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Abstract: The problem of designing supplier bidding-agents for electricity markets using reinforcement 
learning (RL) algorithm is studied. The agents try to discover the Nash-Cournot equilibrium among their 
continuous domain of bidding by means of hierarchical learning in just a small subset of their bidding area. 
These agents have no information about the system demand, market clearing mechanism, transmission 
network constraints, and their rivals' cost functions. Each agent only observes the benefits of all the players 
in each market period. Using the observed profits, a hierarchical algorithm for finding the Nash-Cournot 
equilibrium is developed. Several simulation studies are presented to show how learning influences the 
bidding strategies of suppliers in an electricity market.   

 

1. INTRODUCTION 

The electricity market is an environment in which, suppliers 
and customers compete to gain as much benefit as they can. 
The benefit highly depends on the degree of competition and 
knowledge of the players about the marketplace. If the 
players have sufficient information, usually market reaches 
its equilibrium and everyone gains its competitive profit. If 
the market has a Cournot structure (or uniform price), then 
suppliers bid their quantities and the market clearing price 
(MCP) comes from a reverse demand function. This 
equilibrium is called the Nash-Cournot [Day C.J. et al., 2002, 
Ventosa M. et al., 2005]. 

Some classic methods have been developed to find the Nash-
Cournot equilibrium. In these methods players have vast 
information about the market structure and their rivals' cost 
functions and even market history [Gutierrez Alcaraz G. and 
G. B. Sheble, 2006].  

Reinforcement learning algorithms such as Sarsa and Q-
learning were introduced and tested in Markov Decision 
Process (MDP) environments for single agent systems 
[Sutton R.S. and A.C. Barto, 1998]. The mentioned 
techniques work well in MDP environments and converge to 
the global optimum. However, they mostly do not converge 
in the multi agent systems and Markov games. The goal in 
such systems is to find the equilibrium instead of the global 
optimum. The single agent learning algorithms can be used in 
multi agent cooperative systems where the agents try to 
locate the optimum together [Nili-Ahmadabadi M. and 
Asadpour M., 2002], but they do not converge to equilibrium 
in competitive systems. Therefore, new algorithms should be 
developed for such cases.  

Hu and Wellman established a method called Nash-Q 
learning [Hu J. and M. P. Wellman, 2003]. They used the 
Nash equilibrium as a substitute for MaxQ in Q-learning 
algorithm and proved that their technique converges to the 
Nash equilibrium if a global optimum or saddle point exists 

in each player's Q-function at every stage of learning. 
Although, there exist some critical discussions on learning 
equilibrium [Shoham Y. et al., 2007], it seems that the Nash-
Q algorithm is a proper practical method for learning in 
general sum stochastic games. 

In a study by [Rahimi-Kian A. et. al., 2005, A] a simple 
learning algorithm is applied to electricity markets, which 
agents balance between exploration and exploitation. This 
method does not suitably converge to the equilibrium and 
does not describe the behaviour of players in a real 
marketplace.  

A better algorithm is also applied to the electricity markets 
using fuzzy reinforcement learning [Rahimi-Kian A.et. al., 
2005, B]. This method is more complicated than the former 
one and better describes the behaviour of real players. 
However, this algorithm does not reach the equilibrium either 
and should be categorized in single agent learning techniques 
just like the earlier mentioned method. 

The electricity markets are classified in the category of multi 
agent systems. Their competitive structure forces us to use 
the equilibrium algorithms such as the Nash-Q. In this paper, 
the Cournot game is applied to the electricity markets, such 
that the players bid their supply quantities to the market in 
each period. Therefore, the supply quantities of the players 
are their control variables. This control variable is continuous 
and learning in continuous domain causes some difficulties. 
The hierarchical learning is used to overcome these problems.  

The rest of the paper is organized as follows: Section 2 
contains the problem statement. Several computer simulation 
studies are presented in section 3, and finally section 4 
concludes this paper.   

2. PROBLEM STATEMENT 

We consider here a power system composed of two nodes A 
and B. A generator is connected to each node that supplies qA 
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and qB respectively. Also a load is located on node A which 
consumes qDemand so that: 

qA+qB=qDemand             (1) 

The line which connects these two nodes has a limited 
capacity of K megawatts. The system is shown in figure 1: 

 
Fig. 1. Power System: The system consists of two nodes, 
generators, one load, and a limited line. 

Each generator has a limit for its maximum amount of 
generation illustrated by genA,max and genB,max respectively. It 
is supposed that marginal cost of generation for generators 
are constant: CA and CB.  

The load submits a demand function to the market as follows: 

 ൌ ݂ሺݍௗሻ ൌ ݂ሺݍ   ሻ           (2)ݍ

Where p is price and f is a descending function in terms of 
qDemand. Therefore, the profit functions of the generators could 
be calculated as follows: 

ߎ ൌ ሺ െ ሻܥ · ݍ ൌ ሺ݂ሺݍ  ሻݍ െ ሻܥ ·          (3)ݍ

ߎ ൌ ሺ െ ሻܥ · ݍ ൌ ሺ݂ሺݍ  ሻݍ െ ሻܥ ·          (4)ݍ

As profit function of each player is dependant on its rival's 
control variable in addition to its own control variable, it is 
obvious that optimization theory does not work here and 
game theory should be applied. If the players have accurate 
information about CA, CB, and the f-function, they can find 
the Nash-Cournot equilibrium by solving the following set of 
equations: 
డಲ
డಲ

ൌ 0
డಳ
డಳ

ൌ 0
                     (5) 

But usually players do not have information about their 
rivals' marginal costs and the demand function. Therefore, 
equations 5 could not be solved.  

Reinforcement learning does not require stated information 
for finding global optimum for MDPs or Nash equilibrium in 
case of general sum games. The only requirement of RL 
algorithm is observation of rewards, which agents gain by 
selecting their actions.  

The hierarchical Nash-Cournot learning algorithm is as 
follows: 

Players divide their bidding domain into two low and high 
regions. Average amount of each area is considered as a 
candidate of that region: 

,௪ݍ ൌ ಲ,ೌೣ
ସ

, ,ݍ ൌ
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ସ

,௪ݍ ൌ ಳ,ೌೣ
ସ

, ,ݍ ൌ
ଷ.ಳ,

ସ

                   (6) 

This quantization method is illustrated in figure 2: 

 

 
Fig. 2. Division of bidding domain into two high and low 
areas. 

After that, each player sets up a Q table for itself and puts 
random values in it. As the agents pursue greedy policy for 
action selection, these arbitrary values should be more than 
maximum available reward in the system. Otherwise, they 
may find equilibrium by mistake. This method of Q-table 
initialization causes agents to explore their environment 
before remaining stationary in equilibrium. The reason is that 
the agents want to gain maximum reward they can attain, and 
also they want to experience all the more rewarding actions. 
So, initialization of Q-tables in values more than maximum 
available reward in the system leads to enough exploration 
that guarantees reaching correct equilibrium.  

Having Q-tables, a bimatrix game is constructed where 
players try to find the Nash equilibrium. The Q-tables that 
make a bimatrix game are shown in figure 3: 

 
Fig. 3. Q-tables: Each player creates a Q-table for itself and 
shares it with its rival in order to find Nash equilibrium 

If the game had Nash equilibria in pure strategies, then the 
players follow that, otherwise they choose their strategies 
randomly. After each action selection, Q-tables update by 
following rule: 

ܳሺܽ, ܽሻ ൌ ܴ
ܳሺܽ, ܽሻ ൌ ܴ

      , ܽ/ א ሼݍ/,,  /,௪ ሽ              (7)ݍ

Where, aA/aB is the action that player A/B selected before 
updating its Q-table and RA/RB is the reward that player A/ B 
gains by bidding aA/aB to the market. 

Q-table for player A Q-table for player B 

qA,high qA,high 

qB,high qB,high 

qA,low qA,low 

qB,low qA,low 

qmax
4

 3. qmax
4

 

Low 

qmax0

High 
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After that, players select their next action according to 
updated tables. This process of action selection and table 
updating continues till the game reaches a stable equilibrium. 
The game stays at a stable equilibrium for more than two 
market rounds. Next, low and high values are determined 
according to the achieved stable equilibrium: 

,௪,௪ݍ ൌ ,௨௨ݍ െ  ಲ,,ିಲ,ೢ,

ସ

,,௪ݍ ൌ ,௨௨ݍ   ಲ,,ିಲ,ೢ,

ସ

      (8) 

Same equations should be applied for player B. Through this 
set of equations, resolution of learning would increase after 
achieving a stable equilibrium in every learning step. 
Subsequently, the learning process restarts by new bidding 
values assigned via equation (8) and this loop persists for 
ever to find a more accurate equilibrium through continuous 
infinitive bidding domain of players. This hierarchy causes 
learning steps to be very simple and fast over an 
uncomplicated bimatrix game with two available actions for 
each player. 

The algorithm is presented briefly in figure 4: 

 
Fig. 4. Pseudo code for the hierarchical Nash-Cournot 
learning algorithm  

Since the only feedback to players from the market is the 
reward paid according to their submitted bids, they are able to 
learn during system contingencies and different demand 
profiles. These situations will be discussed in the next 
section.  

3. COMPUTER SIMULATION STUDIES 

It is assumed that generators can not generate more than 
100MW and the demand function is as follows: 

ݍሺ  ሻݍ ൌ 200 െ ሺݍ   ሻ          (9)ݍ

Marginal cost of production is 20 $/MWh and 15 $/MWh for 
generators A and B respectively. 

3.1. Unlimited Line Capacity 

We assume here, that the line capacity is unlimited. In this 
case, having demand function given by (9) and information 

about marginal production costs, equations (5) would be 
solved and the Nash-Cournot equilibrium would be: 

൞
ݍ ൌ

175
3

ݍ ൌ
190

3

 

But if the players do not have information about the demand 
function and marginal production costs, they can not use this 
method and should start learning these functions through 
market interactions. If the agents make use of hierarchical 
Nash-Cournot learning algorithm, generation of agents over 
200 market rounds would be as illustrated in figure 5: 

 
Fig. 5. Generations: The agents' learning procedure in the 
market and the achieved Nash-Cournot equilibrium. 

It is clear that the agents have learned the mentioned Nash-
Cournot equilibrium using the proposed algorithm. From 
figure 5, it seems that the learning process ended at the 80th 
round of the market, but the learning never ends and just 
becomes more accurate. Figure 6 shows this progress: 

Fig. 6. Learning process becomes more accurate over time by 
means of hierarchy. 

The given bids would result to market clearing price (MCP) 
changes as shown in figure 7: 

Begin: 
1. Set two values of qlow and qhigh for players. 

Initialize: 
1. Set the Q-table for each player like a 

bimatrix game. 
2. Initialize the tables with values more than 

maximum available reward in the system. 
Loop for ever:  

1. Select action according to the Nash 
equilibrium or randomly if no equilibrium 
exists. 

2. Update the Q-tables. 
3. If  (the market reached a stable equilibrium), 

then construct new qlow and qhigh according to 
the equilibrium values, and go to the 
initialization part
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Fig. 7. Changes of MCP over time: MCP changes by learning 
process and stabilizes to the competitive level when agents 
find the equilibrium. 

The MCP changed and settled to its competitive level. The 
level of competition is dependant on marginal production 
cost of players and the demand function. If a new player 
comes into the system, the competitive level would change. 

The players' profits could be calculated having the MCP and 
generation amounts. They are shown in figure 8: 

 
Fig. 8. Profits of players during the learning process  

In figure 8, variation of players' profit is shown and their 
benefit on the equilibrium is depicted. 

This simulation showed us how hierarchical Nash-Cournot 
learning algorithm converges to the Nash-Cournot 
equilibrium. This algorithm is fast because it makes use of 
hierarchy and the results become more accurate during the 
learning process. Human beings usually use hierarchical 
learning in processes such as bidding in a market. Therefore, 
employing hierarchy is an inspiration from the human 
behavior. Without hierarchy, the algorithm becomes very 
slow and causes irrational behavior during learning progress. 
However, the discussed method produces rational bids even 
during learning and makes the biddings more accurate by 
learning more. 

3.2.Limited Capacity of Transmission Line 

In this part, it is assumed that the line capacity is 40MW. 
Therefore Gen B can not produce more than 40MW. If this 
player bids more than the line's capacity, the market would 

dispatch it only for 40MW. This signal is used by the agent to 
discover congestion conditions. In this case, the bidding 
agent would decrease its maximum production to the line 
capacity. Other parameters are the same as previous part. The 
output powers of the generators (for this case) are shown in 
figure 9: 

 
Fig. 9. The outputs of generators during congestion 
conditions (when the line's capacity is limited to 40 MW) 

Comparing figures 5 and 9, shows us that limited line 
capacity gives Gen-A market power and causes a reduction in 
Gen-B's production. Gen-A (with higher marginal production 
cost) generates more power than Gen-B does, because of its 
market power caused by the congested line. This would 
increase the MCP! The MCP is illustrated in figure 10: 

 
Fig. 10. The MCP during congestion condition  

It is clear that the MCP in this condition is about 10 $/MWh 
higher than its value when the line capacity was unlimited. 
The market power of Gen-A leads to higher MCP and more 
power production for it. This would result to higher profits 
for Gen-A and lower profits for Gen-B. The players' profits 
are shown in figure 11: 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

673



 
 

     

 

Fig. 11. Profits of players during congestion condition 

As it was expected, Gen-A gains more profit because of its 
market power caused by the congested line, and Gen-B gains 
less profit (due to the constraint forced on its production).  

The results explained that capacity limitation of transmission 
lines may cause some players to experience market power 
and increase their profit by strategic bidding to the market. 
This market power could be learned using the introduced 
algorithm, In this case MCP would go higher than its 
competitive level and some cheaper producers would go out 
of competition because of system constraints. 

3.3. Limited Line and More Sensible Load 

In this part, assumptions are the same as the earlier one 
except that the load is more sensible to price. The new 
demand function is: 

ݍሺ  ሻݍ ൌ 200 െ 1.3ሺݍ   ሻ                        (10)ݍ

Agents started to learn in this market and their bidding 
progress is as demonstrated in figure 12: 

 
Fig. 12. The output of generators during congestion condition 
(when line's capacity is limited to 40 MW and load is more 
sensible to price) 

Comparing figures 9 and 12 shows that the sensibility of load 
to price caused reduction in Gen-A's market power. 
Therefore, it is expected to have decreased MCP. The MCP is 
shown in figure 13: 

 
Fig. 13. The MCP during learning process when the line 
capacity is limited to 40MW and load is more sensible to 
price 

The MCP has been decreased about 8 $/MWh by means of 
the load sensibility to price. The players' profits are shown in 
figure 14: 

 
Fig. 14. The profits of the generators when the line capacity 
is limited to 40MW and load is more sensible to price 

Comparing figures 11 and 14 shows that more sensibility of 
load to the price reduces the market power of Gen-A and its 
profit. These results emphasize the importance of demand 
side management programs that could decrease market power 
of the generators and lead to more stable markets with greater 
degree of competition. 

4. CONCLUSION 

In this paper we presented an algorithm for hierarchical 
Nash-Cournot learning in electricity markets. Using this 
method the bidding agents in an electricity market were able 
to get to the Nash-Cournot equilibrium faster and with the 
maximum profit gains. Our market simulation results showed 
that the presented algorithm was fast and convergent to the 
Nash equilibrium because of its hierarchical structure. In 
constructing this algorithm, aspects from both game theory 
and reinforcement learning were used. 

In each step of learning, a simple bimatrix game was 
constructed. The agents learned the equilibrium in that game, 
and then by means of hierarchy, they were able to find the 
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accurate equilibrium in their continuous infinite domain of 
bidding. 

Our simulation studies showed that the algorithm was 
capable of learning even during system contingencies and 
different demand profiles. It was shown that line congestion 
could cause market power for some players and consequently 
raise the market clearing price (MCP) over its competitive 
level. Also it was discussed how demand side management 
programs and price sensible loads could control this market 
power and reduce the market prices. 
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