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Abstract: This paper deals with adaptive tracking for discrete-time MIMO nonlinear systems
in presence of bounded disturbances, based on a neural observer. A high order neural network
structure is used to approximate a control law designed by the backstepping technique, applied
to a block strict feedback form (BSFF); besides the observer is based on a recurrent high-order
neural network (RHONN), which estimates the state vectors of the unknown plant dynamics.
The learning algorithm for both neural networks is based on an Extended Kalman Filter (EKF).
The applicability of the proposed approach is tested, via simulations, by its application to
synchronous generators control.

1. INTRODUCTION

Nonlinear trajectory tracking is an important research
subject (Ge et al. [2004], Chen et al. [1995], Krstic et al.
[1995], Loukianov et al. [2002], Poznyak et al. [2001] and
references therein). In recent adaptive and robust control
literature, numerous approaches have been proposed for
the design of nonlinear control systems. Among them,
adaptive backstepping constitutes a major design method-
ology (Krstic et al. [1995]). The idea behind backstepping
design is that some appropriate functions of state variables
are selected recursively as virtual control inputs for lower
dimension subsystems of the overall system. Each back-
stepping stage results in a new virtual control designs from
the preceding design stages. When the procedure ends, a
feedback design for the true control input results, which
achieves the original design objective.

In most nonlinear control designs, it is usually assumed
that all the system state is measurable. In practice, how-
ever, only parts of this state is measured directly. For this
reason, nonlinear state estimation remains an important
topic for study in nonlinear system theory (Poznyak et al.
[2001]). Recently recurrent neural-network observers have
been proposed, without requiring a precise plant model.
This technique is therefore attractive and has been success-
fully applied to state estimation (Poznyak et al. [2001]).
These works were developed mostly for continuous-time
systems. Nonlinear discrete-time neural observers, on the
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other hand, have been seldom discussed (Alanis et al.
[2006]).

The best-known training approach for recurrent neural
networks (RNN) is the back propagation through time
learning (Werbos [1990]). However, it is merely a first-
order gradient descent method and hence its learning
speed is very slow. Recently, some extended Kalman
filter (EKF) based algorithms have been introduced to
neural networks training (Singhal et al. [1989]). With an
EKF-based algorithm, the learning convergence can be
improved. Over the past decade, the EKF-based training of
neural networks, both feedforward and recurrent ones, has
proven to be reliable and practical for many applications
(Alanis et al. [2007], Feldkamp et al. [2001], Singhal et al.
[1989]).

In this paper, we propose a stabilizing control law based on
the well-known backstepping methodology, which allows
to track a rotor angle reference signal for a synchronous
generator. First a neural observer is proposed, then using
the neural model the block strict feedback decomposition
is applied in order to define a number of sub-problems
of lower order. Once this decomposition is achieved, the
backstepping technique is used to design a suitable con-
troller (Krstic et al. [1995]). Afterwards, this resulting
controller is approximated by a High Order Neural Net-
work (HONN) (Ge et al. [2004]). The implementation is
simple and the training is performed on-line by means of an
extended Kalman filter (EKF) (Sanchez et al. [2006]). The
proposed control applicability is illustrated by trajectory
tracking for a discrete-time synchronous generator model.
The structure of this scheme is based on the separation
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principle for discrete-time nonlinear systems (Lin et al.
[1994]). The main contributions of this paper are: first,
the implementation of the proposed scheme, which does
not require the knowledge of the generator parameters;
second, simulations shows that the proposed scheme pre-
serves stability and good performance when a short circuit
fault is incepted and cleared out, and third, the stability
analysis is based on the separation principle for discrete-
time nonlinear systems.

2. MATHEMATICAL PRELIMINARIES

Let k denote the sampling step, k ∈ 0 ∪ Z+, |·| be the
absolute value, and k·k be the Euclidian norm for vectors
and an adequate norm for matrices.

Following (Ge et al. [2004]), consider a MIMO nonlinear
system,

x (k + 1) =F (x (k) , u (k)) (1)

y (k) = h (x (k)) (2)
where x ∈ <n, u ∈ <m, and F ∈ <n × <m → <n is a
nonlinear map.

For system (1), after selecting the input u as a feedback
function of the state:

u (k) = ξ (x (k)) (3)
one can obtain

x (k + 1) = F (x (k) , ξ (x (k))) (4)
which yields an unforced system

x (k + 1) = eF (x (k)) (5)

Let us define, the following discrete-time RHONN:bxi(k + 1) = w>i zi(bx(k), u(k)), i = 1, · · · , n (6)
where bxi (i = 1, 2, · · · , n) is the state of the i-th neu-
ron, Li is the respective number of higher-order connec-
tions, {I1, I2, · · · , ILi} is a collection of non-ordered sub-
sets of {1, 2, · · · , n}, n is the state dimension, wi (i =
1, 2, · · · , n) is the respective on-line adapted weight vector,
and zi(bx(k), u(k)) is given by

zi(x(k), u(k)) =

⎡⎢⎣ zi1
...

ziLi

⎤⎥⎦ =
⎡⎢⎢⎣
Πj∈I1ψ

dij(1)
ij
...

Πj∈ILiψ
dij(Li)
ij

⎤⎥⎥⎦ (7)

with dji(k) being a nonnegative integers, and

ψi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψi1
...

ψi1
ψin+1
...

ψin+m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

S(bx1)
...

S(bxn)
u1
...
um

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8)

in which u = [u1, u2, . . . , um]
> is the input vector to the

neural network, and S(·) is defined by

S(x) =
1

1 + exp(−bbx) (9)

where b > 0 is a constant.

Now, consider the problem of approximating the general
discrete-time nonlinear system (1), which is supposed to be

observable, by the following discrete-time RHONN parallel
representation (Rovithakis et al. [2001]):

xi (k + 1) = w∗>i zi (x(k), u(k)) + �zi (10)
where xi is the i-th plant state, �zi is a bounded ap-
proximation error, which can be reduced by increasing the
number of the adjustable weights (Rovithakis et al. [2001]).

Assume that there exists ideal weights vector w∗i such that
k�zik can be minimized on a compact set Ωzi ⊂ <Li . The
ideal weight vector w∗i is an artificial quantity required for
analysis (Rovithakis et al. [2001]). In general, it is assumed
that this vector exists and is an unknown constant. Define
its estimate as wi and the estimation error asewi (k) = wi (k)− w∗i (11)
The estimate wi is used for stability analysis, which will
be discussed later. Since w∗i is constant, one hasewi (k + 1)− ewi (k) = wi (k + 1)− wi (k)

3. THE EKF TRAINING ALGORITHM

The Kalman filter (KF) estimates the state of a linear sys-
tem with additive state and output white noises (Grover
et al. [1992], Song et al. [1995]). For KF-based neural
network training, the network weights become the states
to be estimated. In this case, the error between the neural
network output and the measured plant output can be con-
sidered as additive white noise. Since the neural network
mapping is nonlinear, an EKF is applied (see Sanchez et al.
[2006] and references therein). The training goal is to find
the optimal weight values, which minimize the prediction
errors.

In this paper, we use a decoupled EKF-based training
algorithm described by

wi (k + 1) =wi (k) + ηiKi (k) e (k) , i = 1, · · · , n
Ki (k) =Pi (k)Hi (k)Mi (k) (12)

Pi (k + 1) =Pi (k)−Ki (k)H
>
i (k)Pi (k) +Qi

with

Mi (k) =
£
Ri +H>

i (k)Pi (k)Hi (k)
¤−1

(13)

e (k) = y (k)− by (k) (14)
where e (k) ∈ <p is the observation error and Pi (k) ∈
<Li×Li is the weight estimation error covariance matrix
at step k, wi ∈ <Li is the weight (state) vector, Li is
the respective number of neural network weights, y ∈ <p
is the plant output, by ∈ <p is the NN output, n is the
number of states, Ki ∈ <Li×p is the Kalman gain matrix,
Qi ∈ <Li×Li is the NN weight estimation noise covariance
matrix, Ri ∈ <p×p is the error noise covariance, and Hi

∈ <Li×p is a matrix, in which each entry (Hij ) is the
derivative of the i-th neural output with respect to ij-th
neural network weight, (w

ij ), given as follows:

H
ij (k) =

∙
∂by (k)
∂wij (k)

¸>
(15)

where j = 1, ..., Li and i = 1, ..., n. Usually, Pi and Qi

are initialized as diagonal matrices, with entries Pi (0) and
Qi (0), respectively. It is important to remark that Hi (k) ,
Ki (k) and Pi (k) for the EKF are bounded (for a detailed
explanation, see Song et al. [1995]).
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4. NEURAL OBSERVER DESIGN

This observer is first proposed in (Alanis et al. [2006]). A
brief description is included for the sake of completeness.

In this section, we consider the estimation of the states of
an observable discrete-time nonlinear system given by

x (k + 1) =F (x (k) , u (k)) + d (k)

y (k) =Cx (k) (16)

where x ∈ <n is the state vector of the system, u (k) ∈ <m
is the input vector, y (k) ∈ <p is the output vector,
C ∈ <p×n is a known output matrix, d (k) ∈ <n is a
disturbance vector, and F (·) is a smooth vector field with
entries Fi (·). Hence, (16) can be rewritten as:

x (k) = [ x1 (k) . . . xi (k) . . . xn (k) ]
>

d (k) = [ d1 (k) . . . di (k) . . . dn (k) ]
>

xi (k + 1) = Fi (x (k) , u (k)) + di (k) , i = 1, · · · , n
y (k) =Cx (k) (17)

For system (17) , a recurrent neural Luenberger observer
(RHONO) is proposed, with the following structure:

bx (k) = [ bx1 (k) . . . bxi (k) . . . bxn (k) ]>bxi(k + 1) =w>i zi(bx(k), u(k)) + Lie (k)by (k) =Cbx (k) , i = 1, · · · , n (18)

with Li ∈ <p, wi and zi as in (6). The weight vectors are
updated on-line with a decoupled EKF (12) − (15); the
output error is defined by

e (k) = y (k)− by (k) (19)
and the state estimation error isex (k) = x (k)− bx (k) (20)

Then the dynamic of (20) can be expressed as

exi (k + 1) = ewi (k) zi (x(k), u(k)) (21)

+�zi − LiCex (k)
On the other hand the dynamic of (11) isewi (k + 1) = ewi (k)− ηiKi (k) e (k) (22)

By summarizing (12)-(20), we obtain the first main result
as follows.

Theorem 1 : For system (17), the nonlinear observer (18)
trained with the EKF-based algorithm (12), ensures that
the output error (14) and the estimation error (20) are
semi-globally uniformly ultimately bounded.

Proof. For the complete proof, we refer the reader to
(Alanis et al. [2006])

5. CONTROLLER DESIGN

The model of many practical nonlinear systems can be
expressed in (or transformed into) a special state-space
form named, block strict feedback form (BSFF) (Krstic et
al. [1995]), as follows:

xi (k + 1) = f i
¡
xi (k)

¢
+ gi

¡
xi (k)

¢
xi+1 (k) + di (k)

xr (k + 1) = fr (X (k)) + gr (X (k))u (k) + dr (k)

y (k) = x1 (k) (23)

where X (k) =
£
x1> (k) , · · · , xr> (k)

¤>
are the state vari-

ables, xi (k) =
£
x1>, x2>, · · · , xi>

¤>
, xi ∈ <ni (i =

1, 2, · · · , r − 1), r ≥ 2, r is the number of blocks,
u (k) ∈ <m are the system inputs, y (k) ∈ <m is the
system output, di ∈ <ni is the bounded unknown dis-
turbance vector, f i (•) and gi (•) are unknown smooth
nonlinear functions. Moreover there exists a constant di
such that kdi (k)k ≤ di , for k = 1, 2, · · · . If we consider
the original system (23) as a one-step ahead predictor,
then we can transform it into an equivalent maximum
r-step ahead one, which can predict the future states
x1 (k + r) , x2 (k + r − 1) , · · · , xr (k + 1) , then the causal-
ity contradiction is avoided when the controller is con-
structed based on the maximum r-step ahead prediction
by backstepping (Chen et al. [1995], Ge et al. [2004]):

x1 (k + r) =F 1
¡
x̄1 (k)

¢
+G1

¡
x̄1 (k)

¢
x2 (k + r − 1) + d1 (k + r)

...

xr−1 (k + 2) =F r−1 ¡x̄r−1 (k)¢
+Gr−1 ¡x̄r−1 (k)¢xr (k + 1)
+dr−1 (k + 2)

xr (k + 1) = fr (X (k)) + gr (X (k))u (k) + dr (k)

y (k) = x1 (k) (24)

where F i (•) andGi (•) are unknown functions of f i
¡
xi (k)

¢
and gi

¡
xi (k)

¢
, respectively. For convenience of analysis,

let us define i = 1, · · · , r − 1

F i (k), F i (xi (k))

Gi (k),Gi (xi (k))

fr (k), fr (X (k))

Gr (k), gr (X (k))

Then, system (24) can be written as

x1 (k + r) = F 1 (k) +G1 (k)x2 (k + r − 1)
+d1 (k + r)

...

xr−1 (k + 2) = F r−1 (k) +Gr−1 (k)xr (k + 1)

+dr−1 (k + 2)

xr (k + 1) = fr (k) + gr (k)u (k) + dr (k)

y (k) = x1 (k) (25)

The objective is to design a control u (k) to force the sys-
tem output y (k) to track a desired trajectory yd (k) . Once
(25) is defined, we apply the well known backstepping tech-
nique (Krstic et al. [1995]). For system (25) , we can define
the desired virtual controls

¡
αj∗ (k) , j = 1, · · · , r − 1

¢
and the ideal practical control (u∗ (k)) as follows:
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α1∗ (k), x2 (k) = ϕ1
¡
x1 (k) , yd (k + r)

¢
α2∗ (k), x3 (k) = ϕ2

¡
x2 (k) , α1∗ (k)

¢
...

αr−1∗ (k), xr (k) = ϕr−1
¡
xr−1 (k) , αr−2∗ (k)

¢
u∗ (k) =ϕr

¡
X (k) , αr−1∗ (k)

¢
y (k) = x1 (k) (26)

where ϕj (j = 1, · · · , r) are nonlinear smooth functions.
It is obvious that the desired virtual controls αi∗ (k) and
the ideal control u∗ (k) will drive the output y (k) to track
the desired signal yd (k) only if the exact system model
is known and there are no unknown disturbances (Ge et
al. [2004]). However in practical applications these two
conditions cannot be satisfied. In the following, neural
networks will be used to approximate the desired virtual
controls, as well as the desired practical controls, when
the conditions established above are not satisfied. As in
(Ge et al. [2004]), we construct the virtual and practical
controls via embedded backstepping without the causality
contradiction (Chen et al. [1995]). Let us approximate the
virtual controls and practical control by the following High
Order Neural Network (HONN) (Alanis et al. [2007]):

αi (k) = wi>Si
¡
zi (k)

¢
, i = 1, · · · , r − 1

u (k) = wr>Sr (zr (k)) (27)

with

z1 (k) =
£
x1 (k) , yd (k + r)

¤>
zi (k) =

£
xi (k) , αi−1 (k)

¤>
, i = 1, · · · , r − 1

zr (k) =
£
X (k) , αr−1 (k)

¤>
where wj ∈ <Lj are the estimates of ideal constant weights
wj∗ (j = 1, · · · , r) and Sj ∈ <Lj×nj Define the estimation
error as: ewj (k) = wj∗ − wj (k) (28)
Then the corresponding weights updating laws are defined
of the form of (12), with

e (k) =

⎡⎢⎢⎢⎣
yd (k)− y (k)
x2 (k)− α1 (k)

...
xr (k)− αr−1 (k)

⎤⎥⎥⎥⎦ (29)

Considering (23) − (29) , we establish the second main
result in the following theorem.

Theorem 2 : For the system (23), the HONN (27) trained
with the EKF-based algorithm (12) to approximate the
control law (26) , ensures that the tracking error (29)
is semiglobally uniformly ultimately bounded (SGUUB);
moreover, the HONN weights remain bounded.

Proof. Due to space limitations, we refer the reader to
(Alanis et al. [2007])

The third main result of this paper is the following.

Proposition 1. Given a desired output trajectory yd, a
dynamic system with output y, and a neural network with
output by, the following inequality holds:

kyd − yk ≤ kby − yk+ kyd − byk

where yd−y is the system output tracking error, and by−y
is the output estimation error and yd − by is the output
tracking error of the nonlinear observer.

Based on this proposition, it is possible to divide the
tracking objective into two parts:

(1) Minimization of by − y, which can be achieved by the
proposed on-line nonlinear observer algorithm (12) as
established in Theorem 1.

(2) Minimization of yd− by. For this, a tracking algorithm
is developed on the basis of the nonlinear observer
(6). This minimization is obtained by designing the
control law (26), as stated in Theorem 2.

It is possible to establish Proposition 1 due to the separa-
tion principle for discrete-time nonlinear systems (Lin et
al. [1994]) as follows.

Theorem 3. (Separation Principle) (Lin et al. [1994]):
The asymptotic stabilization problem of the system (1)-
(2) is solvable via estimated state feedback, if and only
if, the system (1)-(2) is asymptotically stabilizable and
exponentially detectable.

Corollary 1 (Lin et al. [1994]): There is an exponential
observer for a Lyapunov stable discrete-time nonlinear
system (1)-(2) with u = 0 if, and only if, the linearized
system of the system (1)-(2) is detectable.

6. SYNCHRONOUS GENERATOR CONTROL

In this section, we apply the previous control technique
to a discrete-time synchronous generator model (De Leon-
Morales et al. [2003], Orta et al. [2001]). We consider a
synchronous generator connected through purely reactive
transmission lines to the rest of the network, which is
represented by an infinite bus. The discrete-time model of
the synchronous generator is given by (De Leon-Morales
et al. [2003], Orta et al. [2001]):

x1 (k + 1) = f1
¡
x1 (k)

¢
+ τx2 (k)

x2 (k + 1) = f2
¡
x2 (k)

¢
+ τm2x3 (k)

x3 (k + 1) = f3
¡
x3 (k)

¢
+ τm6u (k) (30)

with
f1
¡
x1 (k)

¢
= x1 (k)

f2
¡
x2 (k)

¢
= x2 (k)

+τ
h
m1 +

³
m2E

0∗

q +m3 cos (ex1)´ sin (ex1)i
f3
¡
x3 (k)

¢
= x3 (k)

+τ
h
m4

³
x3 (k) +E

0∗

q

´
+m5 cos (ex1) +m6E

∗
fd

i
and ex1 = x1 (k) + δ∗, m1 =

Tm
M , m2 =

−V
MX

0
d

, m3 =

V 2

M

³
1
X
0
d

− 1
Xq

´
, m4 = − Xd

T
0
do
X
0
d

, m5 = −
µ
X
0
d−Xd

T
0
do
X
0
d

¶
V,

m6 =
1
T
0
do

, x1 = ∆δ = δ − δ∗, x2 = ∆ω = ω − ω∗,

x3 = ∆E
0

q = E
0

q−E
0∗

q . where δ is the generator rotor angle
referred to the infinite bus (also called power angle), ω is
the rotor angular speed and E

0

q is the stator voltage which
is proportional to flux linkages. M is the per unit inertia
constant, Tm is the constant mechanical power supplied
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by the turbine, and T
0

do is the transient open circuit time
constant. Xd = xd+xL is the augmented reactance, where
xd is the direct axis reactance and xL is the line reactance,
X

0

d is the transient augmented reactance and V is the
infinite bus voltage which is fixed. Pg is the generated
power while Efd is the stator equivalent voltage given by
field voltage vf .

Pg =
1

X
0
d

E
0

qV sin (δ) +
1

2

µ
1

Xq
− 1

X
0
d

¶
V 2 sin (2δ)

Efd =
ωsMf√
2Rf

vf

where vf is the scaled field excitation voltage, x
0

d is the
transient direct axis reactance, xq is the quadrature axis
reactance, Mf is the mutual inductance between stator
coils, Rf is the field resistance and ωs is the synchronous
speed. As in (De Leon-Morales et al. [2003], Orta et al.
[2001]), we only consider the case where the dynamics of
the damper windings are neglected, i. e. D = 0. Through
this work, the analysis and design are done around an

operation point
³
δ∗, ω∗, E

0∗

q

´
.

To this end, we use the proposed RHONO for the discrete-
time synchronous generator model (18), which is described
as:

bx1 (k + 1) =w11S (bx1 (k)) + w12S (bx2 (k))bx2 (k + 1) =w21S (bx1 (k))6 + w22S (bx2 (k))2
+w23S (bx3 (k))bx3 (k + 1) =w31S (bx1 (k))2 + w32S (bx2 (k))
+w33S (bx3 (k))2 + w34S (u (k)) (31)

where bxi estimates xi (i = 1, 2, 3). The training is per-
formed on-line, using a parallel configuration, with an EKF
(12). All the NN states are initialized in a random way as
well as the weights vectors. It is important remark that
the initial conditions of the plant are completely different
from the initial conditions for the NN.

Now we use the HONN to approximate the desired virtual
controls and the ideal practical controls for system (31),
described as follows:

α1 (k) = w1
>
S1
¡
z1 (k)

¢
α2 (k) = w2

>
S2
¡
z2 (k)

¢
u (k) = w3

>
S3
¡
z3 (k)

¢
(32)

with
z1 (k) = [bx1 (k) , yd (k + 3)]>

z2 (k) =
£bx1 (k) , bx2 (k) , α1 (k)¤>

z3 (k) =
£bx1 (k) , bx2 (k) , bx3 (k) , α2 (k)¤>

The controller training is performed on-line, with an
EKF (12). All the NN states are initialized randomly.
The simulation is performing using system (30) with the
following parameters (per unit) Tm = 1, M = 0.033,
ωs = 1, T

0

do = 0.033, Xq = Xd = 0.9, X
0

d = 0.3, V = 1,
E∗fd = 1.1773, δ∗ = 0.870204 and ω∗ = 1. We analyze
the response of the system to a short circuit generated by
the connection of small impedance between the machine
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1.3

1.4

1.5

Iterations

x1
(p

.u
.)

Fig. 1. Time evolution for x1 (k) using the proposed
observer-controller scheme (plant state x1 (k) in solid
line, estimated state bx1 (k) in dash-dot line, desired
xd1 (k) signal in dashed line)

0 50 100 150 200 250 300 350 400 450 500
-3

-2

-1

0

1

2

3

4

5

Iterations

x2
(p

.u
.)

Fig. 2. Time evolution for x2 (k) using the proposed
observer-controller scheme (plant state x2 (k) in solid
line, estimated state bx2 (k) in dash-dot line, desired
xd2 (k) signal in dashed line)

terminals and the ground incepted at time of 300ms; this
impedance is disconnected after 50ms, calling the clearing
time. Then, the system goes back to its pre-disturbance
state. Figures 1-3 present the performance of the whole
control scheme. Fig. 4 displays the neural networks weights
evolution. The equilibrium point is considered fixed. It can
be seen that the state of the observer (dashed line) quickly
converges to the state of the system (solid line) and it can
be seen as well, that the respective state variables converge
to the desired equilibrium point.

7. CONCLUSIONS

This paper has presented the application of HONN to solve
the tracking problem for a class of MIMO nonlinear sys-
tems in discrete-time using the backstepping technique. It
also uses a RHONN to develop a recurrent neural observer.
The training for both neural networks is performed on-
line using an extended Kalman filter. The boundness of
the tracking error, the neural weights, and the observa-
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observer-controller scheme (plant state x3 (k) in solid
line, estimated state bx3 (k) in dash-dot line, desired
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tion error are established on the basis of the Lyapunov
approach. Simulation results illustrate the applicability of
the proposed control scheme.
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