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Abstract: This paper addresses a necessary and sufficient robust stability condition of
fractional-order interval linear time invariant systems. The state matrix A is considered as a
parametric interval uncertain matrix and fractional commensurate order is considered belonging
to 1 ≤ α < 2. Using the existence condition of Hermitian matrix P = P ∗ for a complex Lyapunov
inequality, we show that a fractional-order interval linear system is robust stable if and only if
there exist Hermitian matrices P = P ∗ such that complex Lyapunov inequalities are satisfied for
all vertex matrices, which is a set of selected matrices. Two numerical examples are presented
to verify the validity of the proposed approach.

1. INTRODUCTION

Recently, the fractional order linear time invariant (FO-
LTI) systems have attracted lots of attention in control
systems society (Lurie, 1994; Podlubny, 1999b; Oustaloup
et al., 1995, 1996; Raynaud and Zergäınoh, 2000) even
though fractional-order control problems were investigated
as early as 1960’s (Manabe, 1960, 1961). The fractional
order calculus plays an important role in thermodynam-
ics, mechatronics systems, chemical mixing, and biological
system as well. It is recommended to refer to (Oustaloup,
1981; Axtell and Bise, 1990; Vinagre and Chen, 2002; Xue
and Chen, 2002; Machado, 2002; Ortigueira and Machado,
2003) for the further engineering applications of FO-LTI
systems. In the field of fractional-order control systems,
there are many challenging and unsolved problems such as
robust stability, input-output stability, internal stability,
robust controllability, frequency domain analysis, robust
observability, etc. (Rugh, 1993; Vidyasagar, 1971; Skaar
et al., 1988; Matignon, 1996, 1998c,a,b; Bonnet and Part-
ington, 2000; Matignon and d’Andréa Novel, 1996; Moze
and Sabatier, 2005). In the fractional order controller, the
fractional order integration or derivative of the output
error is used for the current control force calculation.
For the robust stability analysis of the fractional-order
systems, model uncertainty, disturbance, and stochastic
noises have been considered. Recently, parametric interval
concept has been utilized to take account of the parameter
variation in fractional-order uncertain dynamic systems
(Petráš et al., 2004, 2005; Chen et al., 2005b,a; Ahn et al.,
2007). Noticeably, matrix perturbation theory was used
in (Chen et al., 2005a) to find the ranges of interval
eigenvalues and Lyapunov inequality was used in (Ahn
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et al., 2007) to reduce the conservatism in the robust sta-
bility test of interval uncertain FO-LTI systems. However,
(Chen et al., 2005a; Ahn et al., 2007) do not provide exact
robust stability condition; instead the methods proposed
in (Chen et al., 2005a; Ahn et al., 2007) estimate the robust
stability property under some restrictive conditions. This
paper is an extension of (Ahn et al., 2007); specifically
this paper addresses a necessary and sufficient condition
for the robust stability of fractional-order linear interval
systems with fractional commensurate order of 1 ≤ α < 2.

In the following section, we provide some backgrounds of
FO linear interval systems. In Section 3, main results of
the paper are presented. In Section 4, two examples are
provided to validate the results. Conclusion will be given
in Section 5.

2. ROBUST STABILITY OF FRACTIONAL-ORDER
LINEAR INTERVAL SYSTEMS

Let us consider the FO-LTI systems governed by the
following state-space form:

dαx(t)
dtα

= Ax(t) + Bu(t) (1)

where α ∈ R, A ∈ Rn×n, B ∈ Rn×m, and α is the
fractional commensurate order. The fractional-order in-
terval linear time invariant systems (FO-ILTI) are de-
fined as the FO-LTI systems whose “A” matrix is interval
uncertain in parameter-wise. That is, when “A” matrix
is defined as A ∈ AI = [aI

ij ] where aI
ij is lower and

upper bounded such as aI
ij := [aij , aij ], we call the system

(1) fractional-order interval linear time invariant systems
(FO-ILTI). Note that AI can be also defined as [A,A]
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where A = [aij ] and A = [aij ]. We call A ∈ AI interval
matrix; A lower boundary matrix; and A upper boundary
matrix. Moreover, we define vertex matrices of AI such as
Av = {A = [aij ] : ∀aij ∈ {aij , aij}}. Thus, the FO-ILTI
system have parametric interval uncertainties in elements
of A matrix. The robust stability problem of 0 < α < 1 was
studied in (Chen et al., 2005a); so this paper focuses on
the robust stability of 1 < α < 2, which was also studied
in (Ahn et al., 2007) with some restrictions. Let us use
Caputo definition for fractional derivative of order α of
any function f(t), which allows utilization of initial values
of classical integer-order derivatives with known physical
interpretations (Caputo, 1967; Podlubny, 1999a):

dαf(t)
dtα

=
1

Γ(α− n)

t∫
0

f (n)(τ)dτ

(t− τ)α+1−n
, (2)

where n is an integer satisfying n − 1 < α ≤ n. As
commented in (Moze and Sabatier, 2005), with 1 ≤ α < 2,
when A matrix is deterministic without uncertainty, the
stability condition for dαx(t)

dtα = Ax(t) is clearly
min

i
|arg(λi(A))| > απ/2, i = 1, 2, · · · , N. (3)

Thus, the robust stability condition of FO-ILTI systems is
derived as follows:
min

i
|arg(λi(A))| > απ/2, i = 1, 2, · · · , N ; ∀A ∈ AI .(4)

For more detailed introduction to the robust stability of
FO-ILTI systems, the interested readers are referred to
(Ahn et al., 2007). Now we state our main result in the
following section. The result of the following section is
a comprehensive version of Section 2 of (Ahn and Chen,
2007).

3. MAIN RESULTS

Based on (Molinari, 1975) and (Henrion and Meinsma,
2001), it is easily proved that the FO-ILTI system is robust
stable if and only if there exist positive definite Hermitian
matrices P = P ∗ > 0 and Q = Q∗ > 0 such that the
following equality holds:

βPA + β∗AT P = −Q, ∀ A ∈ AI (5)

where β = η + jζ, and η and ζ are defined from tan(π/2−
θ) = η/ζ with θ = (α−1)π

π (see Fig. 1 of (Ahn et al.,
2007)). In (Ahn et al., 2007), a sufficient condition, which
considers P = I, was developed. The condition given in (5)
is equivalent to βPA + β∗AT P < 0, P = P ∗ > 0, ∀ A ∈
AI , which means that eigenvalues of βPA + β∗AT P are
negative. Therefore, we know that equality (5) holds if
and only if the maximum eigenvalue of βPA + β∗AT P is
negative (i.e., λ(βPA + β∗AT P ) < 0). Let us summarize
the above argument in the following lemma:
Lemma 1. Interval fractional order LTI system is robust
stable if and only if there exists a positive definite Hermi-
tian matrix P = P ∗ such that λ(βPA + β∗AT P ) < 0 for
all A ∈ AI .

However it is impossible to check the condition of the
above lemma because there are infinite number of matrices

A such that A ∈ AI . In what follows, we present that a set
of finite matrices can be used for checking the condition of
Lemma 1.

Let us first notice that since βPA+β∗AT P is a Hermitian
matrix for any A ∈ AI , the maximum eigenvalue is
calculated as

λ = max
A∈AI

(
max
‖x‖=1

x∗(βPA + β∗AT P )x
)

(6)

where x is a length n column vector, x = [x1, x2, . . . , xn]T =
[u1 + jv1, u2 + jv2, . . . , un + jvn]T . Here note that since
the vector x can be normalized, we can enforce v1 = 0.
Let us expand (6) like (10). In (10), Re(·) means the
real part of (·); Im(·) means the imaginary part of (·);
u = [u1, u2, . . . , un]T and v = [v1, v2, . . . , vn]T . If we
denote P = C + jD, then we can rewrite the right-hand
side of (10) like below:

2ηuT CAu + 2ηvT DAu− 2ηuT DAv + 2ηvT CAv

−2ζuT DAu− 2ζuT CAv + 2ζvT CAu− 2ζvT DAv(11)

Using (CA)ij =
∑n

k=1 cikakj and (DA)ij =
∑n

k=1 dikakj ,
we rewrite (11) like (12) (note that (12) is on the next
page).

Now defining

α(k) = ηu1c1ku1 − ζu1d1ku1 +
n∑

i=2

(ηuiciku1 − ζuidiku1)

+
n∑

i=2

(ηvidiku1 + ζviciku1) (13)

β(k, j) = u1(ηc1k − ζd1k)uj

+
n∑

i=2

ui(ηcik − ζdik)uj +
n∑

i=2

vi(ηcik − ζdik)vj

−u1(ηd1k + ζc1k)vj −
n∑

i=2

ui(ηdik + ζcik)vj

+
n∑

i=2

vi(ηdik + ζcik)uj , (14)

we can simplify the right-hand side of (12) as

x∗(βPA + β∗AT P )x = 2
n∑

k=1

α(k)ak1 + 2
n∑

k=1

n∑
j=2

β(k, j)akj

(15)

It is required to maximize the right-hand side of (15)
to find the maximum eigenvalue (λ) of βPA + β∗AT P
considering all possible interval uncertainties in aij ∈ aI

ij .
Here, we observe that λ depends on the signs of α(k) and
β(k, j). That is, if α(k) ≥ 0, then λ occurs at ak1; otherwise
λ occurs at ak1. In the same way, if β(k, j) ≥ 0, then λ

occurs at akj ; otherwise λ occurs at akj . We summarize
this observation in the following lemma:
Lemma 2. For a positive definite Hermitian P = P ∗, the
maximum of the quadratic form x∗(βPA+β∗AT P )x given
in (6) occurs as one of the vertex matrices of A ∈ AI .
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x∗(βPA + β∗AT P )x = [uT − jvT ][(η + jζ)PA + (η − jζ)AT P ][u + jv] (7)

= ηuT PAu + jηuT PAv − jηvT PAu + ηvT PAv + ηuT AT Pu + jηuT AT Pv − jηvT AT Pu

+ηvT AT Pv + jζuT PAu− ζuT PAv + ζvT PAu + jζvT PAv − jζuT AT Pu + ζuT AT Pv

−ζvT AT Pu− jζvT AT Pv (8)

= ηuT PAu + jηuT PAv − jηvT PAu + ηvT PAv + η(uT PAu)∗ + jη(vT PAu)∗ − jη(uT PAv)∗

+η(vT PAv)∗ + jζuT PAu− ζuT PAv + ζvT PAu + jζvT PAv − jζ(uT PAu)∗ + ζ(vT PAu)∗

−ζ(uT PAv)∗ − jζ(vT PAv)∗ (9)

= 2ηRe[uT PAu] + 2ηIm[vT PAu]− 2ηIm[uT PAv] + 2ηRe[vT PAv]− 2ζIm[uT PAu]

−2ζRe[uT PAv] + 2ζRe[vT PAu]− 2ζIm[vT PAv] (10)

x∗(βPA + β∗AT P )x = 2
n∑

j=1

n∑
i=1

ui

(
n∑

k=1

ηcikakj − ζdikakj

)
uj + 2

n∑
j=2

n∑
i=2

vi

(
n∑

k=1

ηcikakj − ζdikakj

)
vj

−2
n∑

j=2

n∑
i=1

ui

(
n∑

k=1

ηdikakj + ζcikakj

)
vj + 2

n∑
j=1

n∑
i=2

vi

(
n∑

k=1

ηdikakj + ζcikakj

)
uj

= 2u1

(
n∑

k=1

ηc1kak1 − ζd1kak1

)
u1 + 2

n∑
i=2

ui

(
n∑

k=1

ηcikak1 − ζdikak1

)
u1

+2
n∑

j=2

u1

(
n∑

k=1

ηc1kakj − ζd1kakj

)
uj + 2

n∑
j=2

n∑
i=2

ui

(
n∑

k=1

ηcikakj − ζdikakj

)
uj

+2
n∑

j=2

n∑
i=2

vi

(
n∑

k=1

ηcikakj − ζdikakj

)
vj − 2

n∑
j=2

u1

(
n∑

k=1

ηd1kakj + ζc1kakj

)
vj

−2
n∑

j=2

n∑
i=2

ui

(
n∑

k=1

ηdikakj + ζcikakj

)
vj + 2

n∑
i=2

vi

(
n∑

k=1

ηdikak1 + ζcikak1

)
u1

+2
n∑

j=2

n∑
i=2

vi

(
n∑

k=1

ηdikakj + ζcikakj

)
uj (12)

Proof. We need to maximize the following summation:
n∑

k=1

α(k)ak1 +
n∑

k=1

n∑
j=2

β(k, j)akj

considering all x = [u + jv], which satisfies ‖x‖ = 1, and
all aij ∈ aI

ij = [aij , aij ]. Noticing that α(k) and β(k, j)
depend on x = [u+jv], let us select a particular x†, ‖x†‖ =
1, which determines α(1) = α(1)†, . . . , α(n) = α(n)† and
β(1, 1) = β(1, 1)†, . . . , β(n, n) = β(n, n)†. Then, for the
particular x† we obtain:

max
aij∈aI

ij

 n∑
k=1

α(k)ak1 +
n∑

k=1

n∑
j=2

β(k, j)akj


=

n∑
k=1

α(k)
−−−−−−−→
ak1(Sα(k)) +

n∑
k=1

n∑
j=2

β(k, j)
−−−−−−−−→
akj(Sβ(k,j))(16)

where

−−−−−−−→
ak1(Sα(k)) =

{
ak1, if α(k) ≥ 0;
ak1, if α(k) < 0 ;

−−−−−−−−→
akj(Sβ(k,j)) =

{
akj , if β(k, j) ≥ 0;
akj , if β(k, j) < 0 . (17)

Therefore, since at any arbitrary selection x, the maximum
of
∑n

k=1 α(k)ak1 +
∑n

k=1

∑n
j=2 β(k, j)akj occurs at one of

vertex matrices of A ∈ AI , the maximum of x∗(βPA +
β∗AT P )x occurs at one of vertex matrices of A ∈ AI .

Now based on Lemma 1 and Lemma 2, we state the
following theorem:
Theorem 3. Interval fractional order LTI system is robust
stable if and only if there exists a positive definite Hermi-
tian matrix P = P ∗ such that λ(βPA + β∗AT P ) < 0 for
all A ∈ Av.

Proof. (Sufficient) Based on Lemma 2, since λ(βPA +
β∗AT P ) occurs at one of vertex matrices of AI , λi(βPA+
β∗AT P ) < 0 for all A ∈ AI if λi(βPA + β∗AT P ) ≤
λ(βPA + β∗AT P ) < 0 for all A ∈ Av. Therefore if there
exists a positive definite Hermitian matrix P = P ∗ such
that λ(βPA + β∗AT P ) < 0 for all A ∈ Av, then interval
FO-LTI system is robust stable by Lemma 1.

(Necessary) Since there should exist P = P ∗ such that
λ(βPA + β∗AT P ) < 0 for all A ∈ AI , it is necessary
to ensure the existence of P = P ∗ such that λ(βPA +
β∗AT P ) < 0 for all A ∈ Av because Av ⊆ AI .
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The superiority of Theorem 3 over Lemma 1 is highlighted
in the following remark.
Remark 4. Lemma 1 states that we need to check infinity
number of matrices A ∈ AI to verify the existence of
P = P ∗ such that (5) holds. However Theorem 3 shows
that a set of selected finite vertex matrices can be enough
for checking the existence of P = P ∗. Therefore a selected
finite vertex matrices can be used for checking the robust
stability of FO-LTI interval systems.

4. ILLUSTRATIVE EXAMPLES

4.1 Example-1

Consider the following fractional-order linear interval sys-
tem, which was studied in (Ahn et al., 2007):

dαx(t)
dtα

= Ax, A ∈ AI (18)

where α = 1.5, which makes β = η + jζ = 1 + j, and
A ∈ AI = [A,A] with

A =

(−1.8 0.4 0.8
−1.2 −3.6 0.8
−0.6 −1.8 −3.0

)
; A =

(−1.2 0.6 1.2
−0.8 −2.4 1.2
−0.4 −1.2 −2.0

)
From Theorem 3, we need to check all vertex matrices and
for individual vertex matrix A ∈ Av, there should exist
P = P ∗ > 0 such that βPA+β∗AT P < 0. The existence of
P = P ∗ > 0 can be checked by LMI formulation. However,
the system considered in this paper is complex system;
thus the standard LMI approach should be reformulated
based on the following fact 1 :
Fact 5. A complex Hermitian H is H < 0 if and only if(

Re(H) Im(H)
−Im(H) Re(H)

)
< 0.

Therefore, if there exists P = P ∗ > 0 such that the
following holds

PB + B∗P < 0 (19)

where B =
(

Re(A) Im(A)
−Im(A) Re(A)

)
, ∀A ∈ Av, then we can

conclude that the FO-interval LTI system is robust stable.
The above condition can be easily checked using MATLAB
LMI commands setlmis, lmivar, lmiterm, getlmis,
feasp, dec2mat . Using the algorithm given in Fig. 1, we
find that there exists P = P ∗ such that inequality (19)
hold for all A ∈ Av. For example, when A = A, we obtain
the following symmetric matrix:

0.6224 0.0264 0.0439 0.0000 0.0900 0.1144
0.0264 0.3861 −0.0525 −0.0900 0.0000 0.1573
0.0439 −0.0525 0.3978 −0.1144 −0.1573 0.0000
0.0000 −0.0900 −0.1144 0.6224 0.0264 0.0439
0.0900 0.0000 −0.1573 0.0264 0.3861 −0.0525
0.1144 0.1573 0.0000 0.0439 −0.0525 0.3978


whose eigenvalues are 0.1868, 0.1868, 0.5128, 0.5128,
0.7068, 0.7068, and when A = A, we obtain the following
symmetric matrix:

1 See MATLAB LMI toolbox


0.8575 0.1313 0.1613 −0.0000 0.1332 0.3652
0.1313 0.7062 −0.0051 −0.1332 0.0000 0.5039
0.1613 −0.0051 1.0618 −0.3652 −0.5039 −0.0000
−0.0000 −0.1332 −0.3652 0.8575 0.1313 0.1613
0.1332 0.0000 −0.5039 0.1313 0.7062 −0.0051
0.3652 0.5039 −0.0000 0.1613 −0.0051 1.0618


whose eigenvalues are 0.2437, 0.2437, 0.7653, 0.7653,
1.6165, 1.6165.

4.2 Example-2

Suppose we are given

A =

(−1.8 0.4 0.8
−1.2 −3.6 0.8
−0.6 −1.8 −3.0

)
; A =

( 1.2 0.6 1.2
−0.8 −2.4 1.2
−0.4 −1.2 −2.0

)
Using the same algorithm given in Fig. 1, however we find
that there does not exist positive definite matrix P when

A =

( 1.2 0.4 0.8
−1.2 −3.6 0.8
−0.6 −1.8 −3.0

)
∈ Av

Therefore, the system is not robustly stable.

5. CONCLUSIONS

This paper presented an exact robust stability condition
of fractional-order interval linear systems without conser-
vatism. The motivation of this paper is to remove con-
servatism of our existing result (Ahn et al., 2007). Using
the existence condition of Hermitian matrix P = P ∗ for a
complex Lyapunov inequality, we showed that a fractional-
order interval linear system is robustly stable if and only if
there exist Hermitian matrices P = P ∗ such that complex
Lyapunov inequalities are satisfied for all vertex matrices.
The existence of P = P ∗ > 0 was checked by LMI formu-
lation. However, the LMI systems considered in this paper
were complex systems; thus the standard LMI approach
was reformulated. Two numerical examples were presented
to verify the validity of the proposed approach.
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Ivo Petráš, YangQuan Chen, and Blas M. Vinagre. Robust
stability test for interval fractional order linear systems,
volume 208-210, chapter 6.5: Vincent D. Blondel and
Alexander Megretski (Eds.), Unsolved problems in the
mathematics of systems and control. Princeton Univer-
sity Press, July 2004.
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