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Abstract: Multistage/multiphase is an inherent characteristic of many batch processes, which should be 
taken into consideration to ensure better batch process monitoring, analysis, quality prediction and 
improvement. In this paper, a series of stage-oriented multivariate statistical methods on such topics are 
reviewed. Then, the modeling problem of transition between stage and stage is discussed. A new proposed 
stage and transition identification and modeling method is introduced as a necessary complementary of the 
existing work. 

 

1. INTRODUCTION 

With more and more wide applications of batch processes in 
today’s industrial manufacture, there are increasing 
requirements of effective batch process monitoring, quality 
prediction and improvement. Due to the process high 
dimensionality, complexity and limited product-to-market 
time, it is difficult to build batch process models based on 
first-principle or process knowledge. Therefore, the 
applications of multivariate statistical modeling methods, 
which only require process history data, have attracted many 
research interests. Among them, multiway principal 
component analysis (MPCA) and multiway partial least 
square (MPLS) are most widely used (Nomikos and 
MacGregor, 1994, 1995a, 1995b). 

For many batch processes, multistage/multiphase is an 
inherent characteristic, which means the batch processes are 
carried out in a sequence of steps. Steps occurring in a single 
processing unit are called phases; on the other hand, steps 
occurring in different processing units are called stages 
(Undey and Cinar, 2002; Wang, et al., 2007). Since MPCA 
and MPLS methods take the entire batch data as a single 
object, the unique process correlation information of different 
stages is not reflected. This not only makes difficulties on 
understanding of process characteristics, but also affects 
monitoring efficiency and quality prediction ability. 

In batch process monitoring, Undey and Cinar (2002) 
demonstrated that “local models were proven to be 
advantageous when different phases existing in process 
stages and when precise phase separation is crucial”. 
However, in many research works, the separation of stages is 
based on prior process knowledge which may not be 
available in many batch processes. At the same time, the 
stage models of MPCA type inherit the common weakness of 
MPCA that the unavailable future measurements should be 
estimated for online monitoring of a batch process. Using 

adaptive hierarchical PCA (AHPCA) (Rannar et al., 1998; 
Westerhuis et al., 1998) can avoid such estimation. But at the 
same time, the computation burden is increased significantly. 

For quality prediction of multistage/multiphase batch 
processes, multiblock PLS can be applied to include the stage 
information (MacGregor et al., 1994; Kourti et al., 1995). 
However, the multiblock strategies still use the entire batch 
data together in modeling, and relate all of them to end 
qualities. The inherent different characteristics and different 
behaviours of each stage can not be reflected clearly. Facco et 
al. (2007) developed multi-phase PLS model for a batch 
polycondesation reaction producing a resin. However, the 
phase division is still based on the process knowledge. 

To model multistage/multiphase batch processes more 
reasonably, a series of research works have been published. 
The first work was published in 2004 and a sub-PCA model 
was developed for batch process monitoring (Lu et al., 
2004a).  In this work, a data-based method was proposed to 
identify the stages and monitor each stage with a sub-PCA 
model which does not need future data estimation. This 
method was applied to the analysis and online monitoring of 
an injection molding process (Lu et al., 2004b). Then, since 
uneven batch duration and uneven stage duration are very 
common situations in real industries, the stage-based sub-
PCA method was extended into uneven-length batch process 
monitoring (Lu et al., 2004c). In the same year, another 
method was proposed to build stage-based PCA model with 
limited batch data (Lu et al., 2004d). Similar to sub-PCA, 
stage-based PLS model was then developed to interpret the 
batch processes better and get more accurate and efficient 
online quality prediction results (Lu and Gao, 2005). With 
the online quality prediction, online quality control can be 
performed (Lu and Gao, 2006). 

There are also some other related works about this topic. 
Camacho and Picó (2006a, 2006b) proposed multi-phase 
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PCA (MPPCA) method which detect phases based on the 
comparison of prediction errors of PCA models on the 
measurements at each sampling time interval. Most recently, 
Zhao et al. (2007) model transitions from stage to stage by a 
soft-transition multiple PCA (STMPCA) method. 

This article is organized as following. In section 2, a brief 
introduction of the PCA/PLS methods is given. Then, two 
common methods for batch process data matrix unfolding are 
reviewed in section 3. A review of the series of stage-oriented 
statistical methods for batch process modeling, monitoring, 
quality prediction and control is done in the following section. 
In section 5, the issue of transition modeling in 
multistage/multiphase processes is discussed, and a new 
method for stage division, transition identification and 
modeling is proposed. Different from the existing method, 
the new proposed one is based on the angels between the 
latent spaces of time-slice PCA models. In the last section, a 
conclusion is made.  

2. INTRODUCTION OF PCA AND PLS 

2.1 Principal component analysis (PCA) 

PCA is a method performed on a data matrix like X(m×n), 
where n is the number of samples and m is the number of 
variables. PCA decomposes X as 

 

1 1 2 2
1

m
T T T T T

j j m m
j

X TP
=

= = = + + +∑ t p t p t p t p ,          (1) 

 
where tj(n×1) is principal component vector which is also 
named score vector or latent vector, pj(n×1) is loading vector 
which projects data into score space and contains variable 
correlation information, and T and P are score matrix and 
loading matrix respectively. Scores are orthogonal to each 
other and loadings are orthonormal. 

Algebraically, ||tj|| is equal to the jth largest eigenvalue of the 
covariance matrix Σ=XTX, and pj is the corresponding 
eigenvector. The first PC t1 has the maximum variance 
subject to ||p1||=1, the second PC t2 has the maximum 
variance subject to ||p2||=1, and other PCs are defined in 
similar way. So it is easy to understand that the first several 
PCs contain most variance information of X when variables 
are correlated to each other, and the last several PCs only 
contain measurement noise. Thus, most variance information 
is able to be extracted with only first a few PCs, and the 
dimensions of variables are largely reduced. 

By retaining the first A PCs, X can be approximated as 
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Then 
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where E is the residual matrix. 

Several algorithms were developed for loading matrix 
calculation (Jackson, 1991; Jolliffe, 2002). To determine the 
proper retained number of PCs, many methods were 
proposed (Wold, 1978; Jackson, 1991; Jolliffe, 2002). 

For process monitoring, two statistics are calculated after 
performing PCA. T2 summarizes variation information 
contained in scores and SPE summarizes residual information 
(Jackson, 1991). The way to calculate the control limits of T2 

and SPE can be found in some books and articles (Jackson 
and Mudholkar, 1979; Jackson, 1991). In online and offline 
process monitoring, the values of these two statistics are 
compared with corresponding control limits to check whether 
the process is in control or not. 

2.2 Partial least square (PLS) 

PLS works on two data matrices. In multivariate process 
analysis, one of them is usually a process variable data matrix 
X(n×mx), and the other is a product quality data matrix 
Y(n×my), where n is number of samples, mx is number of 
process variables, and my is number of quality variables. 
Different from PCA, PLS not only extracts the variation of X, 
but also gives as much prediction to Y as possible. 

PLS model includes descriptions of outer relations and inner 
relation. The equations are like below. 

Outer relations:  
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Inner relation:  

 
ˆ

a a ab=u t ,                                    (5) 

 
where ba=ta

Tua/(ta
Tta) is the regression coefficient between 

two groups of latent variables ta and ua. 

A PLS model also can be written in a compact way as 

 
*TY X F= Θ + ,                                  (6) 

 
where Θ  is a regression parameter matrix. 

Wold et al. (1984), Geladi et al. (1986) and Hoskuldsson 
(1988) introduced the properties, calculation methods 
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(NIPALS) of PLS and the method to choose the number of 
latent variables (cross-validation, jackknife and so on). Dayal 
and MacGregor (1997) developed another algorithm called 
Kernel PLS to calculate the model.  

2.3 Normalization 

Before performing PCA or PLS, normalization is a necessary 
step to eliminate the effects of variable units and measuring 
ranges (Jackson, 1991). The most common way of 
normalization includes removing means and equalizing 
variances. The formula is shown below.  

 

,

, ( 1, , ; 1, , )i j j

i j

j

x x
x i I j J

s

−
= = = ,             (7) 

 
where i is the sample index, j is the variable index, jx  is the 
mean value of variable xj, and sj is the standard deviation of 
variable xj.  

3. BATCH PROCESS DARA MATRIX UNFOLDING 

Batch process data are often stored as a three-way matrix 
( )X I J K× × , where I is the number of total batches, J is the 

number of variables, and K is the number of total sampling 
time intervals in a batch. In order to apply multivariate 
process monitoring methods, such as PCA and PLS, this 
three-way matrix is required to be expanded into a two-way 
one. There are two common ways to expand the matrix. 

The most widely used method keeps the dimension of 
batches, and merges variables and time dimensions. Each row 
of the unfolded matrix X(I×KJ) contains all data within a 
batch. After unfolding, normalization can be performed on 
this two-way matrix and the mean trajectories of all variables 
are removed from the data. By doing so, the differences 
between batches are highlighted. This method can be called 
batch-wise unfolding. MPCA and MPLS perform PCA and 
PLS algorithm on such expanded matrix (Nomikos and 
MacGregor, 1994, 1995a, 1995b). 

Variable-wise unfolding keeps the dimension of variables, 
and merges the other two dimensions (Wold et al., 1998). 
Each sampling point of each batch is considered as an object. 
The process data in unfolded matrix X(KI×J) can be 
normalized to zero mean and unit variance. After 
normalization, the grand mean of each variable over all time 
and all batches are removed, and the trajectories are left in 
the data matrix. 

4. REVIEW OF STAGE-ORIENTED STATISTICAL 
MODELING METHODS 

4.1 Stage- based sub-PCA method 

The major motivation of developing a stage-based sub-PCA 
modeling method (Lu et al., 2004a) is like following. In 

multistage/multiphase batch processes, different stage/phase 
can have different variable correlations. The changes in 
correlation structure reflect the changes in process nature, and 
indicate stage changes. Using separate stage models can 
describe such characteristics better and lead to better 
monitoring. 

The basis of sub-PCA model building is two levels. Firstly, a 
batch process may be divided into several stages 
corresponding to the process variable correlation changes. 
Secondly, within each stage, the process correlation nature is 
similar although the process may be time varying. Therefore,  
stage-based sub-PCA models can be built. One thing to 
emphasize is that, the stages identified based on correlation 
information may not be corresponding to certain operation 
stages/phases exactly. 

There are several major steps in sub-PCA modeling 
procedures, which are batch process data matrix unfolding, 
stage division, and stage sub-PCA models building. 

As introduced above, different stages can be indicated by the 
correlation structure changes along time direction in a certain 
batch. It is noticed that, in PCA analysis, the loading matrix 
extracts variable correlation information. For a batch process 
data matrix ( )X I J K× × , each vertical slice ( )kX I J×  is a 
time-slice data matrix. Suppose the data have been 
normalized in batch-wise way, by performing PCA algorithm 
on these time-slice matrices, the variable correlation 
information on each time interval is contained in loading 
matrices kP . This means, in the same stage, the time-slice 
loading matrices are similar, while different stages have 
different loadings. The formula of time-slice PCA models is 
like (1), 

 
( )         ( 1, 2, ..., )k k k TX T P k K= = .               (8) 

 
Since each column of a loading matrix contains different 
amount of process variance information, the time-slice 
loading matrices kP are transformed into a weighted form 
with the importance of each column taken into consideration. 

 

1 1 2 2[ , , ..., ]k k k k k k k

J JP g g g= ⋅ ⋅ ⋅p p p ,                  (9) 

 
where k

jp  is the jth column of kP , 
1

/
Jk k k

j j ii
g λ λ

=
= ∑ , and 

k

jλ  is the eigenvalue of the covariance matrix ( )k T kX X . 

Then the stage division result can be achieved by comparing 
all the time-slice weighted loading matrices. Such 
compassion is carried on with k-means clustering method 
(Jain et al., 1999). The Euclidean distance between two 
weighted loading matrices is used to assess the dissimilarity. 
An important parameter in the clustering is the threshold of 
the minimal distance between two clusters’ centers. Larger 
threshold leads to fewer clusters. This algorithm clusters the 
time slices with similar correlation structures together. A 
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stage can be identified with a series of successive samples in 
the same cluster. Therefore, the stage division results are 
achieved based on the clustering result associated with 
operation time information. 

After stages are separated, a sub-PCA model for each stage is 
then built by taking the average of time-slice PCA loadings in 
the corresponding stage.  

 

*

1

1
        ( 1, 2, ..., )

cn
k

c c
kc

P P c C
n =

= =∑ ,                 (10) 

 
where C  is the total number of stages identified, cn is the 

number of time slices in stage c, *

cP  is the stage sub-PCA 

loading matrix for stage c and k

cP  is the kth time-slice 
loading matrix in stage c. The singular-value diagonal matrix 

*

cS  can be defined similarly.  

 

* * * *
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where 1 2 Jdiag( , ,..., )k k k k

cS λ λ λ=  is the kth time-slice singular-
value diagonal matrix in stage c. The number of retained 
principal components A  of each sub-PCA model can be 
calculated based on the cumulative explained variance rate as 

 
* *

1
min( / trace( ) 90%)

A c

i ciA
A Sλ

=
= ≥∑ .             (12) 
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Fig. 1. Major steps of stage-based sub-PCA modeling 

  

Fig. 2. Sub-PCA based online batch process monitoring 

With the stage sub-PCA models, the control limits of T2 and 
SPE on each sampling interval are calculated for online 
monitoring. 

For online monitoring, before calling a stage model, the 
current stage should be determined first. Since the stages 
have been associated with particular time span in the stage 
division step, the stage of new data could be easily found be 
checking the current time interval. Then, the sub-PCA model 
of corresponding stage is used to monitor the online process 
data. If there is a fault detected by T2 or SPE, contribution 
plots are used to find the reason of the fault. 

The major steps of sub-PCA modeling are shown in Fig. 1 
and the procedure of sub-PCA based online batch process 
monitoring is shown in Fig. 2. 

4.2 Extension of sub-PCA to uneven-length batch processes 

Most multivariate statistical modeling methods for batch 
process monitoring and quality prediction are based on the 
assumption that the batch durations are same (Nomikos and 
MacGregor, 1994, 1995a, 1995b). The sub-PCA method 
mentioned in the last section also makes such an assumption. 
However, many industrial processes have different batch 
durations from run to run because of disturbances in 
operating conditions. Often, even the stage durations are not 
fixed either. The data of a typical two-stage uneven length 
batch process can be shown in Fig. 3. 

In this figure, iX means the data of the ith batch. sK  is the 
number of sampling intervals in the shortest batch. Durations 
A and C are the common part of stage I and II. In duration B, 
some batches are in stage I and some are in stage II. Duration 
D have incomplete data structure of stage II. From this figure, 
we can see the complexity of the data structure of uneven 
length multistage/multiphase batch processes. To solve the 
uneven length and multi-stage issues simultaneously, the 
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stage-based sub-PCA method is extended to uneven length 
batch processes (Lu et al., 2004c). 

2X

iX

IX

1X

sK
  

Fig. 3. An illustration of uneven-length batch process 

The first important question to answer is how to normalize 
the data. The mean trajectories and standard deviations can 
not be calculated reasonably because of the uneven durations 
in each stage of different batches as shown in Fig. 3. So the 
batch-wise unfolding and normalization can not be performed 
directly before proper stage division. The variable-wise 
unfolding and normalization method can be used. However, 
this kind of unfolding will affect the monitoring efficiency 
because it focuses on the variations in variable trajectories 
along the time direction instead of the variations around the 
normal trajectories. So the variable-wise unfolding is utilized 
for stage-division purpose. Then, after stage division, the 
batch-wise unfolding is performed for stage model building. 

The shortest batch length sK  is supposed to be known. After 

variable-wised unfolding and normalization, sK  time-slice 
PCA models are built. Then, k-means clustering algorithm is 
performed on the loading matrices of these time-slice PCA 
models. Since the stable clusters only could be found for the 
common part of stages, such as duration A and C in Fig. 3, 
the first stable cluster indicate the shortest duration of the 
first stage. Then a stage-division PCA model for stage I can 
be built. With this model, the duration of stage I in each batch 
can be known by checking the SPE value when all data go 
through this model. After that, the data of stage I can be re-
normalized in the batch-wise way. The stage sub-PCA model 
for online monitoring is then built and the control limits are 
calculated. Then, the data of this stage are removed from the 
data set, and the above steps are repeated in an iterative way. 
So that, all stages can be identified and the sub-PCA models 
for these stages can be built. 

Suppose the lengths of stage c are varied from min

cL  to max

cL . 

For the data belong to min[1, ]cL , the online monitoring can be 
performed just as the description in the original sub-PCA 
monitoring procedure. If the data belong to min max( , ]c cL L , there 
are two possibilities if the SPE or T2 values are outside of the 
control limits, a fault or a new stage. So the data is 
normalized and monitored with the stage model of stage c; if 
the SPE or T2 values are outside the control limits, then the 
data are re-normalized and monitored with the model of stage 
c+1. If the SPE or T2 values are within the control limits of 

stage c+1, the process enters the new stage. And if the 
statistics are outside the control limits again, an occurred 
fault is detected. 

4.3 Stage- based batch process monitoring with minimal 
reference data 

Multivariate statistical process modeling methods utilize 
normal history data which cover the whole normal operating 
region. To collect enough normal history data may be quite 
time consuming for some slow batch processes, such as some 
bio-processes. If there is a method to model such processes 
with limited batch cycle, for example, with the data from 
only one normal operating batch, this problem could be 
solved. With such motivation, the stage-based batch process 
monitoring method with minimal reference data is proposed 
(Lu et al., 2004d). The major difference between this method 
and sub-PCA is that a moving window of a batch is used to 
extract the local variable correlation structure information. 

In this method, the modeling starts with the data from an 
arbitrary normal operating batch run. The data of this batch is 
stored as ( )X K J× . The moving window strategy is utilized. 

The data in each window form a two-way matrix ( )kX n J× , 
where k is the index of window, n is the length of a window. 
Moving step can be set to 1. Therefore, there are (K-n) 
number of windows totally. 

Then, the data in each window are normalized as following, 

 

         if 

( )     if 

j j

j

j

j j j j

x x
s

s

x x s s

ε

ε

−
≥

− <

⎧
⎪
⎨
⎪
⎩

,                      (13) 

 
where j is a variable index, jx  is the mean value of jx  in that 
window, and ε  is a small value smaller than 1. The purpose 
of doing so is to reduce the influences of the variables of little 
variation in the window. Therefore, the effects of random 
noise variations will not be amplified. 

A PCA model is built for the data in each window and the 
local correlation information is extracted with the loading 
matrix. Then, the stage division can be conducted with 
clustering of these window-based PCA loading matrices, 
similar to the procedure in sub-PCA method. 

The stage PCA models can be calculated based on the 
window-based PCA models in each stage, similar to (10) and 
(11). And the number of PCs is determined with (12). Then, 
the control limits of T2 and SPE can be calculated 
accordingly. With more normal data coming, the data in each 
window is gradually filled with the new data, and the model 
focus more and more on the batch-to-batch variations. So the 
model precision is improved further with the model updating. 

The online monitoring procedure is similar to the one used in 
sub-PCA based online monitoring.  
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4.4 Stage- based PLS modeling for batch process analysis 
and  quality prediction 

Online batch process quality measurement is difficult to 
conduct for the complicated process behaviors. Online 
quality prediction with multivariate statistical modeling is a 
very preferred way to solve this problem. However, the 
existing methods consider few of the effects of 
multistage/multiphase on quality (Nomikos and MacGregor, 
1995b; Chen and Liu, 2002). In such batch processes, 
different stages/phases often have quite different effects on 
the final product qualities. Particular end-qualities may be 
determined in some particular stages/phases and by some 
particular process variables. Based on these findings, a stage-
based process analysis and quality prediction method is 
developed (Lu and Gao, 2005). 

PLS

Clustering algorithm

1

1( , )X Y

k

kX

K

KX

( )y

Y
I J×( )x

X
I J K× × j

i

k

kΘ

1X

( , )kX Y ( , )KX Y

1Θ KΘ

Stage PLS model *ˆ , 1, ,k k c c C= ⋅ Θ =y x   

Fig. 4. Stage-based PLS batch process modeling 

The first step in stage-based quality prediction is stage 
division. Similar to stage division based on sub-PCA method, 
the batch process data ( )xX I J K× ×  are normalized and 

divided into K time-slice matrices ( )k xX I J× . PLS 

algorithm (4) is applied to { }( ) ( )k x yX I J Y I J× ×  at each 

time interval, where ( )yY I J×  is the data matrix storing the 
quality variables. A time-slice PLS model has the form as 

 
* *ˆ T

k kY Y F X F= + = Θ + ,                       (14) 

 
where Ŷ  is the quality prediction, and the regression 
coefficient matrix ( )k x yJ JΘ ×  contain the correlation 
structure information between process variables and quality 
variables at the sampling interval k. The correlation structures 
are similar within the same stage, and quite different between 

different stages. Again, the k-means clustering algorithm is 
utilized for stage division based on kΘ . 

Then the stage PLS models are calculated with the time-slice 
PLS models in each stage by 

 

*

1

1
       ( 1, 2, ..., )

nc k

c ck

c

c C
n =

Θ = Θ =∑ ,             (15) 

 
where nc is the number of sampling intervals in stage c. The 
quality prediction at each time interval is 

 
*ˆ        ( 1, 2, ..., ;  1, 2, ..., )k k c cc C k n= Θ = =y x .      (16) 

 

The multiple coefficient of determination R2 (Johnson and 
Wichern, 2002) is used to evaluate the fitness of the stage 
PLS models and determine the critical-to-prediction stages. 
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∑

∑
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where ,i jyy  it the measurement of the jyth quality in batch i, 

jyy  is the average of ,i jyy  of all batches, , ,
ˆ

i jy ky  is the quality 
prediction at sampling interval k based on stage PLS model. 
The range of R2 is from 0 to 1. Then the F-test is adopted to 
test the significance of R2 (Globerg and Cho, 2004), 

 
2

2

1
( )
1

n m R
F

m R

− −
=

−
.                       (18) 

 
If the average value of 2

,jy kR  in stage c is tested to be 

significant, stage c is the critical-to-prediction stage of jyy . 

The contribution rate of process variable jxx  to prediction 

ˆ
jyy  can be calculated as 

 

, ,

, ,

ˆ|| | ||
1

|| ||jy jx

jy jy k jx k

k

jy

C
−

= −y x

y y x

y
,                  (19) 

*

, , ,
ˆ | [0, ..., 0, , 0, ..., 0] ( , )jy k jx k jx k c x yj j= Θy x x ,       (20) 

 
where , ,

ˆ |jy k jx ky x  is the contribution of jxx  to ˆ
jyy . The value 

of , ,jy jx kCy x  indicates the significance of jxx  contribute to the 
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variation of jyy . So large , ,jy jx kCy x  means the variable jxx  is 

the key process variable to quality jyy  in stage c. 

Then the online quality prediction can be performed. There 
are two kinds of quality variables. One kind of qualities is 
determined by only one critical-to-prediction stage, and the 
other kind is determined by two or more stages. 

For the first type, the quality can be predicted online as 

 
*

,
ˆ (:, )    if stage  is critical to jy k k c y jyy j c y= Θx .      (21) 

 
If stage c is not critical to jyy , then no prediction of jyy  is 
given in that stage. For the second type, since there are 
several stages affect the quality cumulatively, the prediction 
can be calculated with stacked modeling methods (Breiman, 
1996). Without losing generality, suppose there are two 
stages c1 and c2 that are critical to jyy , then the quality 
prediction in stage c2 is calculated as 

 
* *

, 1 , 1 2 2
ˆ ˆ (:, )jy k jy c k c yy w y w j= + Θx ,                  (22) 

 
where ,

ˆ
jy ky  is the quality prediction at the end of stage c1, 

*

2cΘ  is the regression coefficient matrix in stage c2, w1 and w2 
are stage weights and can be calculated with regression 
methods from 

 
*

,
ˆ ˆ

jy c jy c

c
y w y=∑ .                             (23) 

 

4.5 Stage- based online quality control for batch processes 

Batch process online quality control can be conducted with a 
reliable online quality prediction. With the stage-PLS method, 
the stage/phase effects on quality variations are discovered. 
Therefore, an online batch process quality control method 
based on stage-based PLS models is proposed (Lu and Gao, 
2006). In this method, the quality predictor and controller 
only work in some certain critical stages, since certain batch 
process quality may be only affected by some certain 
variables in certain stages. 

The stage division and stage-based PLS model building steps 
are same with the one introduced in section 4.4, followed by 
the steps of critical-to-prediction stages identification. The 
critical-to-prediction stages with manipulated variables to 
affect the qualities are called critical-to-control stages. The 
determination of critical-to-control stages need some process 
knowledge which is known in the industry. Then, 
manipulated variables are selected in each critical-to-control 
stages with the help of some available process knowledge. 

The no-control region of end qualities can be defined based 
on product specifications or normal history quality data. Then, 
regression models are built between the set points of 
manipulated variables and stage-concerned qualities in each 
critical-to-control stage. 

In the procedures of online quality control, the quality 
prediction is performed on each sampling points in 
corresponding critical-to-control stages. And the control 
actions are conducted at decision points if quality prediction 
is found to be not in-control. The quality-control interval Tq 
defining the time of decision points is selected as the multiple 
times of sampling rate of online process measurement Ts. If 
there is only one stage affect certain qualities, the prediction 
can be done in that stage based on (21). If some qualities are 
determined by more than one stage, without losing generality, 
assuming that they are affected by two stages. Then, in the 
first stage, the prediction is like following: 

 
* *

, 1 1 2 , 2
ˆ ˆ(:, )jy k k c y jy cy w j w y= Θ +x ,                (24) 

 
where *

, 2
ˆ

jy cy  is the contribution of future stage which can be 
estimated by assuming the future stage will be kept at the 
nominal operation conditions. In the second stage, the 
prediction can be calculated with (22). 

The end-quality predictions are checked whether they fall 
into the on-control region based on (25), 

 

1 , 1 ,
ˆ ˆ( ) ( )T T

kc sp kc sp jy sp jy spδ− − >y y W y y y W y ,        (25) 

 
where ˆ

kcy  is the average of prediction values of quality in a 

quality-control interval, spy  is the quality set points, W1 is a 
diagonal weighting matrix indicating the importance of each 
quality variables, and δ  is a small number specified based 
on the customer’s need. If the quality prediction is out of 
control, the new set points of manipulated variables are 
changed to compensate for the quality loss. The set points 
can be calculated by solving the optimization problem,  

 

*

2

cos

* * *

, ,

* * *

,min ,max

min{( ) }
sp

comp loss t

sp sp new sp old

sp sp sp

J Q Q Q
∆

= − +

∆ = −

∆ ≤ ∆ ≤ ∆

x

x x x

x x x

,            (26) 

 
where *

,sp oldx  is old set point of manipulated variables while 
*

,sp newx  is the new one, *

,minsp∆x  and *

,maxsp∆x  are hard 

constraints of manipulated variable adjustment, lossQ  is the 

cumulated quality loss up to current decision point, compQ  is 
the desired quality compensation in the remaining period in 
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the batch run, and cos tQ  is the cost of changing the set points 

of manipulated variables. lossQ , compQ  and cos tQ  can be 
calculated as 

 

11
ˆ ˆ( ) ( )c qk T T

loss k sp k spk
Q

=
= − −∑ y y W y y ,           (27) 

1

11
ˆ ˆ( ) ( )c qk T T

comp k sp k spk
Q +

=
= − −∑ y y W y y ,          (28) 

* *

cos 2( ) ( )T

t sp spQ = ∆ ∆x W x .                     (29) 

 
When there is more than one stage affecting qualities, the ˆ

ky  
in (27) can be calculated based on (24) and (22).  However, 
the ˆ

ky  in (28) can not be calculated in this way, since the 
future measurements are not available at that moment. So the 
regression models between manipulated variables’ set points 
and the qualities are used to calculate ˆ

ky  instead. 2W  is a 
diagonal matrix associate with  the manipulated variables’ 
adjustment costs. 

4.6 Other related method: multi-phase PCA (MPPCA) 

MPPCA (Camacho and Picó , 2006a and 2006b) dose the 
phase division in another way. It is based on the prediction 
power of the PCA model. A division performance index tβ  
is proposed based on the prediction power,  

 

100(1 )
t

t c

c

SE

SE
β = − ,                           (30) 

2

1 1 1

ˆ( )
I J K

c ijk ijk
i j k

SE x x
= = =

= −∑∑∑ ,              (31) 

1 2 2 2

1 1 1 1 1 1

ˆ ˆ( ) ( )
I J t I J K

t

c ijk ijk ijk ijk
i j k i j k t

SE x x x x
= = = = = = +

= − + −∑∑∑ ∑∑∑ , (32) 

 
where ˆ

ijkx  is the predication of variable j at sample time k in 

batch i based on a PCA model with c PCs, cSE  is the squared 

prediction error of this PCA model, t

cSE  is the squared 
prediction error obtained if the batch data is divided into two 
phases at time t and modelled by two sub-models, 1ˆ

ijkx  is the 

predication of the first sub-model and 2ˆ
ijkx  is the predication 

of the second sub-model. 

The major steps of MPPCA are like following. The batch 
process data matrix is unfolded firstly. Then the data is 
normalized and PCA model is built for them. Find the 
sampling time interval at which the division performance 
index tβ  has the largest value, which indicates the best 
division point. Build a PCA model for each phase. If 
predictions are not improved much after phase division, then 

stop the division procedure. Otherwise, accept the division, 
and repeat the steps of PCA model building and phase 
division in each subdivision. After the above procedure is 
finished, if the number of phases is larger than a specified 
maximum number, some subdivisions with least prediction 
improvement are deleted.  

5. TRANSITION IDENTIFICATION AND MODELING 

5.1 Shortcoming of sub-PCA method 

As discussed before, the sub-PCA method and its extensions 
divide batch processes into stages with k-means clustering 
algorithm which is a kind of hard partition. This kind of 
partition ignores the transition characteristics from stage to 
stage, which could be gradual changes and very common in 
multistage/multiphase batch processes. As pointed out by the 
authors (Lu et al., 2004a), “misclassification may occur at the 
beginning and end of each stage” and “it may lead to false 
alarm and missing alarm”. 

5.2 Existing method for transition identification and 
modeling: soft-transition multiple PCA (STMPCA) 

To model and monitor the transitions better, Zhao et al. (2007) 
developed STMPCA method recently, which is a 
complement of sub-PCA. 

After stage division as described in sub-PCA method, the 
Euclidean distances between the stage cluster centers and 
each time-slice PCA model are calculated as 

 

, || ||k

k c cd P P= − ,                              (33) 

1

1 nc k

c k

c

P P
n =

= ∑ ,                              (34) 

 
where k is the index of sampling interval, c is the index of 
stage, kP  is weighted loading matrix as defined in (9), cP  is 
the cluster center of the weighted loading matrices in stage c, 
and nc is the number of sampling intervals in stage c. 

Class radius ,c ir  and kernel radius '
,c ir  are utilized to define 

the range of transitions in stage c identified before,  

 

, ,c i c i i cr P Pγ= ⋅ − , ,0.5 1c iγ< < ,                (35) 
' '
, ,c i c i i cr P Pγ= ⋅ − , '

,0 0.5c iγ< < ,               (36) 

 
where = -1 or +1i c c . cP  is the cluster centre of current stage, 

iP   is the center of the neighbouring stage, cγ  and '
cγ  are 

adjustable parameters defined by users. Therefore, the status 
of each sampling interval is defined as,  
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, , , , ,1, 0 ( )k c k j k c c k c c k j jif d r or d r and d rµ µ ′= = < < >      
1, 2,..., ,j C j c= ≠ ,                            (37) 

Otherwise, , , -1 , , -1 , -1 , ,( ),  1- , 0k c k c k c k c k c k c k jd d dµ µ µ µ= + = = , 
1, 2,..., , , -1j C j c j c= ≠ ≠ ,                        (38) 

 
where ,k cµ  is the membership grade of sampling interval k 
belonging to cluster c. So (37) defines that the points totally 
belong to some stage, and (38) describes the membership 
grades of points in transitions. Then, the transition models at 
every time interval are calculated as the weighted sum of 
stage models, and the weights are equal to the membership 
grades calculated in (38). The number of retained PCs is 
select to be equal to the larger one of its two neighbouring 
sub-PCA models. 

5.3 Motivations of developing angle-based transition PCA 
model 

Although the STMPCA proposed a way for transition 
modeling, some shortcomings still exist. The first problem is 
there are two parameters need to be defined in the calculation 
of class radius and kernel radius. However, there is no clear 
guideline for the parameters selection. If the parameters are 
not selected properly, the transition range identified could be 
incorrect. Besides this, the STMPCA calculates the 
membership grades based on the Euclidean distances between 
weighted loading matrices of time-slice PCA models and 
cluster centers. A question is whether the membership 
calculated in this way is optimal, which means whether the 
transition models calculated based on such membership 
grades have the best performance. We need a method to 
identify the transitions automatically without user specified 
parameters, and a transition modeling method which leads to 
optimal transition models. Here, an angle-based factor 
describing the similarities between PCA models is proposed 
to divide the stages, identify the ranges of transitions and 
build the transition models. 

5.4 Similarity between PCA models 

The similarity between PCA models is one of the important 
bases of the stage-orientated batch process monitoring, 
quality prediction and control methods. How to compare the 
similarity between PCA models? In the works mentioned in 
section 4, the Euclidean distances between weighted PCA 
loading matrices are used. However, since each loading 
matrix is weighted differently as shown in (9), the Euclidean 
distances calculated are not normalized values. This makes 
trouble in determination of the threshold of the minimal 
distance between two clusters’ centers. 

A very widely used index in PCA similarity comparison is 
the PCA similarity factor (Krzanowski, 1979), which is 
defined as  

 
21 2 2 1

1 2 1 1

trace( ) 1( , ) cos
T T

k k
PCA iji j

P P P P
S P P

k k
θ= == = ∑ ∑     (39) 

where P1 and P2 are the loading matrices of two PCA models, 
k is the number of PCs, ijθ  means the angle between the 
direction of the ith PC in model 1 and the jth PCA in model 2. 
The range of SPCA is from 0 to 1. However, there are two 
problems with this index. First, it dose not consider the 
different importance of each PC. Second, if two PCA models 
cover the same space, the value of SPCA is always be one, no 
matter the directions of PC pairs of two PCA models are 
really same or not. A simple example can illustrate this. 
Suppose there are two loading matrix,  

 

1

1 0
0 1

P ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 and 2

2 / 2 2 / 2

2 / 2 2 / 2
P

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

.        (40)  

 
Then 1PCAS = , indicating two same models, although these 
two PCA models are very different. 

To solve the first problem, a modified PCA similarity factor 
is proposed (Singhal and Seborg, 2002), which is 

 
1 2 2

1 11 2 2 1
1 2 1 2 1 2

1 1

( ) costrace( )
( , )

k kT T
i j iji j

PCA k k
i i i ii i

Q Q Q Q
S P Pλ

λ λ θ

λ λ λ λ
= =

= =

= =
∑ ∑

∑ ∑
, 

(41) 
 
where j j jQ P= Λ , 1 2diag( , ,..., )j j j

j kλ λ λΛ = , and j
iλ  is 

the ith biggest eigenvalue in the jth PCA model. This 
modified version takes the importance of each PC into 
consideration. However, the second problem is not solved 
well. Especially, if the values of eigenvalues are close to each 
other, it affects the clustering results quite significantly. 

In this paper, a new PCA similarity factor is proposed to 
solve both problems. The formula is as below: 

 
1 2 2

1
1 2 1 2

1

( ) cos
( , )

k
i i iinew i

PCA k
i ii

S P P
λ λ θ

λ λ
=

=

= ∑
∑

.                   (42) 

 
The major difference between new

PCAS  and PCAS λ  is that new
PCAS  

only measures the angles between corresponding PC pairs in 
two models. This form can solve both problems. Since this 
factor always has a normalized value from 0-1, the 
shortcoming of using Euclidean distance in stage division is 
also overcome. It is much easier to set a threshold for it than 
the Euclidean distance. Since new

PCAS  is calculated based on the 
angles, it can be easily transformed to a degree in angle from 
0 to 90o. Therefore, the threshold for clustering could also be 
given in a degree value of an angle between two PCA models 
which has clearer geometry meaning. 

Because of these benefits, the new PCA similarity factor 
new
PCAS  is used in this work for stage division and transition 

modeling. 
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5.5 Transition model assessment 

Before a new transition modeling method is proposed, a 
criteria need to be set to indicate how good a transition model 
is. Good transition PCA models should describe the process 
variable correlation structures accurately during the transition 
period, which means the transition PCA models should be as 
similar as possible to time-slice PCA models of the samples 
in transitions. Such similarity can be quantified with the new 
PCA similarity factor new

PCAS . Therefore, different transition 

PCA modeling methods can be compared based on new
PCAS . 

5.6 Angle-based stage division and transition identification 

Here, the new PCA similarity factor based stage division and 
transition identification method is proposed. The procedure is 
shown below. 

1. Unfold and normalize batch process data matrix 
( )X I J K× ×  in batch-wise. Divide it into K time-slice 

matrices  ( )kX I J× . 
2. Perform PCA on each time-slice data matrix. 
3. Cluster the K loading matrices kP  into clusters with k-

means clustering algorithm. The values of new PCA 
similarity factor between loading matrices are used in 
clustering instead of distance. Associate the cluster 
information with operation time, and get the division of 
C stages. The number C is determined by choosing a 
threshold whose value is between 0 and 1. The threshold 
indicates the maximum similarity between two clusters. 

4. In each stage, the stage-center PCA model is built by 
performing PCA on stage data matrix ( )c

cX In J× , 
where nc is the number of samples in stage c. 

5. The similarity between each time-slice PCA model and 
the stage-center PCA model is calculated with the new 
PCA similarity factor. All these values are plot on a 
univariate control plot. The robust statistical method can 
be used in the calculation of control limits and the 
detection of outliers (Daszykowski et al., 2007). 

6. The outliers occur at the beginning and end of each stage 
in sequences are identified as the points in transitions 
and removed from each stage. Then, the remained part of 
each stage is the range of a steady stage. 

From the procedure, we can see the method of stage division 
is similar to the one used in sub-PCA. The only difference is 
that inputs of k-means clustering are the values of the new 
PCA similarity factor instead of distances. The step 5 makes 
use of univariate statistical monitoring method to identify the 
transitions. The basic idea is that in each steady stage, the 
values of similarity between time-slice PCA models and 
stage-center model should be similar, and their distribution 
can be approximated as normal distribution. In contrary, the 
similarities between the time-slice models in transitions and 
stage-center model could be quite different. Thus, the 
transition samples can be detected as outliers with control 
plots. Since the control limits are calculated statistically, the 
determination of the ranges of transitions is more objective. 

5.7 Stage modeling and angle-based transitions modeling 

After the identification of the ranges of steady stages and 
transitions, the procedure of modeling is given as following. 

1. Build stage model *

cP  for each steady stage by 
performing PCA on the stage data matrix. Note that the 
transition points have been removed. 

2. The PCA model of each time interval in transitions could 
be described as the weighted sum of the stage models 
before and after the transition. The weights could be 
calculated as, 

 

1 2

1 2

* *

1 2 1 2 1
1

0 , 1

( , ) max ( ( , ))new k

PCA c c
w w

w w

w w S P w P w P +
+ =

<= <=

= + ,        (43) 

 
where kP  is a time-slice model for a point in transition, 

*

cP  is the stage model before the transitions, *

1cP +  is the 
stage model after the transitions, w1and w2 are the 
weights calculated. Then the transition model of this 
time interval is formulated as, 

 
* *

1 2 1

k

trans c cP w P w P += + .                         (44) 
 

In the transition modeling, the weights are calculated by 
solving an optimization problem to ensure the transition 
models have high similarities with the time-slice PCA models. 
The benefit of using transition models instead of time-slice 
models is that each transition model only records two 
parameters w1and w2, which requires much smaller storage 
than using time-slice models.  

5.8 Application results 

The proposed method is applied to a closed-loop controlled 
three-tank system. There are five time varying process 
variables, including two flow rate Q1, Q2 and three levels h1, 
h2, h3. Two levels are controlled to the set points h1=300 
mm and h2=200 mm from their initial conditions, while the 
other level h3 is left to float to reflect the process interactions. 
In each cycle, 120 samples are collected under 1 second 
sampling interval. For more detailed information of three-
tank system, please refer to (Lu et al., 2004a). 

The stage division result together with typical process 
variable trajectories is shown in Fig. 5. The threshold of 
maximum similarity between cluster centers is chosen as 0.12 
which is 20degree in angle. The result is similar to the one 
based on Euclidean distance. However, since the value of the 
new PCA similarity factor is normalized, the choosing of the 
threshold is easier and more guided. Then the ranges of 
transitions are identified by outlier detection in each stage as 
introduced in section 5.6. After that, the stage and transition 
models are built. The similarities between the proposed 
transition models and time-slice models are calculated and 
compared with the similarities between the STMPCA models 
and time-slice PCA models. For comparison, the identified 
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ranges of transitions are assumed to be same when using 
different transition modeling methods. 
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Fig. 7. a. Modeling results of transitions from stage 1 to 2; b. 
modeling results of transitions from stage 2 to 3 
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Fig. 8. a. Similarities between transition models and time-
slice models in transitions from stage 1 to 2; b. similarities 
between transition models and time-slice models in 
transitions from stage 2 to 3 (solid line: angle-based 
transition modeling; dash line: STMPCA) 

 

Because of the limitation on paper length, only the transition 
identification result in stage 2, the modeling results (weights 
in (43)) of the first two ranges of transitions which are the 
transitions from stage 1 to stage 2 and from stage 2 to stage 3, 
and the comparison results in these two transition ranges are 
shown in figures as illustrations. Fig. 6 shows the transition 
identification result in stage 2 from 24s to 54s. The outliers at 
the beginning and end of the stage are transition points. The 
modeling results are plotted in Fig. 7. From Fig. 8, we can 
see the proposed transition modeling method always leads to 
more similar transition models to time-slice models than 
STMPCA, which means the proposed transition modeling 
method gets more accurate models than STMPCA. 

6. CONCLUSION 

In this paper, stage-orientated multivariate statistical batch 
process modeling, monitoring, quality prediction and quality 
control methods were reviewed. By taking the characteristics 
of multistage/multiphase batch process into consideration, the 
stage-orientated methods reflect the variable correlation 
changing from stage to stage clearly and correctly. Thus, they 
perform better than traditional multivariate statistical 
methods in this research area. The issues of transition 
modeling were then discussed. A new method based on 
angles between different PCA models were proposed for 
stage division, transition identification and modeling. It gives 
a clearer guideline for stage division and identifies transition 
ranges more objectively. Application result shows the 
transition models built with this method have high accuracy. 
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