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Abstract: In this paper, direct adaptive neural network (NN) control is developed for a class
of multi-input and multi-output (MIMO) nonlinear systems in discrete-time. To solve the
difficulty of nonaffine appearance of control, implicit function theorem is exploited to assert
the existence of an ideal desired feedback control (IDFC). Then, high-order-neural-network
(HONN) is employed to approximate the IDFC. Under the assumption that the inverse control
gain matrix has an either positive definite or negative definite symmetric part, the obstacle in NN
weights tuning for the MIMO systems is transformed to as similar as unknown control direction
problem for SISO system. Then, the difficulty in NN weights tuning is overcame by exploiting
the discrete Nussbaum gain, which is combined with deadzone method to treat with external
disturbance with unknown upper bound. All signals in the closed-loop system are guaranteed
to be semi-globally-uniformly-ultimately-bounded (SGUUB). The effectiveness of the proposed

control is demonstrated in the simulation.

1. INTRODUCTION

Adaptive neural network (NN) control has drawn ever
increasing research in the past two decades due to its
universal approximation capability of nonlinear functions.
In early works, backpropagation (BP) algorithm was used
as major NN learning method and the resultant control
requires sufficient off-line training to guarantee that the
stability and convergence of the closed-loop system. With
the progress of NN control, several excellent adaptive
NN control approaches have been proposed for discrete-
time nonlinear systems based on Lyapunov’s method and
they guarantee the stability of closed-loop systems without
the requirement of off-line training (Ge et al. [2001],
Jagannathan [2006]).

To overcome the difficulty caused by nonaffine appearance
of input in nonaffine nonlinear systems, control design
using implicit function theory was first introduced in
(Goh [1994], Goh and Lee [1994]) to identify an “inverse”
control. In (Goh [1994]), the control design was based on
NN trained model, while in (Goh and Lee [1994]), adaptive
NN control was proposed. The issues in the application
of NN “inverse control” was discussed in (Cabrera and
Narendra [1999]). The implicit function based adaptive NN
control has been further developed with high order neural
network (HONN) for nonaffine pure-feedback system in
(Ge et al. [2007a]).
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The aforementioned results are restricted in single-input
and single-output (SISO) nonlinear systems. For MIMO
nonlinear systems, the control problem becomes very dif-
ficult to deal with when there exist uncertain parameters
and unknown nonlinear functions in the input coupling
matrix. As indicated in (Yao and Tomizuka [2001]), some-
times even the presentation of MIMO systems in a mean-
ingful manner is a difficult task. Due to these difficulties,
there are relatively fewer results available for the broader
class of MIMO nonlinear systems, in comparison with the
vast amount of results on SISO nonlinear systems.

In (Jagannathan and Lewis [1996]), the NN control is stud-
ied for a class of discrete-time MIMO nonlinear systems
with relative degree one and without any interconnec-
tions between subsystems. For non-affine MIMO nonlinear
systems, NN “inverse control” approach based on off-line
training has been proposed in (Adetona et al. [2000]). In
(Ge et al. [2004b]), NN control for MIMO system with n
triangular subsystems was investigated with backstepping
design. However, as mentioned in (Ge et al. [2004a]), how
to tune the NN weights for general MIMO systems is still
an open problem, especially when there exists unknown
strong interconnections between subsystems. To deal with
the tuning problem, it is proposed in (Ge et al. [2004a]) to
seek an orthogonal matrix to tune the NN weight matrix
for adaptive NN control of a general class of unknown
discrete-time NARMAX MIMO systems in affine form.
However, the existence of the orthogonal matrix required
for tuning is not theoretically guaranteed.

In this paper, we investigate adaptive NN control of a class
of uncertain discrete-time MIMO NARMAX non-affine
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systems. Assuming the inverse control gain matrix has
an either positive definite or negative definite symmetric
part, the adaptive tuning of NN weights in control of
MIMO nonlinear system can be simplified to as similar
as that for SISO system with unknown control direction,
which is defined as the signs of “control variable” gains in
affine systems or signs of partial derivatives over “control
variables” in non-affine systems. Based on this observation,
we only restrict on the inverse control gain matrix of the
system instead of assuming the existence of an orthogonal
matrix (Ge et al. [2004a]) for tuning.

Throughout this paper, the following notations are used.

e || - || denotes the Euclidean norm of vectors and
induced norm of matrices.

( )T represents the transpose of a vector or a matrix.
( )1 denotes the inverse of a vector or a matrix.
()~T denotes the transpose of the inverse of a vector
or a matrix.

0pp) stands for p-dimension zero vector.

(") and () denote the estimate of parameters and
estimation error, respectively.

2. SYSTEM DESCRIPTION AND PRELIMINARIES
2.1 System Dynamics

Consider p-input and p-output nonlinear discrete-time
systems described in the NARMAX model as follows

y(k+7)=F (Y (k), U1 (k),u(k), Dy (k),d(k))+d(k+7—1) (1)
where 7 is the system delay, F(-) € RP is unknown
smooth vector valued system function, u(k) = [u1(k),

Cup(R)]T € RP and y(k) = [y (), ,yp(W)]T € RP
are the system inputs and outputs, respectively, d(k) =
[di(k), -+ ,d,(k)]T € RP denotes the external disturbance
which is bounded by an unknown constant d, > 0, i.e.,
ld(E)|| < dp, and the vectors Y (k), Ug—1(k), Di—1(k), and
d(k) are defined as

Y(k) = [y1(k), - y1(k —na +1),92(k), -,
Y2k —n2 + 1), yp(k), - yp(k —np + 1)]T
Uk*l(k) = [U1(k - 1)7 U 7u1(k - m1)7u2(k - 1)a Ty
uQ(k - mQ)a o 7up(k - 1)7 o ?up(k - mp)]T
Dy_q1(k)=[di(k—=1), ,di(k—t1+1),do(k—1), -,
do(k —ta+ 1), ,dp(k = 1), -+ ,dp(k —t, + 1)]"
dk)=[d(k+7—2), - ,dK)]", if 7>2
with n; denotes the length of the i-th outputs, m; the
length of the i-th inputs, and ¢; the length of the i-th
disturbance, i = 1,--- , p.
Assumption 1. The vector valued system function
F(Y(k),Uk—1(k), Dx_1(k),d(k)) satisfies Lipschitz condi-
tion w.r.t. Dg_1(k) and d(k), i.e., there exists Lipschitz
constants L, and Lo such that

1E(Y (K), Ug—1(K), u(k), Dy—1(k), d(k))

—F(Y/(k), Up—1(k), u(k), 0,0)]|

< L[| Dr—1(F)|| + La||d(F)]|
Assumption 2. The control gain matrix G (k) = gf((,;; Yk >
0, is a full rank matrix, and its inverse, G~!(k), has an
either positive definite or negative definite symmetric part,

Grs(k) = w In addition, the eigenvalues of

Grs(k) are assumed to be bounded.

Remark 1. Tt should be pointed that matrices G(k) and
G~1(k) are general real matrices and they are not required
to be symmetric.

Remark 2. Assumption 2 is quite looser than Assumption
4 in (Ge et al. [2004a]), which requires existence of an
orthogonal matrix Q(k) multiplying G~*(k) to guarantee
the eigenvalues of the product matrix are all positive.

2.2 Discrete Nussbaum Gain

The discrete-time Nussbaum gain N(-) was firstly pro-
posed in (Lee and Narendra [1986]). It is defined on a
discrete sequence z(k) with Az(k) = z(k + 1) — z(k).

Lemma 1. Consider the discrete-time Nussbaum gain
N(z(k)) defined in (Lee and Narendra [1986]). For the

summation

q
I
>

S (x(k)) =

where 0 < Azx(o) < §p with Az(0) = 0, z(k) =
Zg;é Ax(o) and g(k) is a bounded coefficient satisfying
g1 < |g(k)] < go with positive constants g; and go, we
have the following conclusions:

9(o)N(z(0))Az(0) (2)

Il
<

(i) If z(k) increases without bound, then

1 , C o
L oy SR =+
. 1, B
ne S = oo (3)

(ii) If z(k) < &1, then |Sy(z(k))| < 02, where 01 and J,
are some positive constants.

Proof. See (Ge et al. [2007Db]). m

2.8 HONN Approzimation

The structure of HONN is expressed as the following (Ge
et al. [2001]):

d(W,z) = WTS(2) W and S(z) € R
S(z) = [s1(2), s2(2), -, si(2)]", (4)
51(2) = H [S(Zj)]dj(i)a i=1,2, 7l (5)

Jjel;
where z € 0, C R™ is the input to HONN, [ is a positive
integer and denotes the NN node number, {I3, I5,...,I;}
is a collection of [ unordered subsets of {1,2,...,m}, e.g.,
I = {1, 3, m}, I, = {2, 4, m}, d;(i) are non-negative
integers (d,;(i)’s are larger when the order of the function
to be approximated is higher), W is an adjustable synaptic
weight vector, and s(z;) is a monotone increasing and
differentiable sigmoidal function. In this paper, it is chosen

. . . Zj _e %3
as a hyperbolic tangent function, i.e., s(z;) = %
For a smooth function ¢(z) over a compact set 2, C R™,
given a constant real number p* > 0, if [ is sufficiently
large, according to (Girosi and Poggio [1989]), there exist
a set of ideal bounded weights W* such that

6509



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

max [(z) — (W, 2)| < p(2) |p(2)l <p™  (6)
From the universal approximation results for neural net-
works (Gupta and Rao [1994]), it is known that the con-
stant ©* can be made small enough by increasing the NN
node number.

3. CONTROL DESIGN AND STABILITY ANALYSIS

The control objective is to design a control input wu(k),
such that the system output tracks the bounded desired
trajectory ya(k) = [ya1(k), -, yap(k)]T € RP, while all
the closed loop signals remain bounded. Define error vector
e(k) = y(k) — ya(k) = [e1 (), ea(k), ..., ep(k)|T. From (1),

the error dynamics is

e(k+71)=F(Y(k),Uk_1(k),u(k), Dr_1(k),d(k))
—ya(k+7)+dk+7-1)
= F(Y(k)7 kal(k)v u(k)v 0> 0) - yd(k + T)
+AF(k)+d(k+1—1) (7
where
AF(K) = F(Y (K), U1 (4), (k). Dea (1), ()
— F(Y(k),Ug-1(k),u(k),0,0)
According to the boundedness of disturbance Dj_1(k)

and d(k), and Assumption 1, AF(k) is also bounded.
From Assumption 2, the control gain matrix G(k) is non-
singular, Yk > 0. According to implicit function theo-
rem, there exists a unique and smooth IDFC wu*(k) =
a®(Y(k),Ug—1(k),ya(k + 7)), where a(-) is an implicit
function such that

F(Y (k), g1 (K), u*(k),0,0) — ya(k +7) =0 (8)
Assumption 3. Given a bounded output y(k) € Q, C RP,
Vk > 0, where €2, can be any bounded compact set, there
is a corresponding bounded compact set §2,,~ such that the
desired control u*(k) is within the compact set Q.
Remark 3. The desired trajectory is assumed to be achiev-
able, because it is meaningless to drive the system to track
an unrealistic trajectory.

Consider employing HONN in Section 2.3 to approximate
the IDFC u*(k) as follows

u* (k) = WTS(2(k)) + (k) 9)
where z(k) = [YT(k),UL (k),yY(k + )T € Q. C RY
with ¢ = >°%_ | (n; + m; + 1) and p(k) is the bounded NN
approximation error vector satisfying ||p(k)|| < p*, which
can be reduced by increasing the number of NN nodes.
Then the adaptive NN control u(k) is constructed as

u(k) = W (k)S(2(k)) (10)

where W (k) € R and S(2(k)) € R'. The NN weight
adaptation law is given as

W (k)=W (k=r)—yN (2(k))S (2(k—7))a(k)e"(k)/ D(k) (11)
Az(k)=a(k)yeT(k)e(k)/D(k), 2(0)=0 (12)
D(k)=(1+N (z(k))[*) AHIS (E(k=))[IP+Hle(®)?)  (13)
an={} RN g

where v > 0 and A > 0 can be arbitrary positive constants,
and N () is discrete Nussbaum gain defined in Secion 2.2.

Remark 4. To deal with the disturbance and the neural
network approximation error, dead zone (14) is introduced
into the neural network weight adaptation law (11) to
realize robust adaptive control. Although the disturbance
is assumed to be bounded, we do not need to know the
exact boundary of disturbance.

Theorem 1. Consider the closed-loop system consisting of
system (1), controller (10), and neural network weights
adaptation law (11)-(14). All signals in the closed-loop
system are SGUUB, the discrete Nussbaum gain N (z(k))
will converge to a constant ultimately, and the tracking
error satisfies limy . [le(k)|| < CA, with C' = limy . (1+

[N (z(K))])-

Proof. The proof is proceeded in two parts: Firstly, we
assume inputs and outputs are within €2, such that NN
approximation holds; Secondly, given any initial condition,
we show that there exists a determined compact set such
that if initially the NN approximation range covers this set
then the inputs and outputs are guaranteed to be within
), without priori assumption in the first step.

Using mean value theorem, (7) can be written as

e(k+71)=FY(k),Uk—1(k),u"(k),0,0) — ya(k + 7)
+AF (k) 4+ Ge(k)[u(k) —u* (k)] +d(k+7—1) (15)

where Ge¢(k) = gf&% ' ue(k) is a point of line

L(u(k), u* (k) = {€ | € = Ou(k)+(1—0)u(k), 0 < 0 < 1}.
Considering (8)-(10) and (15), we obtain

e(k + 1) = Ge(k)WT (k)S(2(k)) — u(k)] + AF (k)
+d(k+7—-1)

where W (k) = W (k) — W* is the NN weights estimation
error.

(16)

According to Assumption 2, there exist two positive con-
stants g and g such that gI < %(Ggl(kz)—i—GgT(k)) <glor
—gI < %(Ggl(k‘)—i—GgT(k:)) < —gI, where I is the identity
matrix. It implies there exists a sequence g(k) satisfying
g < |g(k)| < g such that

Gt (k—)+G (k1)
£ 5 £ e(k) (17)

e'(k)G¢ ! (k—7)e(k)=€'(k)
= g(k)e” (k)e(k)

From (16), we have

WT(k —7)S(2(k — 7)) = G (k — 7)e(k) + d* (k — 1)(18)

where d*(k—1) = =G '(k— 7)[AF(k — ) +d(k —1)] +
wu(k). According to the boundedness of d(k), AF(k — 1)
and u(k), and Assumption 2, d*(k — 1) is bounded, i.e.,
lld*(k —1)|| < dj, where d an unknown constant.

Choose a positive definite V (k) = 22:1 tr{WT(k — 7+

JW(k — 7+ 7)}. Considering (18) and (17), we have
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tr{2a(k)yN (z(k))

= 2a(k)yN (x(k)) (k)

AV(E)=V(k)—V(k—1)
= te{WT ()W (k) = W (k — 1)W(k —7)}
= te{[W(k) = W(k —7)]"[W(k) — W(k—7)]
+2WT (k=)W (k) = W(k - 7))} .
— (k)N (3 (k) ST (z(k - T))Sj(y((lz)— 7))e’ (k)e(k)

VT (k—71)S(z(k —7))eT
—tn{2alk) ¥ a(l) ==,
= a(k)’yQN2(x(k)) S (Z(k — T))SéZ((kl;)_ T))e (k>e(k)

el (k)e(k) , N(x(k))e" (k)d*(k—1)

—2va(k) |g(k)N (z(k)) D) Dk
From (14), we know a(k)||d* (k—1)|| < a(k) itz di-

which implies that

a(k)%eT(k)e(k) (20)

7))S(Z(k—7)) < D(k) and

|a(k)N (x(k))e" (k)d* (k — 1)| <
Considering N?(x(k))ST (z(k—
noting (20), we have
a(k)ye'(k)e(k) va(k)e'(k)e(k)
~—Dw (k)N(I(k))W
with ¢; =7 + 2d; /). Considering (12), we obtain

AV(k’)SCl

AV (k) < et Ax(k) — 2g(k)N(z(k))Az(k) (21)

Taking summation and dividing by z(k) on both hand
sides of (21) and noting Az (k) < 1, we have

9 k
o IO (N Aelo) +

where ¢s is some constant. Then, according to conclusion
(i) in Lemma 1, it will yields a contradiction if z(k) is
unbounded because a positive function cannot oscillate
between infinity and minus infinity. Consequently, we con-
clude the boundedness z(k) and according to conclusion
(ii) in Lemma 1 we have the boundedness of V (k) and

furthermore the boundedness of || (k)|| and |N (z(k))|.

The boundedness of z(k) implies that Az(k) — 0 as
k — oo, which further implies that either a(k) = 0 or

% — 0 as k — oo. If the latter case is true,

noting that the terms ST (k)S(k) and |N(z(k))| in D(k)
are bounded, we can conclude that |le(k)|| — 0 according
to Key Technical Lemma in (Goodwin et al. [1980]). If

0< (o) +

the former case is true, we have % <XNas k —
oo. In summary, we always have % < A If we

denote C' = limg_,o0(1 + |[N(2(k))|), the tracking error
e(k) satisfies limy_,o [le(k)|| < CA, which implies it will
S CA}

converge to the compact set Q¢ := ‘ )| le(

Then the boundedness of outputs y(k) is obvious. The
boundedness of W (k) leads to the boundedness of u(k).

For discrete-time system, the boundedness of y(k) and
u(k) implies there is a largest bounding set depending
on initial condition such that it includes y(k) and wu(k),
Vk > 0. If initially the NN approximate range 2, is
constructed to cover this set, then NN approximation will
hold V& > 0, such that the priori assumption the NN ap-
proximation range is large enough can be replaced by that
NN approximation range covers a specified set depending
on initial condition. According to the definition of SGUUB
(given any initial condition, there is a corresponding con-
trol that can guarantee the closed-loop stability), the proof
is completed. m

4. SIMULATION
The following NARMAX model is used for simulation.

0. GCos(yQ(kz 1)) 4y (k— 1)+1 2us (k)+y2 (k)ua(k—1)
( >+yl< _1)"‘3“ (k—1) (22)
ya(k + 2)= icos(uz( )) £ 0.5us(k) + da(k
41tk = 1) + L6sin(y (k))u (k — 1
' T+ud(k—1)+2y3(k—1)
where dy(k) = 0.01cos(0.1k) and d2(k) = 0.01sin(0.1%)
are disturbance.

NN

The control objective is to make the outputs yi (k) and
ya2(k) track the desired reference trajectories yq1(k) =
0.5 + 0.25 cos(0.257Tk) + 0.25sin(0.57Tk) and ygo(k) =
0.5+ 0.255in(0.257Tk) + 0.25 sin(0.57T'k), with T = 0.01,
respectively. The initial system states are Y (i) = [0, 0]7,
i = —1,0, U(0) = [0, 0]7 and the initial NN weights
estimates W (0) are zero matrix and the initial regression
function S(0) is randomly chosen.

Firstly, we choose “+” to be “+” in (22), such that
inverse control gain matrix G~!(k) has a positive definite
symmetric part. The simulation results are shown in
Figures 1-3. The tuning factor and the threshold value
are chosen as v = 0.95 and A = 0.001.

Secondly, let us choose “+” to be “—” in (22) such
that G~1(k) has a negative symmetric part. Using the
same control law with same parameters, the simulation
results are shown in Figures 4-6. The simulation results
demonstrate the proposed NN control works properly in
both cases.

It is noted in Figure 1 that N(x(k)) always keeps positive
while in Figure 4 it turns to negative and remains so. This
is because g(k)N(x(k)) must be positive to make AV (k)
negative in (21).

5. CONCLUSION

Under the assumption on the inverse control gain ma-
trix, direct adaptive neural network control has then been
proposed for a class of MIMO discrete-time nonlinear
systems with non-affine appearance of controls. Implicit
function theorem has been used to assert the existence of
IDFC and discrete Nussbaum gain was introduced in the
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NN adaptation law. The proposed NN control guarantees

SGUUB stability of the closed-loop system.
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