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Abstract: In this study the development of a bias estimation technique for the gyroscopes used in 

stabilization of two axes gimbaled sighting systems is presented. Due to their size and cost limitations, 

generally, two axes gyroscopes with high bias values are used on such systems. These high bias values 

cause the sight-line to drift from the target direction and result in a need for frequent corrections from the 

operator. The proposed technique uses the aiding from the inertial navigation system (INS) of the host 

vehicle and the kinematical constraints to enable the complete attitude solution of the sighting system with 

only using a two axes gyroscope. This full attitude solution is used in designing an extended Kalman filter 

which estimates the gyroscope biases. As for the simulations, a dynamical model of the sighting system, 

carried on a host land vehicle, is developed and the performance improvement resulting from the bias 

corrections is demonstrated with simulations using this model. 

 

1. INTRODUCTION 

The sighting systems such as optical and radar missile 

seekers, aerial surveillance cameras, gun platforms and tank 

sighting systems require line of sight stabilization with high 

accuracies (Dudzik 1993, Merhav 1996). These systems are 

usually stabilized by isolating them from the vibrations and 

maneuvers of the host vehicle using two axes gimbaled 

platforms. The gyroscopes on the gimbals measure the 

angular rates of the gimbals with respect to the inertial frame 

and the sensors like resolvers, potentiometers or encoders 

measure the angular positions of the gimbals with respect to 

each other and with respect to the host vehicle. Over the 

years the emphasis has been mainly conducted in the 

performance improvement of these systems by focusing on 

the control design techniques (Moorty 2002, Chen 2000). 

The bias, or drift, and noise characteristics of the gyroscopes 

are the most important parameters that affect the stabilization 

performance. In the stabilization mode large drift values on 

the gyroscope outputs cause the sight-line to drift from the 

target. This can be compensated with frequent corrections 

from the operator, but leads to the inefficient usage of the 

system. Also, in order to prevent the high frequency 

oscillations (jitter) during the operation the gyroscopes with 

low noise values are needed. 

Due to physical size and cost restrictions usually two axes 

Dynamically Tuned Gyroscopes (DTG) are used for line of 

sight stabilization systems (Merhav 1996). Although these 

sensors are generally selected to have low noise 

characteristics to satisfy the low jitter requirements within the 

desired bandwidth they may have considerably high bias 

values. 

In this paper a bias estimation technique is developed for the 

gyroscopes used on two axes sighting systems. The technique 

assumes the presence of an inertial navigation system (INS) 

on the host vehicle as the aiding source. The angular rate and 

attitude measurements of this INS are used as the aiding 

information to the attitude and bias estimation filter. 

Actually, in order to achieve the full attitude solution, all 

three components of the inertial angular velocity are 

necessary. However, in this study, the missing third axis 

angular velocity is calculated in the designed filter using the 

information coming from the INS together with the 

kinematical relations between the two axes sighting system 

and the host vehicle. 

Attitude estimation techniques are used extensively for 

aircraft and satellite applications (Lefferts 1982, Kingston 

2004). In the majority of these applications nonlinear 

differential attitude equations of the vehicle are formulated 

and solved in time by using the angular rate information 

obtained from a three axes gyroscope. The attitude 

representation can be formulated in terms of quaternions, 

Euler angles or Direction Cosine Matrices (DCM) (Savage 

1998, Titterton 2004). This mathematical model of the 

attitude is aided by sensors such as star trackers, global 

positioning systems (GPS), magnetometers by using 

extended Kalman filtering techniques. Although the main 

goal of these techniques is to get accurate and continuous 

estimates of the attitude of the vehicle gyro-biases can also be 

estimated by appropriately augmenting the states of the 

Kalman filter (Brown 1997, Gelb 2001, Savage 2000). In the 

present study, in order to enhance the conventional 

stabilization application done with low cost two axes 

gyroscopes, the pre-mentioned attitude estimation techniques 

are modified and shown to be applied on stabilization study 

of general class of two axes systems. 
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The general organization of the paper is as follows; in 

Section 2 the kinematical relations are derived for the two 

axes sighting system and the carrying host vehicle. In section 

3, the derivation of the attitude filter including the gyroscope 

bias states is presented. In Section 4, the dynamic equations 

of the sighting system are given. The stabilization controller 

design and the simulation model of the sighting system with 

the closed loop control and the bias estimation filter are 

presented in Section 5. Consequently, the results of the 

gyroscope bias estimation and its enhancement on the closed 

loop stabilization performance are given in Section 6. 

2. KINEMATICS OF THE TWO AXES SYSTEM 

In this study the sighting system is assumed to be mounted on 

a revolving base which has a single rotational degree of 

freedom in azimuth with respect to the host vehicle. In order 

to construct the kinematical model of the two axes sighting 

system and the host vehicle, the definitions of the reference 

frames, the relative distances and the transformations 

between them are defined in Fig. 1. 

 

Fig. 1. The definitions of the reference frames, the relative 

distances and the transformation matrices 

The transformation matrices in Fig. 1 can be defined as 
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Here, -5(7.29)10=eΩ rad/sec is the earth rotation rate and 

teΩ  defines the orientation of the rotating earth reference 

frame ( eF ) with respect to the inertial reference frame ( 0F ), 

where t is time in seconds. λ,L  are the longitude and latitude 

of the body position and they define the orientation of the 

navigation frame ( nF ) with respect to the rotating earth 

reference frame, φθψ ,,  are the Euler angles defining the 

orientation of the host vehicle with respect to the navigation 

frame, tψ  is the azimuth angle of the mentioned revolving 

base with respect to the body fixed reference frame ( bF ) and 

mm θψ  ,  are the azimuth and elevation angles of the sighting 

system with respect to the revolving base fixed reference 

frame ( tF ). Also, )(δiR  is the rotation matrix constructed 

for the rotation around the i
th

 axis with the rotation angle δ . 

In order to ease the derivations of the equations of motion the 

earth rate and the transport rates, which are dependent on 

λ&&,L , are neglected. Hence, the inertial frame ( 0F ) is taken to 

be equal to the navigation frame ( nF ). The earth rate and 

transport rates are integrated only in the nonlinear attitude 

calculations as explained in Section 3.1. In all of the 

derivations it is assumed that there are not boresight angles 

between the body and revolving base, between the revolving 

base and base frame of the sighting system and between the 

base frame and moving gimbals of the sighting system. It is 

obvious that in practice such deviations will exist, but 

measuring or estimating them once they can be included into 

the equations as constant transformation matrices. 

In order to analyze the angular motion of the sighting system 

with respect to 0F  the angular velocity and acceleration 

expressions of the body, the revolving base and the sighting 

system with respect to 0F  should be derived. So, the angular 

velocity and acceleration of the body at the body fixed 

reference frame can be written as 
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Here, rqp ,,  are the body angular velocity components and 

321 ,, uuu  are the column representations of the unit vectors 

along each axis. Also, the angular velocity and acceleration 

of the revolving base expressed at the revolving base frame 
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Here, iu~  is the skew symmetric matrix form of the column 

representation of the unit vector iu  and used for matrix 

representation of the cross product. Thus, the angular velocity 

and acceleration of the sighting system expressed at the 

sighting system frame (
)m(
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Here, )(
0/2
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0/1 , m

m
m

m α∆α∆  are functions of ttmmmm ψψψθψθ &&& ,,,,, . 

In most of the two axes gimbaled systems either two single 

axis gyroscopes or a single two axes gyroscope are used. The 

sensing axes of the gyroscopes are aligned with the axes of 
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the system at which the stabilization will be pursued and the 

roll motion is not measured. However, as explained in detail 

below, the first component of 
)(
0/

m
mω  should be known to 

calculate the attitude of the sighting system and to construct 

the attitude filter. Defining [ ]T)(
0/ mmm

m
m rqp=ω  and making 

the necessary manipulations on (3.a), the roll angular velocity 

of the inner (elevation) frame of the sighting system assembly 

( mp ) can be calculated in terms of the known variables 

mrqp ,,  mmt ,, θψψ : 
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The position vector defining the position of the centre of 

gravity of the sighting system base frame with respect to the 

inertial frame is 
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+++=  (5) 

The frame dependent second derivation ( 2
0D ) of the position 

vector will lead to the linear acceleration of the centre of 

gravity of the base frame of the sighting system assembly 

with respect to the inertial frame (
aGa

r
): 
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Defining [ ]T)(
0/ zyx

b
b aaaa =  and assuming the body, revolving 

base and the sighting system are rigid bodies, the linear 

acceleration of the centre of gravity of the base frame of the 

sighting system assembly with respect to the inertial frame 

expressed at the sighting system base frame can be defined as 
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Substituting (2) into (7) 
)(a

Ga
a  is found: 
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Similarly the linear acceleration vector defining the position 

of the center of gravity of the inner (elevation) frame of the 

sighting system assembly with respect to the inertial frame 

(
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r
) is: 
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Again with rigid body assumption the linear acceleration of 

the center of gravity of the inner frame of the sighting system 

assembly with respect to the inertial frame expressed at the 

sighting system inner frame can be found: 
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Plugging (2) and (3) into (10) 
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3. THE ATTITUDE FILTER DESIGN 

In this section the attitude filter will be designed to estimate 

the biases of the gyroscopes of the sighting system assembly. 

The filter will use the attitude relations derived below as the 

mathematical process model. The measurement model is 

obtained from the aiding provided by the host vehicle INS 

and the encoders mounted on the revolving base and the 

moving frames of the sighting system. 

The time rate of change of the direction cosine matrix (DCM) 

which relates the sighting system frame to the navigation 

frame is defined as: (Savage 1998, Titterton 2004) 
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Here, )(
/

~ m
nmω  is the skew symmetric form of )(

/
m

nmω , which is 

the angular velocity vector of the sighting system inner frame 

with respect to navigation frame. This vector can also be 

expressed in terms of three angular velocity expressions: 
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Here, 
)(

0/
m

eω represents the rotational rate of the earth with 

respect to the inertial frame (F0), 
)(

/
m

enω  represents the angular 

velocity of the navigation frame (Fn) with respect to the earth 

frame (Fe), i.e. the transport rate and 
)(
0/

m
mω  represents the 

angular velocity of the sighting system inner frame with 

respect to the inertial frame. Here, it should be noted that two 

components of 
)(
0/

m
mω  are measured by the gyroscopes on the 

sighting system inner frame and the third component is 

calculated by using (4). 

3.1 The Linear Attitude Error Model 

In this part the linear error model of the mechanization which 

will be utilized in the Kalman filter equations is presented. 

The estimated DCM, i.e. 
),(ˆ mn

C , can be represented in terms 

of the true DCM, i.e. 
),( mn

C : (Savage 1998, Titterton 2004) 
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Here Ψ  is the skew-symmetric matrix form of the vector 

[ ]Tγβαψ dddd =  which defines the attitude errors and 

Ψ−33xI  represents a DCM which transforms the calculated 

navigation coordinate system to the true (error free) 

navigation coordinate system. It can be shown that the time 

rate of change of the attitude error can be expressed by the 

following matrix differential equation (Titterton 2004) 
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Here 
)(
0

m
m/ωδ  represents the errors on the sighting system 

gyroscopes. For the application considered in this study, the 

first three terms on the right hand side of (15), which consist 

of the angular rate of the navigation frame, may be 

considered to be small when compared with the last term 

which is due to the gyroscope errors. With this simplification 

the linear attitude error dynamics can be written in the 

following vector form. 
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The main purpose of the filter is to estimate the bias values 

on the gyroscopes. So, in addition to the linear attitude error 

model derived above the gyroscope errors must be modeled 

and integrated to the designed filter. Generally, the total error 

on gyroscopes can be modeled as the sum of the fixed (run-

to-run) bias, the bias instability (in-run drift), the g-dependent 

bias and the noise terms: 
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Here the noise term ( )twn  is assumed to be a white noise 

process with following spectral density 
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The fixed (run-to-run) bias term is modeled as a random 

constant with 2
bsσ  initial variance. 
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The g-dependent bias term and bias instability term are 

modeled as a first order Gauss-Markov process.  
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The process noise power spectral density matrix of this 

Gauss-Markov stochastic process is 
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Here 33
2

, )/2( xgmgmgmw IQ τσ=  is the process noise power 

spectral density matrix and 
2
gmσ  is the steady-state variance 

of the Gauss-Markov stochastic process. The attitude and 

gyroscope error models obtained above can be expressed in 

state-space form: )()()()()( twtBtxtAtx += δδ& . Here, 
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In order to reduce the number of total states the fixed bias 

term fb  and the in-run drift term )(tbgm  are considered as a 

single bias state vector )(tb  in the filter design. However, it 

is obvious that )(tb  is mostly dominated by fb . 

By utilizing the difference between the sighting system 

attitude, calculated by using the INS and the encoder 

measurements and calculated by using the gyroscope outputs, 

the gyroscope biases can be estimated. 

Let ),(
mea

mnC  be the DCM between the sighting system frame 

and the navigation frame. Thus, it can be expressed in terms 

of the measurable quantities: 
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Here ),(ˆ bnC  is the DCM constructed from the body Euler 

angles measured by the INS on the host vehicle. Also, ),(ˆ bmC  

is the DCM constructed from the sighting system elevation, 

azimuth and the revolving base encoders respectively: 
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The relation between the true ),( mnC  and the calculated 

),(ˆ mnC  was given in (16). Similarly the relation between the 

true ),( mnC  and ),(
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mnC  can be expressed as 
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Thus, a measurement matrix (M) can be defined: 
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Thus, the measurement of tilt errors, i.e. ( )meaγγ dd + , 

( )meaββ dd + , ( )meaαα dd +  can be obtained from M : 
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This gives the measurement model as vxHy += δδ , with 

[ ]3333 0 xxIH =  and [ ]Tmeameamea γβα dddv = . Also, it is 

assumed that the measurement noise is a white noise with 

Gaussian distribution. 

Using the constructed measurement model and the linear 

attitude model derived in Section 3.2 an extended Kalman 

filter is designed. Since the recursive equations for the 

Kalman filter are well known, and given in detail in 

references (Brown 1997, Gelb2001), they are not repeated 

here. The performance of the designed filter is verified on the 

closed loop operation for the stabilization of the sighting 

system. The results of the gyroscope bias estimation and its 

effect on the enhancement on the stabilization performance 

are shown in Section 6. 

4. DYNAMICS OF THE TWO AXES SYSTEM 

The purpose of designing the stabilization controller is to 

generate the necessary control torques in order to isolate the 

desired system from the base disturbances originating from 

the motion of the host vehicle. Hence, the system will be 

stabilized with respect to the inertial frame and kept in level 

position. 
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The dynamic equations of the sighting system are derived 

using Newton’s 2
nd

 law of motion. In the derivations the 

angular velocity, acceleration and translational acceleration 

expressions derived in Section 2 are used. Therefore, using 

the expressions for the linear accelerations (
)()(

,
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G ma
aa ) the 

Newton-Euler equations defining the dynamics of the outer 

(azimuth) and inner (elevation) frames of the sighting system 

assembly can be written: 
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Here, am , mm  are the masses of the outer and inner frames 

of the sighting system assembly, 
aGJ , 

mGJ  are the inertia 

tensors defining the inertia components in the principal axis 

of the outer and inner frames of the sighting system 

assembly, g  is the magnitude of the gravity vector and 

3
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a = , 3
)0,( ugCg m

m =  are the vectors defining the 

gravity vector components in the outer and inner frames of 

the sighting system assembly. Also, 
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reaction forces and moments at the outer frame joint 

(azimuth) and the inner frame joint (elevation) respectively. 

Here, it should be noted that 3
rd

 component of 
)(

/
a

taM  is 

composed of the control torque and the viscous friction on 

the azimuth joint of the sighting system assembly. Also, 2
nd

 

component of 
)(

/
a

maM  is composed of the control torque and 

the viscous friction on the elevation joint of the sighting 

system assembly.  They are expressed as 
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Here, ea ττ ,  are the control torques generated to stabilize the 

sighting system and ea bb ,  are the viscous friction 

coefficients on the azimuth and elevation joints. Using these 

expressions the Newton-Euler equations, defined in (27), can 

be arranged as: 
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a
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a
mae

m

m
GDMFFRF

τ

τ

θ

ψ T)(
/

)(
/&&

&&
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Here, [ ]T
2131 atatamamr MMMMM =  is a vector composed 

of the reaction moment components on the azimuth and 

elevation joints of the sighting system. Note that F , eR , D  

and G  matrices are constructed by implementing algebraic 

manipulations on (27) and, due to the space limitations, they 

are not presented in their explicit form in this paper. 

Hence, by using the instantaneous relative angular positions 

and velocities of the sighting system ( mm θψ , , mm θψ && , ), the 

base disturbance ( 0/0/ , bb αω
rr

, 0/0/0/ ,, ttba αω
rrr

) and the 

control torques ( aτ , eτ ), mψ&& , mθ&& , )(
/
a
maF , )(

/
a
taF  and rM  can 

be calculated. The open loop block diagram representation of 

the two axes sighting system dynamics is shown in Fig. 2. 

 

Fig. 2. Open loop block diagram for the two axes sighting 

system dynamics with base disturbance parameters 

5. THE STABILIZATION CONTROLLER DESIGN 

In this study, in order to reduce the design work and watch 

for the ease of the real-time controller implementation a 

linear controller is synthesized. For this purpose the nonlinear 

dynamics given in (28) is linearized at a desired point at 

which the global motion of the sighting system can nominally 

be represented. 

The linearization point is chosen such that the relative 

angular accelerations and velocities of the sighting system 

assembly are all zero ( 0==== mmmm θψθψ &&&&&& ). Also, at the 

linearization condition the host vehicle and the revolving 

base are both taken to be stationary. Thus, the base 

disturbance is not existent and == )(
0/

)(
0/

t
t

t
t αω 0

)(
0/ =b

ba . 

Furthermore, the host vehicle body is in level position with 

respect to the inertial frame ( 0== θφ ) and the azimuth and 

elevation joints are at their absolute zero positions 

( 0== mm θψ ). Thus, using the specific values of the system, 

i.e. am , mm , ab , eb , 
aGJ , 

mGJ , )(

/

a

aGa
r , )(

/

m

mGm
r , )(

/
b
btr , )(

/
t
tar , )(

/
a

amr , 

and the linearization point conditions the control torques, the 

reaction forces and moments at the sighting system assembly 

joints can be calculated. Hence, using these values a linear 

model of the two axes sighting system dynamics can be 

written: uBxAx ll +=& , xCy l= . 

Here, [ ]T,,, mmmmx θψθψ &&= , [ ]T, mmy θψ &&= , [ ]T, eau ττ=  

and, lA , lB , lC  are (4x4), (4x2) and (2x4) real matrices 

respectively. Taking the first time derivative of the output 

equation the time rate of change of the output can be found: 

uBxAy ′+′=& , ll ACA =′ , ll BCB =′  (29) 

Therefore, the commanded torques ( ecac ττ , ) with respect to 

the commanded accelerations ( mcmc θψ &&&& , ) can be calculated: 
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The control task is to assign a stable dynamics to mcψ&& , mcθ&&  

and guarantee the stability of mψ& , mθ& . For that purpose the 

following dynamic error model is proposed. The proper 

selection of the controller gain matrices pK , iK  will lead to 

the stable control of mψ&  and mθ& . 
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Here, note that, the torques, computed by the designed 

controller, are applied to the azimuth and elevation joints of 

the sighting system assembly. However, the stabilization is 

desired to be carried out with respect to the inertial frame 0F . 

Therefore, the task frame variables ( 0=mdr , 0=mdq  and 

mr , mq ) should be transformed to the joint frame variables 

( mdψ& , mdθ&  and mψ& , mθ& ). This is done by using the angular 

velocity kinematics given in Section 2. Hence, )(te  is found: 
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Since the control action is decoupled by the inversion of the 

dynamics it is possible to assign diagonal controller gain 

matrices as ),(diag pepap kkK =  and ),(diag ieiai kkK = . 

Therefore, the Laplace transform of (31) will lead to the 

following transfer functions: 
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2)(

)(
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Thus, npepa kk ξω2==  and 2
nieia kk ω==  can be chosen 

such that the natural frequency of the controlled closed loop 

will be nω  and the damping ratio will be ξ . Here, 

considering the dynamic content of the base disturbance 

signals and corresponding desired stabilization performance 

Hz100=nω  and 8.0=ξ  are chosen as the control design 

parameters. 

6. RESULTS 

To validate the performance of the gyroscope bias estimation 

filter developed in Section 3, a simulation environment is 

developed by using the dynamic model of the host vehicle 

and the sighting system assembly developed in Sections 2 

and 4. The block diagram representation of the simulation 

model is shown in Fig. 3. 

The error characteristics of the sensors used in this simulation 

study are selected in terms of their RMS values. The inertial 

navigation system on the host vehicle has roll ( φ ), pitch (θ ) 

accuracies of o05.0  and the heading (ψ ) accuracy is o2.0 . 

The INS angular rate (p,q,r) errors are o1 /hr fixed bias, o1 /hr 

bias instability modeled as a Gauss-Markov process with a 

correlation time of 60 seconds, and o1.0 /√hr angle random 

walk. The sighting system pitch rate ( mq ) and yaw rate ( mr ) 

measurements have bias values of o100 /hr and angle random 

walk values of o15.0 /√hr. The bias instability model is a 

Gauss-Markov process with o30 /hr RMS and 100 seconds of 

correlation time. The revolving base, sighting system azimuth 

and elevation encoders have o05.0 noise levels. 

 

Fig. 3. Closed loop block diagram for the two axes sighting 

system, host vehicle, gyro-bias estimation filter and controller 

In order to validate the closed loop integrated performance 

enhancement of the designed filter the disturbance signals are 

generated artificially by considering the dynamic content of 

the previously measured signals during the vehicle’s motion 

on a rough terrain. The host vehicle’s low frequency roll, 

pitch and yaw angular motions with respect to the ground are 

generated as: 

)6.0sin(5.1 to=φ )3.0sin(0.1 to+ , 

)6.0sin(5.1 to−=θ )3.0sin(0.1 to+ , 

)3/6.0sin(5.1 πψ += to )3/3.0sin(0.1 π++ to . 

The revolving structure angular motion with respect to the 

vehicle body is generated as: )4/60sin(1.0 πψ += tt
o

. Also, 

in order to represent the motion components that arise from 

the vehicle and sighting system structural modes 

)101sin(01.0 to=∆  )258sin(0001.0 to+  is added on all of the 

defined angular motions of the base disturbance. The linear 

acceleration components of the base disturbance ( zyx aaa ,, ) 

are taken to be equal to zero. 

Fig. 4 shows the results of a simulation when the controller is 

on but the biases are not estimated. It is seen that the sighting 

system azimuth and elevation angles drift 3-4 degrees in 2 

minutes. In a normal operation, i.e. without the bias 

estimation filter proposed in this study, the biases should be 

corrected periodically by the user. 
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Fig. 4. Closed-loop control without gyro-bias estimation 

Fig. 5 shows the result of a simulation when the controller is 

on and the sighting system gyroscope biases are estimated. It 

is seen that the drift of the sighting system azimuth and 

elevation angles are negligible. The gyro-biases which are 

estimated and fed back as corrections on the measured 

sighting system angular rates are shown in Fig. 6. 

 

Fig. 5. Closed-loop control with gyro-bias estimation 

 

Fig. 6. Gyro-bias estimation with base disturbance 

6. CONCLUSIONS 

In this study, the positive effect of estimating the gyroscope 

biases of a two axes gimbaled system on the performance of 

closed loop stabilization is demonstrated. Throughout the 

study, since the attitude equations require all three angular 

rates, the missing roll rate is calculated by using the 

kinematical relations, the measurements of inertial navigation 

system on the host vehicle and the encoders on the system. It 

is shown by the simulations that the integration of the bias 

estimation filter into the feedback loop gradually enhances 

the stabilization quality and truly eliminates the need for the 

frequent sighting system angle drift corrections. 

As for the future studies the effect of the possible errors 

originating from the sensor measurement synchronization, i.e. 

the encoders and the attitude measurements of the host 

vehicle INS, should be investigated for real time 

implementations. Furthermore, instead of computer generated 

base disturbance signals the stabilization performance can be 

investigated by using the real time data sampled from the 

host vehicle platforms. 
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