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Abstract: Atmospheric Particulate Matter (PM10) control is at the moment a great challenge
for air quality management, due to the strong non linearities that affect formation and
accumulation of this pollutant. This work presents the formalization and application of a two-
objective methodology to select effective particulate matter control strategies on a mesoscale
domain. The two considered objectives are emission reduction costs and the PM10 exposure
index. The decision variables are the precursor emission reductions due to ablation technologies.
The nonlinear relationships linking air quality objective and precursor emissions are described by
neuro-fuzzy models, identified through the processing of simulations of the TCAM deterministic
multiphase modeling system, performed in the framework of the CityDelta-CAFE Project (EU
6th Framework Program). The two-objective problem has been applied to a complex domain in
Northern Italy, including the Milan metropolitan area, a region characterized by high emissions
and frequent and persistent secondary pollution episodes.

1. INTRODUCTION

The Particulate Matter is one of the most important
pollutants in Europe, in particular in high industrial and
urban area like northern Italy due to its profound im-
pact on human health and ecosystem. This is particularly
true if the particulate matter with diameter lower than
10 µm (PM10) is considered. Moreover, PM10 formation
and accumulation in troposphere are strongly nonlinear
processes, related to meteorological condition and to the
emissions of its precursors: volatile organic compounds
(VOC), nitrogen oxides (NOx), ammonia (NH3), primary
particulate matter (PPM) and sulfur oxides (SOx). Con-
trolling PM10 concentrations means to abate the precursor
emissions taking into account the nonlinear processes in-
volving the precursors and the costs of emission ablation
technology. There are different techniques to assess the ef-
fect of emission reductions, as (a) scenario analysis (Haurie
et al. (2004), Lim et al. (2005)); (b) cost-benefit analysis
(Reis et al. (2005), Schrooten et al. (2006)); (c) cost-
effectiveness analysis (Schöpp et al. (1999), Amann et al.
(2004)); (d) multi-objective optimization (Guariso et al.
(2004), Carnevale et al. (2007)). The multi-objective ap-
proach allows, calculating alternative optimal emission re-
duction scenarios, to consider the trade-off among different
targets, for example considering both air quality improve-
ment and cost, due to the implementation of a particular
emission reduction policy. The multi-objective analysis has
rarely been tackled in literature, due to the difficulties
to include in the optimization problem the non-linear
dynamics involved in particulate matter formation. In fact
in the multi-objective approach the pollution-precursor
relationship can not be simulated by deterministic 3D
modeling systems, due to their high computational costs:
the identification of simplified models capturing the rela-
tionship between the precursor emissions and secondary

pollutant concentrations is required. For this purpose,
source-receptor relationship has been implemented using
isopleths (Flagen and Seinfeld (1988), Loughlin (1998)),
and reduced form models such as (a) simplified models,
adopting semi-empirical relations calibrated with experi-
mental data as in Venkatram et al. (1994), or (b) statistical
models, identified on the results of complex 3D transport-
chemical models as in Schöpp et al. (1999), Friedrich and
Reis (2000), Volta (2003), Guariso et al. (2004).

This work formalizes and applies a two-objective prob-
lem to select effective emission abatement strategies, con-
sidering (a) an air quality objective (the yearly mean
PM10 concentrations), and (b) a cost objective (the costs
due to the reduction of PM10 precursor emissions). The
methodology has been applied to Lombardia Region, the
most populated and industrialized area in Northern Italy,
regularly affected by high PM10 concentrations.

2. PROBLEM FORMULATION

The particulate matter control problem can be formulated
as a two-objective mathematical programming problem,
including the effectiveness of emission reduction policies
on an Air Quality Index (AQI) and their costs (RC). The
problem can be formalized as follows:

mi
θ
n J(E(θ)) = mi

θ
n[AQI(E(θ)) RC(E(θ))] (1)

θ ∈ Θ

where E represents the precursor emissions, θ are the deci-
sion variables, namely the emission reductions, constrained
to assume values in Θ, AQI(E(θ)) is the air quality objec-
tive and RC(E(θ)) are the reduction costs, both depending
on precursor emissions and emission reductions. In this
section the formalization of the the control variables (2.1),
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the air quality (2.2) and the cost objectives (2.3) will be
presented.

2.1 Control Variables

A comprehensive problem formulation should consider sep-
arately each emission source as a decision variable, but this
assumption leads to an unfeasible computational problem,
due the high number of control variables. For this reason, it
is natural to consider as decision variables a common per-
centage of reduction for groups of pollutant activities. This
work assumes the CORINAIR emission classification in the
following 11 macrosectors (EMEP/CORINAIR, 1999):

(1) public power, cogeneration and district heating plants;
(2) commercial, institutional and residential combustion

plants;
(3) industrial combustion;
(4) production processes;
(5) extraction and distribution of fossil fuels;
(6) solvent use;
(7) road transport;
(8) other mobile sources and machinery;
(9) waste treatment and disposal;

(10) agriculture;
(11) nature.

The control variables of the decision problem are the

emission percent reductions θ =
{

θp,s
}p∈P

s∈S
, for each

PM precursor p = {V OC, NOx, NH3, PM, SOx} and
CORINAIR macrosector s; so in principle there are 55
control variables (emission reductions).

2.2 Air quality objective

The precursor-PM relationship virtually should be given
by the simulation of deterministic 3D modeling systems.
Such models require so high computational time that
are not of practical use in an optimization problem. For
this reason simplified source-receptor models have been
identified through the processing of simulations performed
by a deterministic modeling system.

Air quality index The air quality objective is a PM
exposure index over a grid domain. Such exposure index
is a function both of emissions (control variables) and
meteorological parameters (that cannot be handled). The
daily cell emissions are expressed with respect to a refer-
ence situation and split into the CORINAIR macrosectors
(EMEP/CORINAIR, 1999). Since a regional Authority
can impose different reduction to different emission macro-
sectors, the air quality index (AQI) can be expressed
stressing the emission dependance of the exposure index
function (Ψ) for cell (i, j), as follows:

AQI(E(θ)) = Ψ
(

Ep,s
i,j (θp,s)

)

(2)

where Ep,s
i,j is the emission of the p precursor species for

macrosector s in the cell (i, j);

Deterministic approach PM10 concentrations are typi-
cally simulated by three-dimensional deterministic mod-
eling systems. In this work the Gas Aerosol Modeling
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Fig. 1. The GAMES modeling system.

Evaluation System (GAMES) (Volta and Finzi, 2006)
has been used. It consists of three main modules as
shown in Figure 1: (a) the multi-phase Eulerian 3D model
TCAM (Carnevale et al., 2008); (b) the meteorological pre-
processor CALMET (Scire et al., 1990); (c) the emission
processor POEM-PM (Carnevale et al., 2006).

Source-receptor approach Simplified models based on
neuro-fuzzy approach are identified through the process-
ing of input and output of several runs of the GAMES
deterministic modeling system.

In the neuro-fuzzy approach (Figure 2), neural networks
are used to tune the membership functions of the fuzzy
system, and to extract fuzzy rules from the identification
dataset (Shing and Jang, 1993). In this work, a 4 layer
neuro-fuzzy network is considered, as implemented in
MATLAB R© Fuzzy Logic Toolbox (MathWorks, 2006a).

The first layer computes the value of the membership
function (MF) ξAh,d

(vd, αh,d, βh,d) (where the dependence
to parameter αh,d and βh,d to be identified during the
training process is stressed) of each component of the input
vector v ∈ R

D, where Ah,d is the h− th linguistic variable
of the d − th input vector component.

In the second layer, the antecedent of each of the Z rules
has been computed by means of a T-norm function and
normalized:

wz = T
(

ξAh,d
(vd)

)

∀Ah,d ∈ Antz (3)

wz =
wz

∑Z
z=1

wz

(4)

where:

• D is the input vector cardinality (i.e. the number of
the network inputs);

• H is the number of linguistic variable;
• T is the chosen T-norm function (min, and);
• Antz is the set of antecedents of the z − th rule;
• Z = HD is the number of fuzzy rules in the second

layer.

The third layer performs the computation of the conse-
quent parameter of the rules, following the Takagi-Sugeno
approach:

gz = wz ·

(

D
∑

d=1

(pd,z · vd) + rz

)

(5)
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Fig. 2. Scheme of the Neuro-Fuzzy Network.

Finally, the overall output is computed as the weighted
mean of the output membership functions gz:

f(v) =
Z
∑

z=1

wz · gz (6)

During the learning process the membership function
parameters αh,d, βh,d, pd,z and rz are tuned, using a back-
propagation algorithm.

2.3 Cost objective

The cost objective of PM10 control can be formulated as
follows:

RC(θ) =
∑

p

∑

s

RCp,s
(

Ep,s(θp,s), ucp,s(θp,s)
)

(7)

where:

• RCp,s represents the total cost associated to reduc-
tion of precursor p in macrosector s;

• Ep,s is the total annual emission of the p precursor
species for macrosector s in the reference case;

• ucp,s represent the cost functions, that link emission
reductions and unit cost, for each p precursor species
and macrosector s.

More details about the methodology to derive cost objec-
tive are provided in Carnevale et al. (2007).

3. CASE STUDY

To apply and test the two-objective methodology the Lom-
bardia region domain has been selected (300 × 300km2).
The domain has 10 million inhabitants, is one of the most
industrialized in Italy, and is characterized by high traffic
emissions. Furthermore in this area there are adverse at-
mospheric circulation, with stagnant conditions, low mix-
ing height and low wind speed, that cause PM10 concen-
trations to be higher than the european standard specifi-
cations. The highest PM10 concentrations are reached in
winter. Experimental data (Putaud et al., 2004), (Lonati
et al., 2007) and modeling studies (Cuvelier et al., 2007),
(Carnevale et al., 2008) show that the secondary fraction
is extensive all over the domain (up to 70%).

In the following subsections control variables selection
(3.1), air quality objective (3.2) and cost objective (3.3),
formalized in Section 2, will be presented for the selected
case study.

3.1 Control variables

As already stated, the considered control variables are the
emission reductions for each CORINAIR macrosector. For
PM10 in principle the problem should consider 55 control
variables, eleven for each of PM10 precursor emission
reductions, that is to say V OC, NOx, NH3, primary PM
and SO2. Indeed, the optimization problem solution does
not consider the reduction of all the decision variables,
due to the fact that in some CORINAIR macrosectors it
is not possible to reduce emissions (i.e. biogenic emissions
in macrosector 11 can not be abated), or there are no
emissions on a particular macrosector. In Table 1, this
information is summarized. Θp,s is the maximum feasible
reductions allowed by the available technologies for pollu-
tant p in the CORINAIR macrosector s (in the Table 1
’N.A’. means ’not applicable’). This means that i.e. the
best PM10 technologies for macrosector 2 can reduce
a maximum of 59% of current emissions. Furthermore
it means that the NH3 reductions are feasible only for
macrosector 10, PM reductions for macrosectors 1, 2, 3,
4, 7, 8 and 9, SO2 reductions for macrosector 1, 2, 3, 4, 7
and 8, etc...

It is important to underline the case of macrosector 7 and
8. Technologies of these macrosectors can reduce at the
same time V OC, PM and NOx. To take into account
this fact, in the optimization problem NOx reductions are
taken into consideration as decision variables, while V OC
and PM emission reductions are constrained to NOx ones
using polynomial functions linking V OC to NOx and PM
to NOx abatement efficiencies (Carnevale et al., 2007).

3.2 Air quality objective

For this application neuro-fuzzy precursor models have
been identified through the processing of GAMES simula-
tions performed in the frame of the CAFE (Clean Air For
Europe) CityDelta II project (Cuvelier et al., 2007). To
evaluate different PM emission scenarios, the advantage
in using simplified models instead of complex determin-
istic models, in terms of computational requirements, is
significant. In fact the run of a yearly simulation with

Table 1. Maximum feasible reductions allowed
by techonologies, for PM10 precursors).

CORINAIR ΘV OC,s ΘNOx,s ΘNH3,s ΘPM,s ΘSO2,s

macros.

1 N.A. 0.76 N.A. 0.24 0.72
2 0.68 0.39 N.A. 0.59 0.56
3 N.A. 0.34 N.A. 0.09 0.60
4 0.19 0.80 N.A. 0.40 0.80
5 0.33 N.A. N.A. N.A. N.A.
6 0.33 N.A. N.A. N.A. N.A.
7 0.47 0.29 N.A. 0.41 0.76
8 0.06 0.25 N.A. 0.39 0.59
9 0.06 N.A. N.A. 0.82 N.A.
10 N.A. N.A. 0.58 N.A. N.A.
11 N.A. N.A. N.A. N.A. N.A.
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Table 2. Neuro-fuzzy network architecture.

NF features Value

H: Number of MF for input 2

µAh,d
(vd): Input MF

(

1 + exp

(

−

vd−βh,d

αh,d

))

−1

Z = HD: Number of fuzzy rules 25

gz : Output MF rz

Ntr : Training set 843
Nval: Validation set 252

neuro-fuzzy models need 15 seconds to be performed on
a Pentium IV - 3.8 GHz with 1 GB RAM machine. For
the same simulation-machine GAMES modeling system
requires 26 days.

The neuro-fuzzy identification and validation series have
been selected processing the GAMES simulation results
obtained considering basecase, CLE (Current LEgislation)
and MFR (Most Feasible Reduction) scenarios of the
Citydelta project (Cuvelier et al., 2007). Each GAMES
simulation covers a period from January to December. The
validation set (Nval) has been yielded extracting, from the
simulation pattern, the third week of each month. The
original GAMES simulations have a 5x5 km2 resolution;
about neuro-fuzzy, one network has been identified for each
group of 36 GAMES domain cells (aggregating contiguous
squares of 6x6 GAMES cells) identifying a modeling sys-
tem with resolution of 30x30 km2.

The neuro-fuzzy input data are the daily V OC, NOx,
NH3, PM and SO2 emissions estimated for each group
of 6x6 cells. The neuro-fuzzy target data are the PM10
long-term mean concentrations computed by the GAMES
system. It is important to stress that GAMES simulation
results, used to identify neuro-fuzzy models, have been
validated in a previous study (Carnevale et al., 2008).

The Air Quality Index considered is defined as a PM10
mean value over the considered time period, as defined by
European Union Directive (Communities, 1999).

AQIMeanPM
i,j (Ei,j) =

∑

n PMNF
i,j (Ei,j(t))

N
[µg/m3]

(8)

where:

• n are the days in the considered temporal period (in
this case from January to December);

• PMNF
i,j (Ei,j(t)) are the PM10 concentrations com-

puted by neuro-fuzzy models for the cell (i, j), de-
pending on time n and emissions E;

• N is the length of the temporal period considered.

The identified nets are characterized by the features shown
in Table 2.

The scatter plot and the normalized mean error map be-
tween neuro-fuzzy and GAMES results, for the validation
phase, are shown in Figure 3 and 4.

The scatter plot shown in Figure 3 confirms that the neuro-
fuzzy system ensures capability to simulate the nonlinear
source-receptor relationship between PM10 mean concen-
tration and the emission of its precursors. For concentra-
tion lower than 30 µg/m3 the system underestimates the
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Fig. 3. Neuro-fuzzy versus GAMES PM10 concentrations
on each grid point of the domain.
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dation dataset.

target values up to 5 µg/m3. On the contrary the system
overestimates the concentration higher than 30 µg/m3 up
to 5 µg/m3. The normalized mean error between PM10
mean concentrations computed by neuro-fuzzy system and
GAMES (Figure 4) shows that the simplified models are
able to reproduce the mean concentration over the domain,
in particular in the area where the concentrations are
higher (Po Valley/Milan urban area).

3.3 Cost objective

The abatement cost curves have been estimated on the
basis of a large data set collected for Italy by IIASA
(http://www.iiasa.ac.at). An emission abatement cost
function for each macrosector has been estimated within
zero and the maximum removal efficiency of technologies,
with the constraint of identifying monotonically increasing
and convex functions. Furthermore polynomial functions
linking VOC to NOx efficiency, and PM to NOx efficiencies
have been estimated, to update during optimization VOC
and PM removal efficiency using NOx removal efficiency of
macrosector 7 and 8 (see Section 3.1). The cost function
identification is described in Carnevale et al. (2007).

4. RESULTS AND DISCUSSION

The multi-objective optimization problem has been solved
implementing the Weighted Sum Strategy (Ehrgott, 2000)
using MATLAB R© Optimization Toolbox (MathWorks,
2006b). Each single objective optimization problem de-
rived by this approach has been solved by the Sequential
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Quadratic Programming (SQP) method (Han, 1963). Fig-
ure 5 shows the result of the optimization methodology
for the considered case study. The set of non-dominated
solutions represents efficient reduction policies that can be
implemented by the Decision Maker.
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Fig. 5. The Pareto boundary.

In Figure 6 the Pareto boundary is rescaled with respect
to the maximum feasible variation.
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Fig. 6. The set of PM reduction non-dominated solutions
rescaled with respect to the maximum feasible varia-
tion.

The extreme scenarios are highlighted:

• no technologies application (point A in Figures 5 and
6);

• PM index most reducing scenario (point C in Figures
5 and 6)

• MFR (Most Feasible Reduction) scenario implement-
ing maximum emission reductions (point MFR in
Figure 5)

The basecase emission scenario (point A) implies no costs
and produces a maximum exposure PM index over the
domain. Adopting the PM10 index most reducing tech-
nologies (point C), maximum emission reduction cost is
associated to a minimum exposure PM index over the
domain. The MFR scenario achieved by implementing
maximum emission reductions is a dominated solution of
the decision problem. The most interesting portion of the
Pareto curve is the part characterized by strong slope,
where an improvement in one objective does not imply
a strong worsening of the other. For instance, the solution
that corresponds to about 60% of the maximum air quality
improvement (point B in Figures 5 and 6) can be attained
with only about 10% of the maximum possible cost.

The two-objective problem solution suggests the values of
decision variables needed to attain a particular PM expo-
sure reduction. In Figure 7 and 8 i.e. this information is
depicted for the case of NOx and PM emission reductions.
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Fig. 7. NOx emission reduction (ton), for each macrosec-
tor, to generate PM optimal solutions.
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In the case of NOx (Figure 7) power plants (macrosector
1) and road transport (macrosector 7) have both to be
reduced strongly to achieve the Air Quality Objective
reduction. For PM emission (Figure 8) the main reductions
have to be implemented in residential combustion (macro-
sector 2) if low Air Quality Objective are requested, in road
transport (macrosector 7) for high Air Quality Objective
reductions.

5. CONCLUSIONS

A multi-objective optimization approach to control PM10
concentration at the mesoscale has been formalized; it
allows to consider trade-offs between two conflictual ob-
jectives, i.e. the air qualiy effectiveness and the costs of
precursor emission reductions. The approach has been
applied over a Northern Italy domain, a region often af-
fected by high PM10 concentrations. The first objective is
estimated processing neuro-fuzzy source-receptor models,
tuned by GAMES long-term simulations performed in the
frame of CityDelta II-CAFE EU Project. The second ob-
jective is computed by means of cost functions, estimated
starting from IIASA reduction technology database. The
multi-objective problem has been solved drawing the non-
dominated curve. The analysis of the Pareto boundary
allows to assess the priorities that an air quality manager
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should first take into consideration, to reduce PM10 expo-
sure in an efficient way.
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A. Haurie, J. J. E. Kübler, A. Clappier, and H. Van Den
Bergh. A Metamodeling approach for integrated assess-
ment of air quality policies. Environmental Modeling
and Assessment, 9:1–12, 2004.

L. L. Lim, S. J. Hughes, and E. E. Hellawell. Integrated de-
cision support system for urban air quality assessment.
Environmental Modelling & Software, 20:947–954, 2005.

G. Lonati, S. Ozgen, and M. Giugliano. Primary and
secondary carbonaceous species in PM2.5 samples Milan
(Italy). Atmospheric Environment, 41:4599–4610, 2007.

D. H. Loughlin. Genetic algorithm-based optimization in
the development of tropospheric ozone control strategies.
PhD thesis, Graduate Faculty of North Carolina State
University, 1998.

MathWorks. Neuro Fuzzy Toolbox for Use with Matlab.
Technical report, The MathWorks, 2006a.

MathWorks. Optimization Toolbox for Use with Matlab.
Technical report, The MathWorks, 2006b.

J.P. Putaud, F. Raes, R. Van Dingenen, E. Brugge-
mann, M.C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig,
C. Huglin, P. Laj, G. Lorbeer, W. Maenhaut, N. Mi-
halopoulos, K. Muller, X. Querol, S. Rodriguez,
J. Schneider, G. Spindler, H. ten Brink, K. Torset,
and A. Wiedensohler. A european aerosol phenomenol-
ogy 2: chemical characteristics of particulate matter at
kerbside, urban, rural and background sites in europe.
Atmospheric Environment, 38:2579–2595, 2004.

S. Reis, S. Nitter, and R. Friedrich. Innovative approaches
in integrated assessment modelling of European air pol-
lution control strategies - Implications of dealing with
multi-pollutant multi-effect problems. Environmental
Modelling & Software, 20:1524–1531, 2005.
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