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Abstract: This paper summarizes recent research results by the authors for the analytical
solution to systems of delay differential equations using the matrix Lambert W function, and
its applications to analysis and control of time-delay systems. The solution has the form of
an infinite series of modes written in terms of the matrix Lambert W function. This solution
is analytical in terms of the parameters, coefficients and delay time, of the system, and each
eigenvalue in the infinite eigenspectrum is distinguished in terms of the branches of the Lambert
W function. This enables extension of methods for systems of ordinary differential equations
to systems of delay differential equations. These include stability analysis, controllability and
observability, as well as methods for eigenvalue assignment.

1. INTRODUCTION

Time-delay systems (TDS) arise from an inherent time
delay in the components of the system or a deliberate
introduction of time delay into the system for control
purposes. Time delays occur often in electrical, mechan-
ical, biological, metallurgical, and chemical systems. Such
time-delay systems can be represented by delay differential
equations (DDEs), which belong to the class of functional
differential equations, and have been extensively studied
over the past decades [Richard (2003)].

The principal difficulty in studying DDEs is that such
equations always lead to an infinite spectrum of eigen-
values. The determination of this spectrum requires a
corresponding determination of roots of certain analytic,
but infinite-dimensional, equations. Therefore, typically
one needs graphical, numerical, and/or approximate meth-
ods. Widely used approximation methods are the rational
approximations (e.g., Padé approximation), which treat
an infinite-dimensional system like a finite-dimensional one
[Richard (2003)]. However, such approximations, and other
methods, have limits in analyzing or controlling time-delay
systems (see, e.g., Richard (2003), Silva et al. (2001), and
Yi et al. (2008b))

An analytic approach to solving systems of DDEs based
on the concept of the Lambert W function, which has
been known to be useful to analyze DDEs [Corless et al.
(1996)], was developed by Asl and Ulsoy (2003). Unlike
other existing methods, the solution has an analytical form
expressed in terms of the parameters of the DDE. One can
explicitly determine how the parameters are involved in
the solution and, furthermore, how each parameter affects
each eigenvalue and the solution. Also, each eigenvalue is
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distinguished in terms of the branch of the Lambert W
function. However, their approach was only correct in the
scalar case and in the special case where certain matrices
in the systems of DDEs commute. In Yi and Ulsoy (2006),
the analytical approach was extended to general systems
of DDEs and to non-homogeneous DDEs. The method
has been validated, for stability [Yi et al. (2007a)], and
for free and forced responses, by comparison to numerical
integration [Yi and Ulsoy (2006)]. As shown in Table 1,
the approach using the Lambert W function provides a
solution form for DDEs similar to that to the free and
forced solution of linear time-invariant ordinary differen-
tial equations (ODEs) in terms of the state transition
matrix. This analogy enables extensions of the methods
for systems of ODEs to systems of DDEs as shown by our
recent results.

This paper summarizes recent results by the authors on
the analytical solution of systems of linear time-invariant
(LTT) delay differential equations with a single delay using
the matrix Lambert W function. All the results presented
in this paper in summary form have previously been
presented in detail in Yi et al. (2007b), Yi et al. (2007a),
Yiet al. (2008a), Yiet al. (2008b), and Yi et al. (2008c).
For a given system of DDEs, the analytical solution is
derived in terms of the matrix Lambert W function Yi
et al. (2007b). From the solution form, the stability of the
system is determined [Yi et al. (2007a)] and controllability
and observability is analyzed [Yi et al. (2008a)]. For a
point-wise controllable system, a linear feedback controller
is designed via eigenvalue assignment [Yi et al. (2008b)],
which can be extended to robust controllers and time-
domain specifications [Yiet al. (2008c)] (see Figure 1). We
present here a comprehensive discussion and perspective
on these related topics.
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For a given system of delay differential equations
1. Derive the solution (free & forced): Section 2

2. Determine stability of the system : Section 3

-

3. Check the conditions for controllability & observability : Section 4

-

4. Design feedback controller via eigenvalue assignment : Section 5

=

5. Robust control & Time-domain specifications : Section 6

* Whole processes can be done by the proposed Lambert W function-based approach.

Fig. 1. The matrix Lambert W function-based approach:
using the Lambert W function, these whole pro-
cesses, which are standard for systems of ODEs, are
tractable.

2. SOLUTION USING THE MATRIX LAMBERT W
FUNCTION

Consider a linear time-invariant system of delay differen-
tial equations with a single constant delay, h,

x(t) = Ax(t) + Aax(t —h) + Bu(t), t >0

x(t) = g(t), t € [—h,0) (1)
x(t) = xo, t=0
y(t) = Cx(t)

where A and Ag4 are n x n coefficient matrices, and x(t) is
an n X 1 state vector, B is an n x r matrix, u(t), an r x 1
vector, is a function representing the external excitation,
and g(t) and x( are a specified preshape function and an
initial point, respectively. The output matrix C is pxn and
y(t) is a p x 1 measured output vector. The existence and
uniqueness of the solution for the system of linear DDEs
in (1) was studied by Hale and Lunel (1993).

First we assume a free solution form, i.e., u(t) =0, as

x(t) = 5'x (2)
where S is nxn matrix. In the usual case, the characteristic
equation for (1) is obtained from the equation by looking
for nontrivial solution of the form e**C where ‘s’ is a
scalar variable and C is constant (e.g., Bellman and Cooke
(1963) and Hale and Lunel (1993)). However, such an
approach does not lead to an interesting result, nor does
it help in deriving a solution to systems of DDEs in (1).
Alternatively, one could assume the form of (2) to derive
the solution to systems of DDEs in (1) using the matrix
Lambert W function. Substitution of (2) into (1) enables
one to obtain a homogeneous solution given by

x(t) = Z eSetel! (3)
k=—00

where 1

The constant matrices Ci in (3) are computed from a
given preshape function g(t), and an initial point, xg. The

matrix, Qy,, is obtained from the following condition, that
can be used to solve for the unknown matrix, Q,,

Wk(Athk)ewk(Athk)+Ah — Agh (5)

Our result, in numerous examples studied to date, always
yields a unique solution, Qj,, from the numerical solution
to (5) for each k, the branch of the Lambert W function.
However, conditions for existence and uniqueness of such a
solution are still required. Note that W, in (4) denotes the
matrix Lambert W function which satisfies the definition,
[As]l and Ulsoy (2003)]

Wk(Hk)ewk(Hk) = Hk (6)

The matrix Lambert W function, Wy(Hy), is com-
plex valued, with a complex argument, Hj, and has
an infinite number of branches, Wy (Hy), where k =
—00, -+ ,—1,0,1,-+- ;00 [Corless et al. (1996)]. Corre-
sponding to each branch, k, of the matrix Lambert W func-
tion, Wy, there is a solution Qy, from (5), and for Hy =
A4hQ,, we compute the Jordan canonical form Jj from

Hk = ZkaAZ,:l. Jk = diag(Jk1(5\1), Jkg(;\Q), ceey Jkp(;\p)),
where Ji;(\;) is m x m Jordan block and m is multiplic-

ity of the eigenvalue, A;. Then, the matrix Lambert W
function can be computed as

Wi (Hy) =
Zr {diag (Wk(Jkl(j‘l)>v e 7Wk(Jkp(5‘p))) } z,' @)

where

Wi (Jki(Ni) =
Wk(j\l) W, (S\Z) (m i 1)'W£m*1)(5\1)
0 Wir(\) 0 (8)
0 0 Wk(j\z)

The principal and other branches of the Lambert W func-
tion in (8) can be calculated analytically using a series
expansion [Corless et al. (1996)], or alternatively, using
commands already embedded in the various commercial
software packages, such as Matlab, Maple, and Mathemat-
ica.

When u(t) # 0 in (1), the solution in (3) can be extended
to the form, [Yi et al. (2007b)]

[ee] t e e]
x(t)= Y  SCl+ /0 D SHTOCYBu()de (9)

k=—o0 k=—o0

The coefficient Cj, in (9) is a function of A, A4, h and the
preshape function, g(t), and the initial point, xq, while C,]y
is a function of A, Aq, h and does not depend on g(t) or
Xg. The numerical and analytical methods for computing
Cé and Cfcv were developed respectively in Asl and Ulsoy
(2003) and Yi et al. (2006). Conditions for convergence
of the infinite series in (9) have been studied in Banks
and Manitius (1975), Bellman and Cooke (1963), Hale
and Lunel (1993), and Lunel (1989). For example, for a
bounded external excitation, u(t), if the coefficient matrix,
Ag4, is nonsingular, the infinite series converges to the
solution.
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Table 1. Comparison of the solutions to ODEs and DDEs. The solution to DDEs in terms of

the Lambert W function shows a formal semblance to that of ODEs [Yi et al. (2007b)].
ODEs DDEs
Scalar Case
(t) = ax(t) + bu(t), t>0 z(t) = ax(t) + aqgz(t — h) + bu(t), ¢>0
z(t) =x9, t=0 z(t) =g(t), t€[—h,0);z(t) =20, t=0
t OO o0
a(t) = e**zo + / Obu(e)de  a(t) = Srtel + Z SO ONbu(¢)de
0 k——oo 0 k——oo

where, S, = EWk(adhe_ah) +a

Matrix-Vector Case
x%(t) = Ax(t) + Bu(t),
x(t) =x0, t=0

t>0

x(t) =

x(t) = Ax(t) + Aax(t — h) + Bu(?),
g(t), te [7h70) 5

t>0

x(t) =x0, t=0

t OO [e]
x(t) = eAtxg +/ AC-OBu(e)de  x(t) = eSetel 4+ Z Sk(t=8) CNBu(¢)d¢
0 k__oo 0 k——oo
where, Sk = EWk(Athk) + A
From the Laplace transform of the system (1), the solution  of €S+, k = —o0 ,—1,0,1,--- , 00, lie within the unit

to (1) in the Laplace domain is

X(s) = (sT— A — Age™") " {x0 + AaG(s)e "} +
free
(sT— A — Age™") " {BU(s)}
forced
(10)

Comparing the solution in the Laplace domain in (10) with
the solution in the time domain in terms of the matrix
Lambert W function in (9) yields,

e {(sT- A Age™") T} = Z Stay
k=—o0

Note that, compared with results by other existing meth-
ods for the series solutions to DDEs in Banks and Man-
itius (1975), Bellman and Cooke (1963), Lunel (1989),
where eigenvalues are obtained from exhaustive numerical
computation, the solution in terms of the Lambert W
function has an analytical form expressed in terms of the
parameters, A, Agq and h, of the DDE in (1). Hence,
one can determine how the parameters are involved in
the solution and, furthermore, how each parameter affects
each eigenvalue and the solution. Also, each eigenvalue
is distinguished by k, which indicates the branch of the
Lambert W function. The solution to DDEs in terms of
the Lambert W function, is analogous to that of ODEs
in terms of the state transition matrix as summarized in
Table 1.

(11)

3. STABILITY OF TIME-DELAY SYSTEMS

The solution form in (9) with (4) reveals that the stability
condition of the systems of (1) depend on the eigenvalues
of the matrix Sy, and, thus, also on the matrix eSk.
A time delayed system characterlzed by (9) is asymp-
totically stable if and only if all the eigenvalue of Sy,
k= —o0,---,—1,0,1,--- 00, have negative real parts or,
equivalently in the sense of Lyapunov, all the eigenvalue

circle. However, computing the matrix S; or eS¢ for an
infinite number of branches is not practical. We have ob-
served, in numerous examples, that if coefficient matrix Agq
does not have repeated zero eigenvalues, then, the eigenval-
ues of S obtained using the principal branch (k = 0) are
closest to the imaginary axis and, thus, determine stability
of the system. That is, [Yi et al. (2007a)]

max{¥t{eigenvalues for k = 0}} > 12
R{all other eigenvalues} (12)
For the scalar DDE case, it has been proven that the
root obtained with the principal branch always determines
stability [Shinozaki and Mori (2006)], using monotonicity
of the Lambert W function with resect to the branch of the
Lambert W function. Such a proof can readily be extended
to systems of DDEs where A and Ag are simultaneously
triangularizable and, thus, commute with each other. Even
though such a proof is not available in the case of general
matrix-vector DDEs, we have observed such behavior in
all the examples we have considered.

With this useful observation, the approach based on the
matrix Lambert W function is applied to solve a problem
in a machining process.

Ezample - Regenerative chatter in the turning process [Yi
et al. (2007a)]: The linearized chatter equation can be
expressed in state space form as

x(t) = Ax(t) + Agx(t —T) (13)
where x = {z &} and 7 indicates transpose, and
0 1
A — (1 + ) w2 —2¢w, |’
kim 4 (14)

Ad - [ kc 2 ] .
— 0
P

Here, A and A4 are the linearized coefficient matrices
of the process model and are functions of the machine-
tool and workpiece structural parameters such as natural
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Fig. 2. Stability lobes for the chatter equation [Yi et al.
(2007a))

frequency (wp), and damping ratio (¢). Time delay, T,
which is equivalent to & in (1), is the inverse of the spindle
speed of the workpiece. The ratio k./k,, depends on the
depth-of-cut, as well as the workpiece material properties.
If we observe the roots obtained using the principal branch,
we can find the critical point when the roots cross the
imaginary axis. For example, when spindle speed (1/7") =
50(sec™t), w,, = 150(sec™2) and ¢ = 0.05, the critical ratio
of gains (k./kn ) is 0.2527 (see Figure 2). This value agrees
with the result obtained by the Lyapunov method [Malek-
Zavarei and Jamshidi (1987)], the Nyquist criterion and
the computational method of [Chen et al. (1997)]. The
stability lobes by this method are depicted in Figure 2 for
given parameters of the system with respect to 1/T), i.e.,
the spindle speed (rps, revolution per second). With these
lobes, one can find the safe operating spindle speed, which
does not leave any chatter marks on the surface of the
workpiece.

In obtaining the result for stability of the system shown
in the Figure 2, we note that the roots obtained using
the principal branch always determine stability. One of
the advantages of using the matrix Lambert W function
over other methods appears to be the observation that
the stability of the system can be obtained from only
the principal branch among an infinite number of roots.
The eigenvalues are expressed analytically in terms of
the parameters of the systems. Therefore, one can know
how each parameter affects the rightmost eigenvalues and
stability.

4. CONTROLLABILITY AND OBSERVABILITY

Controllability and observability of linear time delay sys-
tems has been studied, and various definitions and criteria
have been presented since the 1960s. For a detailed review,
refer to Malek-Zavarei and Jamshidi (1987), Richard
(2003), and Yi et al. (2008a). However, the lack of an
analytical solution approach has limited the applicability
of the existing theory. Using the solution form in terms of
the matrix Lambert W function, algebraic conditions and
Gramians for controllability and observability of DDEs
were derived by Yi et al. (2008a) in a manner analogous
to the well-known controllability and observability results
for the ODE case.

The system (1) is point-wise controllable (or equiva-
lently, defined as fized-time completely controllable or R"-
controllable to the origin in other literature) if, for any
given initial conditions g(¢) and xg, there exists a time
t1, 0 < t1 < oo, and an admissible (i.e., measurable and
bounded on a finite time interval) control segment u(t) for
t € [0,t1] such that x(¢1;0, g, %0, u(t)) = 0.

If a system (1) is point-wise complete, there exist a control
which results in point-wise controllability in finite time of
the solution of (1) for any initial conditions g(¢) and xg, if
and only if the controllability Gramian, C, computed with
the kernel has a full rank. Using the result in (11), the
rank condition can be expressed as

t1 0
C0,t)) = / 3 Si-ocy
0

xBBT{ i

k=—o0

rank

k=—o0

T (15)
e&(h&)cﬁ} ¢l =n

Similarly, a rank criteria for observability was developed.
The system of (1) is point-wise observable, (or equivalently,
observable in other literature) in [0, ¢1] if the initial point,
Xg, can be uniquely determined from the knowledge of
u(t), g(t), and y(t). Then, if and only if the observability
Gramian O(0,t;) computed with the kernel defined in (11)
satisfies the condition, i.e.,

oo

T
ty
rank O(O,tl)E/ { Z esk(EO)CIICV}
? lk=—oo (16)

[e9)
xc'c Y eSMfO)ckng] =n
k=—oc0

the system of (1) is point-wise observable. These conditions
were applied to determine whether a time-delay system
is controllable/observable with examples, and to derive
other algebraic conditions for point-wise controllability
and observability.

The results presented agree with those obtained using
previously existing algebraic methods. However, using the
method of Gramians developed in [Yi et al. (2008a)],
one can acquire more information. The controllability and
observability Gramians in (15)-(16) indicate how control-
lable and observable the corresponding states are [Holford
and Agathoklis (1996)], while algebraic conditions tell
only whether a system is controllable/observable or not.
With the condition using Gramian concepts, one can de-
termine how the change in some specific parameters of
the system or the delay time, h, affect the controllability
and observability of the system via the changes in the
Gramians. Furthermore, for systems of ODEs, a balanced
realization in which the controllability Gramian and ob-
servability Gramian of a system are equal and diagonal
was introduced in Moore (1981) and its existence was
investigated in Verriest and Kailath (1983). By balancing
a realization we mean that we symmetrize a certain input
property (controllability) with a certain output property
(observability) through a suitable choice of basis [Verriest
and Kailath (1983)]. The significance of the method has
been established because of its desirable properties such
as good error bounds, computational simplicity, stability,
and its close connection to robust multi-variable control
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[Lu et al. (1987)]. However, for systems of DDEs, results on
balanced realizations have been lacking. Using the Grami-
ans defined in (15) and (16), the concept of the balanced
realization has been extended to systems of DDEs for the
first time [Yi et al. (2008a)].

5. EIGENVALUE ASSIGNMENT

Consider the system in (1) and a generalized feedback
containing current and delayed state,

u(t) = Kx(t) + Kax(t — h) (17)
Then, the closed-loop system becomes
x(t) = {A + BK}x(t) + {Aqd + BKa}x(t —h) (18)

The controllability of such system, using the solution form
of (9) was studied in Yi et al. (2008b). In the case of
LTT systems of ODEs, if it is completely controllable, then
the eigenvalues can be assigned by choosing the feedback
gains for DDE’s. The gains, K and K4 are determined
as follows. First, select desired eigenvalues, A; gesired for
i = 1,---,n, and set an equation so that the selected
eigenvalues become those of the matrix Sy as

/\Z(SO) = )\i,desired (19)
for i = 1,---,n, where, \;(So) is i*" eigenvalue of the
matrix Sg. Second apply the new two coefficient matrices
A = A +BK and Ag = Agq + BKg, as (18) to (5)
and solve numerically to obtain the matrix Q, for the
principal branch (k& = 0). Note that K and Kgq are
unknown matrices with all unknown elements, and the
matrix Q, is a function of the unknown K and Kgq. For
the third step, substitute the matrix Q, from (5) into
(4) to obtain Sy and its eigenvalues as the function of
the unknown matrix K and Kq. Finally, equation (19)
with the matrix, Sg, is solved for the unknown K and
K4 using numerical methods, such as fsolve in MATLAB.
Depending on the structure or parameters of given system,
there exists limitation of the rightmost eigenvalues and
some values are not proper for the rightmost eigenvalues.
In that case, the above approach does not yield any
solution for K and Kq. To resolve the problem, one may
try again with fewer desired eigenvalues, or different values
of the desired rightmost eigenvalues. Then, the solution,
K and Ky, is obtained numerically for a variety of initial
conditions by an empirical trial and error procedure.

Ezample - Eigenvalues assignment [Yi et al. (2008b)]:

Consider the system in (1) with parameters,

00 -1 -1
A= [0 aam[ 31 5h] neor @

with B = [0 1]7. Before applying feedback, the eigen-
values for £ = 0 are 0.1098 and —1.1183, and the sys-
tem is unstable (see Fig. 3). The system is point-wise
controllable by the criterion in Section 4, then, using the
eigenvalue assignment method, the gains, K and Kg, can
be chosen to locate the eigenvalues at desired positions
in the complex plane. For example, when the desired
eigenvalues are —1.0000 and —6.0000, the computed gains
are K = [—0.1391 —1.8982] and K4 = [—0.1236 —1.812§],
or K =[—0.1687 —3.6111] and Kq = [1.6231 —0.9291] for
—2.0000 and —4.0000. By applying the obtained feedback
gains, the system is stabilized and the eigenvalues placed
at a desired position (*) in the complex plane (see Fig. 3).

Imaginary (i)

-50 45 -40 -35 -30 20 -15 -10 -5 0

25 =
Real (%)

Fig. 3. Movement of eigenvalues after applying feedback
(without feedback: o, with feedback:*). The rightmost
eigenvalues are located at the exact desired location
—2.0000 and —4.0000 with the computed feedback
gains K = [-0.1687 — 3.6111] and K4 = [1.6231 —
0.9291] [Yi et al. (2008Db)].

Many researchers have sought to establish the connection
between point-wise controllability presented in Section 4
and eigenvalue assignment by linear feedback (not pre-
dictive) control for systems of DDEs as for ODEs [Tsoi
(1978)]. Even though some partial results have been pre-
sented for functional controllability (see e.g., Vandevenne
(1972) and the references therein) several theoretical re-
sults for point-wise controllability are not yet available.
We have presented some examples for such a connection
in Yi et al. (2008b). In that study, it has been shown by
examples that if the system of DDEs is point-wise control-
lable, it is possible to design the linear feedback controllers
via rightmost eigenvalue assignment for systems of DDEs
as in (1); otherwise, it is not.

6. CONCLUDING REMARKS AND FUTURE WORK

Recent results by the authors on the solution of delay
differential equation using the matrix Lambert W function
and its applications are summarized in this paper. The
main advantage of this method is that the solution in
terms of the Lambert W function has an analytical form
expressed in terms of the parameters, A, Agq and h, of the
DDE in (1). Hence, one can determine how the parameters
are involved in the solution and, furthermore, how each
parameter affects each eigenvalue and the solution. Also,
each eigenvalue is distinguished by k, which indicates
the branch of the Lambert W function. The method
has been validated, for stability, and for free and forced
responses, by comparison to numerical integration. The
solution to DDEs in terms of the Lambert W function,
is analogous to that of ODEs in terms of the state
transition matrix. This suggests that some analyses used
for systems of ODEs, based upon the concept of the state
transition matrix, can potentially be extended to systems
of DDEs. These include controllability and observability,
methods for eigenvalues assignment for linear feedback
controller design. Also, their extension to robust stability
and time-domain specifications are tractable and are being
studied by the authors [Yi et al. (2008c)]. Stability of
time invariant linear DDEs can be determined using the
approach and extension to stability of time-varying DDEs
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is also currently under investigation. Even though, for
nonlinear systems of DDEs, the presented appraoch cannot
be applied directly, via linearization (e.g., Piecewise Linear
Approach in Sontag (1981)), it can be helpful to analyze
such systems.

In this survey paper we have also introduced several out-
standing research problems associated with the solution of
systems of DDEs using the matrix Lambert W function.
First, conditions for existence and uniqueness of a solu-
tion Q; to (5) are needed. Second, a general proof that
the stability of the systems in (1) can be determined by
the principal (k = 0) branch is lacking. Third, the con-
nection between point-wise controllability and eigenvalue
assignment by linear feedback (not predictive) control for
systems of DDEs is also another open problem. We hope
that researchers in the DDE community will be interested
in those problems.
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