, a 
cascade structure nonlinear controller has been designed. It 
has been formally established, using averaging theory, that 
the obtained controller meets its objectives. These results 
have been confirmed by an experimental study which, 
further, showed robustness of controller performances with 
respect to significant load changes. It is the first time that an 
averaging analysis is formally carried out to describe the 
performances of the global closed-loop system. 
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