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Abstract: This paper illustrates the potential of nonlinear model-based control applied for
stabilization of unstable flow in oil wells. A simple empirical model is developed that describes
the qualitative behavior of the downhole pressure during severe riser slugging. A nonlinear
controller is designed by an integrator backstepping approach, and stabilization for open-loop
unstable pressure setpoints is demonstrated. The proposed backstepping controller is shown in
simulations to perform better than PI and PD controllers for low pressure setpoints, and is in
addition easier to tune. Operation at a low pressure setpoint is desirable since it corresponds to
a high production flow rate.
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1. INTRODUCTION

Multiphase flow instabilities present in all phases of the
lifetime of a field, however, the likelihood for multiphase
flow instabilities increases when entering tail production.
In tail production, i.e. oil production from mature fields
where the reservoir is about to be drained, unstable mul-
tiphase flow from wells or severe slugging is an increasing
problem. In particular, unstable flow causes reduced pro-
duction and oil recovery as the well must be choked down
for the downstream processing equipment on the platforms
to be able to handle the resulting variations in liquid and
gas flow rates.

Research on handling severe slugging in unstable wells
has received much attention in the literature and in the
industry, such as Pickering et al. [2001], Storkaas [2005].
The schematic of the severe slugging cyclic behavior is
shown in Figure 1. The active control of the production
choke at the well head is used to stabilize or reduce these
instabilities. The motivation for using active feedback
control is that one can operate the pipeline/well in an
unstable operating region, where the system is open-loop
unstable. Several publications use the active feedback
control to stabilize the flow, see for examples, [Henriot
et al., 1999, Drengstig and Magndal, 2002, Molyneux et al.,
2000, Dalsmo et al., 2002, Kinvig and Molyneux, 2001,
Godhavn et al., 2005, Storkaas, 2005, Siahaan et al., 2005,
Storkaas and Skogestad, 2007]. Some works used a detailed
model and only proved stability linearly, whereas Siahaan
et al. [2005] proved nonlinear stability with a simplified
model.

This paper illustrates the potential of nonlinear model-
based control applied to stabilize unstable flow in wells.

Fig. 1. Schematics of the severe slug cycle in flowline riser
systems Pickering et al. [2001]

A simple empirical model is developed that describes the
qualitative behavior of the downhole pressure in case of
severe slugging in unstable wells. The model is used to
develop a model-based control law which more intelligently
counteracts the destabilizing mechanisms in unstable flow,
i.e., balances the pressure oscillations in the well. Two
nonlinear control schemes are designed by an integrator
backstepping approach, and stabilization in the unstable
region is demonstrated. The first scheme is an exact can-
celling design because we simple cancel existing dynam-
ics including some stabilizing nonlinearities, which may
waste control effort and make the control law complicated.
To avoid cancellation of useful nonlinearities, a better
controller is developed by taking input saturation into
account. It is shown that the second control scheme can
guarantee the asymptotically stable of the closed-loop sys-
tem with saturated control. It is shown that the proposed
backstepping controller can stabilize for smaller pressure
than the PI controller and PD controller.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 6251 10.3182/20080706-5-KR-1001.1195



2. MODELLING

The oscillating behavior of the downhole pressure of a
slugging well can be characterized as a stable limit cycle.
Severe slugging exhibits qualitatively the same behavior
as the slightly modified van der Pol equation

ṗ = w, (1)

ẇ = a1(β − p) + a2(ζ − w2)w, (2)

where the states p and w are the down hole pressure in the
riser and its time derivative, respectively. The coefficients
in (1)–(2) can be explained as follows.
• β: steady state pressure.
• a1: frequency or stiffness of the system.
• a2, ζ: local “degree of the stability/instability” and
amplitude of the oscillation.

2.1 The equilibrium downhole pressure β

The equilibrium point (p∗, w∗) of the system (1)–(2) be-
comes

[

p∗

w∗

]

=

[

β
0

]

,

which means that the parameter β is simply the equi-
librium downhole pressure p∗. The equilibrium downhole
pressure p∗ = β is given by

β = ρ̄gH + ∆pf + ∆pc + p0. (3)

where ρ̄gH is the static head with ρ̄ being the average
density in the riser, ∆pf is the frictional pressure drop, ∆pc

is the pressure drop over the production choke, and p0 is
the pressure downstream the choke. For a given reservoir
influx wres, the differential pressure over the production
choke is given by its flow characteristic according to

∆pc (wres) =
w2

res

(Kcuc)
2
ρc

, (4)

where ρc is the density upstream the choke, uc the choke
opening, and Kc the flow constant of the choke. The
frictional pressure drop ∆pf (wres) is a increasing function
of wres according to

∆pf = Kfw2

res.

In the simplest case, we may assume constant influx wres

such that β can be given in the lumped form

β (q) = b0 + b1q, (5)

where b0 and b1 are positive constants, and q is propor-
tional to the differential pressure ∆pc at steady-state flow
wres. In Figure 2, β is plotted as a function of the choke
opening.

2.2 Local Degree of Stability/Instability a2,ζ

The parameters a2 and ζ are related to the amplitude of
oscillation and stability properties of the fixed point. This
can be seen by linearizing system (1)–(2) to get

∆̇p = ∆ω, (6)

∆̇ω =−a1∆p + a2ζ∆ω. (7)

The eigenvalues of the system are λ =
a2ζ±

√
a2

2
ζ2−4a1

2
,

which means that (assuming a1 > 0 and a2 > 0)

• ζ = 0, bifurcation point.
• ζ < 0, system is stable.
• ζ > 0, system is unstable.

In the simplest case, we may assume constant flow rates
of liquid and gas from the reservoir. Then

ζ (q) = c0 − c1q, (8)

where c0/c1 denotes the bifurcation point and c0, c1 are
positive constants.
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Fig. 2. Bifurcation plot

2.3 Transportation Delay

The variable q is related to the effect of the differential
pressure over the production choke. Due to transport delay
in the well, a time-lag is expected between application of
the control signal to the choke and seeing the effect in
(1)–(2). This time-lag is modelled as follows

q̇ = − 1

τ
q +

1

τ
δ, (9)

where δ represents the control input and is a strictly
decreasing function of the production choke opening u ∈
[0, 1]. Thus, when δ is computed, the actual control signal
to apply to the choke is found by inverting δ(u). It is
assumed that δ → ∞ as u → 0, and that δ ≥ δmin ≥ 0.
Without loss of generality, we let δmin = 0.

2.4 Simplified Model of Riser Slugging

Based on (5) and (8), the system dynamics (1)–(2) and (9)
can be assembled into

ṗ = w (10)

ẇ = −a1p + h (w) + g (w) q + a1b0 (11)

q̇ = − 1

τ
q +

1

τ
δ, (12)

where the functions h and g are defined as

h (w) = a2c0w − a2w
3 = h0w − h1w

3 (13)

g (w) = a1b1 − a2c1w = g0 − g1w. (14)

The positive constants ai, bi and ci (i = 1, 2) are empirical
parameters that are adjusted to produce the right behavior
of the downhole pressure p.
The system (10)–(12) can capture some of the qualitative
properties in the downhole pressure during riser slugging.
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• Decreasing control gain: A characteristic property of
riser slugging is that the static gain decreases with
choke opening.

• Bifurcation: The model exhibits the characteristic
bifurcation that occurs at a certain choke opening
c0/c1, i.e., the steady-state response of the downhole
pressure exhibits changes from a stable point when
choke opening is smaller than c0/c1 to a stable limit
cycle when choke opening is larger that c0/c1 (see
Figure 2).

• Time lag: The transportation delay between a change
in choke opening to the resulting change in downhole
pressure p is modeled by simple 1st-order lag.

Our objective is to design a control law for the control
input δ which stabilizes p at the desired set-point pref .

3. CONTROLLER DESIGN

In this section we design stabilizing controllers using
backstepping. Thus, we iteratively look for a change of
coordinates in the form

z1 = p − pref , (15)

z2 = w − αw, (16)

z3 = q − αq, (17)

and an accompanying Lyapunov function. The functions
αw and αq are virtual controls to be determined.

3.1 Control Scheme I

Step 1 — virtual control law αw

From (10), (15) and (16), we obtain that

ż1 = αw + z2.

Then we design a virtual control law αw

αw = −C1z1. (18)

The time-derivative of U1 = 1

2
z2

1 becomes

U̇1 = −C1z
2

1
+ z1z2. (19)

Step 2 — virtual control law αq

We start by computing the time-derivative of z2 using (11)
and (15)–(17), obtaining

ż2 =−a1(z1 + pref − b0) + h (w)

+g (w) αq + g (w) z3 − α̇w. (20)

If we for now ignore (14) and instead assume that g(w) ≥
g0 > 0, we may choose the virtual control αq as

αq =
1

g (w)
(−C2z2 − z1 + a1(z1 + pref − b0)

−h (w) − a1b0 + α̇w). (21)

Consider the CLF U2 = U1 + 1

2
z2

2 . The time derivative of
U2 is

U̇2 = −C1z
2

1
− C2z

2

2
+ g (w) z2z3. (22)

Step 3 — Final control law δ
The dynamics of z3 is obtained as

ż3 = q̇ − α̇q = − 1

τ
q +

1

τ
δ − α̇q. (23)

Selecting

δ = −τC3z3 − τg(w)z2 + αq + τα̇q, (24)

the derivative of the control Lyapunov function U3 = U2 +
1

2
z2

3
becomes

U̇3 =−C1z
2

1
+ g(w)z2z3 + z3

(

−1

τ
q +

1

τ
δ − α̇q

)

≤−C1z
2

1
− C2z

2

2
− C3z

2

3
, (25)

which proves that the equilibrium (z1, z2, z3) = 0 is glob-
ally exponentially stable, and in particular p is regulated
to the setpoint pref . The rate of convergence is adjustable
through the constants C1, C2, and C3, and we may in
principle have any desirable performance of the system.
The resulting control law is

δ (p, w, q)

=−τC3q − τg (w) (w + C1 (p − pref ))

+
1

g2 (w)

[

τ
(

(C3 + 1) g (w) − g′ (w)
(

h (w) +

−a1 (p − b0) + g (w) q
))(

− (C1 + C2)w − h (w)

− (C1C2 + 1 − a1) (p − pref ) + a1 (pref − b0)
)

]

− 1

g (w)

[

τ (C1 + C2 + h′ (w))
(

− a1 (p − b0)

+h (w) + g (w) q
)

+ τ (C1C2 + 1 − a1)w
]

(26)

Remark 1. We refer to this choice of αq as an exact can-
celling design because we simply cancel existing dynamics
and replace it with some desirable linear feedback terms:
−C1z1 and −C2z2. Note that this design is not necessarily
the best choice of control law because stabilizing non-
linearities may be cancelled, potentially wasting control
effort, losing robustness to modelling errors, and making
the control law overly complicated. As can be seen in (26),
the controller becomes quite complicated as a result of the
virtual controls and their time derivatives occuring in it.
It is desirable to obtain a simpler control law, which is
possible if simple virtual controls can be found by avoiding
cancellation of useful nonlinearities.

3.2 Control Scheme II

The design of the previous section is a straight forward
application of the backstepping technique. However, it
ignores (14) as well as the fact that the control input δ
saturates at 0. In this section, a better control law will be
obtained by exploiting the structure of the system in terms
of the specific choices for h(w) and g(w) in (13)–(14), and
the flexibility of the backstepping procedure in selecting
virtual control laws.
By inspection of the second step of backstepping in the
previous section, we recognize that the terms −h1w

3 and
−g1wq are expected to be stabilizing, since physically
q ≥ 0. Hence, cancelling these terms is not necessary at
this point in the design. Substituting (13) and (14) into
(20), and selecting αw = 0 and
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αq =−C2 + h0

g0

z2 +
a1

g0

(pref − b0) , (27)

U2 =
a1

2
z2

2 +
1

2
z2

2 , (28)

gives
U̇2 = − (C2 + g1q) z2

2 − h1z
4

2 + g0z2z3. (29)

Here, we notice that the z1z2-cross-term was cancelled,
due to the particular choice of U2 and αw. The stabilizing
terms −h1z

3
2 and −g1αqz2 increase negativity of U̇2, and

need not be compensated at this point. Consider now the
CLF

U3 = U2 +
1

2
z2

3
. (30)

It’s time derivative is

U̇3 =− (C2 + g1q) z2

2
− h1z

4

2

+z3

(

g0z2 −
1

τ
q +

1

τ
δ − α̇q

)

, (31)

and we may select

δ =−τC3z3 − τg0z2 + q + τα̇q, (32)

to obtain

U̇3 = − (C2 + g1q) z2

2 − h1z
4

2 − C3z
2

3 . (33)

LaSalle’s invariance principle now implies that the origin is
asymptotically stable. The following result formalizes this,
and in addition takes saturation of δ into account.

Theorem 1. Let pref > b0, C2 > 0 and C3 > 0. Then
the equilibrium xref = (pref , 0, a1(pref −b0)/g0) of system
(10)–(12) in closed loop with the saturated control

δ = max{0, δa}
where

δa =
(C2 + h0)

g0

[

τa1p(t) − τ(C3 + h0)w(t) + τh1w
3(t)

+τg1w(t)q(t) − τa1b0

]

+
a1τC3

g0

(pref − b0)

−τg0w(t) + (1 − τ(h0 + C2 + C3)) q(t) (34)

is asymptotically stable. If

C2 ≤ 1

2τ
− h0, (35)

then the set

A =
{

(p, w, q)
∣

∣

∣
p ≥ p

0
, w0 ≤ w ≤ w̄0, q ≥ 0

}

(36)

where

p
0
=

1

4
(3pref + b0) (37)

w
0
=−min







g0

2τg1(C2 + h0)
, 3

√

a1(pref − b0)

4h1







(38)

w̄0 =
a1(C2 + h0)(pref − b0)

4(g2
0

+ C2h0 + h2
0
)

(39)

is contained in the region of attraction of xref .

Proof: The condition pref > b0 ensures that δa > 0 at
the equilibrium z = (z1, z2, z3) = 0. Thus, in view of
(30) and (33), there exists a constant c > 0 such that

D = {z |U3(z) < c} is positively invariant and δa > 0 and
q(t) > 0 for all z ∈ D. Thus, from (33) we have

U̇3 ≤ −C2z
2

2 − C3z
2

3 (40)

in D. Furthermore, only z(t) ≡ 0 stays forever in S =
{

z ∈ D
∣

∣

∣
U̇3 = 0

}

since ż2 = −a1z1 for z ∈ S. Therefore,

by Corollary 4.1 of Khalil [2002] z = 0 is asymptotically
stable.
The estimate of the region of attraction is obtained by
analyzing U̇3 when δ is saturated as follows. From the
condition q(0) ≥ 0, equation (12), and the fact that
δ(t) ≥ 0 for all t > 0, we have that q(t) ≥ 0 for all t > 0.
So, from (31) we have

U̇3 ≤ −C2z
2

2 + z3

(

g0z2 −
1

τ
q +

1

τ
δ − α̇q

)

. (41)

Now, let δa < 0. Then, δ = 0,

ż3 = − 1

τ
q − α̇q, (42)

and the derivative of U3 satisfies

U̇3 ≤ −C2z
2

2
+ z3

(

g0z2 −
1

τ
q − α̇q

)

. (43)

We will now consider two cases: a) z3 ≤ 0 and b) z3 > 0.
a) z3 ≤ 0. Since δa < 0, we have from (32), which is
equivalent to (34) but written in the z coordinates, that

−C3z3 < g0z2 −
1

τ
q − α̇q, (44)

so

z3

(

g0z2 −
1

τ
q − α̇q

)

< −C3z
2

3 . (45)

Thus, we obtain

U̇3 ≤ −C2z
2

2
− C3z

2

3
. (46)

b) z3 > 0. In this case, we have from (43), by inserting for
α̇q and rearranging terms, that

U̇3 ≤−C2z
2

2
− C2 + h0

4g0

a1(pref − b0)z3

−qz3

(

1

2τ
− (C2 + h0)

)

−qz3

( 1

2τ
+

C2 + h0

g0

g1z2

)

−C2 + h0

4g0

a1z3

(

4z1 + (pref − b0)
)

−C2 + h0

4g0

z3

(

4h1z
3

2
+ a1(pref − b0)

)

− z3

4g0

(

(C2 + h0)a1(pref − b0)

−4(g2

0 + C2h0 + h2

0)z2

)

. (47)

Using (35), and imposing the conditions

z1 ≥−1

4
(pref − b0) (48)

z2 ≤
a1(C2 + h0)(pref − b0)

4(g2

0
+ C2h0 + h2

0
)

(49)
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z2 ≥−min







g0

2τg1(C2 + h0)
, 3

√

a1(pref − b0)

4h1







(50)

we obtain

U̇3 ≤ −C2z
2

2 − C2 + h0

4g0

a1(pref − b0) |z3| . (51)

In view of (40),(46) and (51), LaSalle’s invariance principle
can be invoked as in the first part of this proof to
establish asymptotic stability of z = 0 and that initial
conditions satisfying (48)–(50) are contained in the region
of attraction of z = 0. Finally, we note that the conditions
(48)–(50), written in terms of (p, w, q), exactly characterize
the set A, as given by (36)–(39).

4. SIMULATION RESULTS

In this section we test our proposed backstepping con-
troller on model (1)–(2). For simulation studies, the fol-
lowing values are selected as “true” parameters for the
system: h0 = 1, h1 = 50, g0 = 0.125, g1 = 5, a1 = 0.025,
b0 = 3.5, and τ = 0.1. The design objective is to stabilize
p at the desired set point pref = 3.51. With the proposed
backstepping control scheme II, we take the following set
of design parameters: C2 = 0.2 and C3 = 5. The initials are
set as p(0) = 3.51, w(0) = q(0) = 0 and u0 = [0.10, 0.90],
respectively. Figure 3 illustrates the backstepping con-
troller applied for stabilization in the unstable region at
reference pressure pref = 3.51. Figure 4 shows that the
system looses controllability at the pressure pref = 3.49,
which is below the point p = b0 = 3.5. The simulation
results verify our theoretical findings.
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Fig. 3. Simulations of
stabilization in the
unstable region at
pref = 3.51 using
scheme II.
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Fig. 4. Simulations of an
attempt to stabilize at
pref = 3.49, which is
below what is physi-
cally feasible.

4.1 PI control

The conventional way to stabilize riser slugging is by
applying a simple control law uPI of the form

uPI = uI − Kp (p − pref ) , (52)

where uI is the bias for a given pressure set-point pref ,
generated by slow integral action according to

u̇I = −Ki

Ti

(p − pref) . (53)

By linearizing the closed loop dynamics, the characteristic
equation is

λ3 +

(

1

τ
− h0 + g1qref

)

λ2

+
1

τ
(τa1 − h0 + g1qref )λ +

g0

τ
δ′ (uI)Kp +

a1

τ
= 0.(54)

According to the Hurwitz criterion, it turns out that local
exponential stability can be achieved by PI control if

pref > b0 +
h0g0

a1g1

− min

{

g0τ

g1

,
g0

g1τa1

}

(55)

and Kp satisfies

Kp < Kp < K̄p (56)

where

Kp =

(

1

τ
− h0 + g1qref

)

(τa1 − h0 + g1qref ) − a1

δ′ (uI) g0

,(57)

K̄p =
−a1

g0δ′ (uI)
, (58)

qref =
a1

g0

(pref − b0) . (59)

Here, we have treated uI as constant, corresponding to the
choke opening at the equilibrium (pref , 0, a1(pref−b0)/g0).
The bifurcation point corresponds to

pref = b0 +
h0g0

a1g1

. (60)

Figure 5 illustrates PI controller applied for stabilization
in the unstable region at reference pressure pref = 4.498.
Figure 6 shows that the system looses stability at the
pressure pref = 4.45, which is below the required reference
pref > 4.4975. The bifurcation point corresponds to
pbifur = 4.5. The design parameters are chosen as Kp =
0.1, Ki = 0.1 and Ti = 25.
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Fig. 5. Simulations of PI
stabilization at a pres-
sure in the unstable
region pref = 4.498
using PI controller.
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Fig. 6. Simulations of an
attempt to stabilize at
a pressure in the un-
stable region pref =
4.45 using PI con-
troller.

4.2 PD control

The another way to stabilize riser slugging is by applying
a simple control law uPD of the form

uPD = uI + uD − Kp (p − pref ) , (61)

where uI is the bias for a given pressure set-point pref ,
and uD is the derivative action according to

uD = −Kd

d(p − pref )

dt
= −Kdw. (62)
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By linearizing the closed loop dynamics, the characteristic
equation is

λ3 +

(

1

τ
− h0 + g1qref

)

λ2 +
(g0

τ
δ′ (uI)Kp +

a1

τ

)

+
1

τ
(τa1 − h0 + g1qref + Kdg0δ

′ (uI)) λ = 0. (63)

According to the Hurwitz criterion, it turns out that local
exponential stability can be achieved by PD control if

pref > b0 +
h0g0

a1g1

− min

{

g0τ

g1

+
g2

0
Kd

g1a1

δ′ (uI) ,
g0

g1τa1

}

,

(64)
Kp satisfies

Kp < Kp < K̄p, (65)

and Kd satisfies

Kd <
g0δ

′ (uI)Kp + a1
(

1

τ
− h0 + g1qref

)

g0δ′ (uI)
− τa1 − h0 + g1qref

δ′ (uI) g0

,

(66)
where

Kp =

(

1

τ
− h0 + g1qref

)

(τa1 − h0 + g1qref ) − a1

δ′ (uI) g0

+Kd

(

1

τ
− h0 + g1qref

)

, (67)

K̄p =
−a1

g0δ′ (uI)
, (68)

qref =
a1

g0

(pref − b0) . (69)

Figure 7 illustrates PD controller applied for stabilization
at reference pressure pref = 4.6. The design parameters
are chosen as Kp = 2 and Kd = 2, which satisfy
the stability conditions. Figure 8 shows that the system
looses stability at the pressure pref = 3.51. The design
parameters are chosen as Kp = 0.02 and Kd = −1,
which satisfy the stability conditions. When the pressure
is small, feasible Kp and Kd according to the Hurwitz
criterium, give an aggressive actuation that the choke
saturates repeatedly and stabilization is not achieved.
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Fig. 7. Simulations of PD
stabilization at a pres-
sure pref = 4.60 using
PD controller.
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Fig. 8. Simulations of an
attempt to stabilize at
pref = 3.51 using PD
controller.

5. CONCLUSION

This paper illustrates the potential of nonlinear model-
based control applied for stabilization of unstable flow

in oil wells. A simple empirical model is developed that
describes the qualitative behavior of the downhole pres-
sure in case of severe riser slugging. Two control schemes
are developed using the integrator backstepping approach.
The first scheme is an exact cancelling design because we
simply cancel existing dynamics including some stabilizing
nonlinearities, which may waste control effort and make
the control law complicated. To avoid cancellation of useful
nonlinearities, a better controller is developed, which in
addition takes input saturation into account. It is shown
that the proposed backstepping control scheme can guar-
antee asymptotic stability of the closed-loop system with
saturated control. The proposed backstepping controller
can stabilize at lower pressure setpoints, corresponding to
higher flow rates, than PI and PD controllers. When the
pressure setpoint is low, parameters of the PD controller
that are feasible according to the Hurwitz criterium, give
a very aggressive actuation causing the choke to saturate
repeatedly and stabilization is not achieved. For the same
pressure setpoint, the proposed backstepping controller is
easy to tune. Simulation results are presented to illustrate
the performance of the proposed control scheme.
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