
Selection of Parameter Subsets and Design of Experiments for Estimation of 
Nonlinear Dynamic Systems 

Yunfei Chu and Juergen Hahn

 Texas A&M University, College Station, TX 77843 USA
(Tel: 979-845-3568; fax: 979-845-6446; e-mail: hahn@tamu.edu)

Abstract: Models describing complex processes often contain a large number of parameter and may need 
to describe nonlinear behavior of the system. It is usually not possible in practice to identify all parameters
due to the number and quality of measurement data as well as interactions among the parameters. A 
common approach is to select a set of parameters for estimation while other parameters are fixed at their
nominal values. Such a parameter selection procedure is often based on sensitivity analysis; however, the
determined sensitivity value depends on an assumed distribution of values of the parameters, initial states 
and known trajectories of the input signals. This work addresses some of the mentioned issues and presents
a procedure which combines parameter selection for estimation with experimental design. Additionally,
the effect that uncertainty in the parameter values has on the parameter set selection is also taken into
account. An optimization problem is formulated whose solution is the optimal set of parameters to be
estimated and the experimental conditions required for determining this set of parameters.

1. INTRODUCTION

Mathematical modeling plays an important role in study of
complex dynamic systems and parameter estimation forms an
essential component of deriving mathematical models.
However, estimation of large-scale models can still pose a 
major challenge, even though a large number of estimation
methods have been developed (Ljung, 1999; Nelles, 2001).
One of the reasons for this is that a model often consists of
tens or even hundreds of parameters while at the same time
only limited experimental data may be available. Therefore
not all the parameters are identifiable in practice and
parameter estimation may result in an ill-conditioned
problem. Since it is difficult to estimate all the parameters
accurately, a widely used strategy is to select a subset of 
identifiable parameters for estimation while other parameters
are fixed at a nominal value. This method requires that a 
decision needs to be made about which parameters should be
selected for parameter estimation. It is the purpose of this
work to develop a new approach for determining sets of
parameters that should be estimated simultaneously with the
experimental conditions used for generating data sets for
parameter estimation.

Many methods for parameter selection are based on
sensitivity analysis. Some examples are the collinearity index
(Brun et al., 2001), a column pivoting method (Velez-Reyes
and Verghese, 1995), an extension of the relative gain array
(Sandink et al., 2001), a Gram-Schmidt orthogonalization
method (Yao et al., 2003) and a recursive approach based
upon principal component analysis (Li et al., 2004). A more
systematic approach for parameter selection is based on
experimental optimality criteria. The inverse of the Fisher
information matrix (FIM) provides a lower bound for the
asymptotic covariance matrix of parameter estimators

(Walter and Pronzato, 1990) and it can serve as a measure for
the quality of a parameter set. A subset of identifiable
parameters can be selected based upon optimizing certain
criteria of the Fisher information matrix such as the D-
optimality criterion or the modified E-optimality criterion
(Weijers and Vanrolleghem, 1997; Brun et al., 2002).

However, most parameter set selection procedures suffer
from one major drawback: some knowledge about the
parameter values needs to be available to evaluate the
sensitivity vectors or the Fisher information matrix. This is a 
problem insofar as the exact values of the parameters are not
known and hence one is interested in estimating the values. A
common assumption is that the true parameter value is near 
the assumed nominal value, or that it follows a certain 
distribution around the nominal value, and that the results
returned by sensitivity analysis will also hold for the true
value.  However, there is no guarantee in practice that the
true parameter value will be in the vicinity of the nominal
value. In our previous work (Chu and Hahn, 2007) the effects
of uncertainty of the value of parameters, initial states, and
input signals on the parameter selection has investigated. It
was demonstrated in examples that significant changes of the
parameter set to be determined can occur if parameters differ
by 10% from their nominal values.

This work investigates a different aspect of this problem
while also dealing with uncertainty in the parameter values.
Since it has been shown that parameter sensitivity results are 
affected by the operating conditions of a process, which in
turn are determined by manipulating the inputs, it can be
beneficial to determine the optimal operating conditions for
creating a data set simultaneously with the parameters to be
determined. It is the aim of this paper to develop a method
for selecting parameter sets for estimation of nonlinear
dynamic systems simultaneously with the operating
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conditions for creating a data set and while uncertainty in the
values of the process parameters are taken into account. This
type of problem can be formulated as an optimization
problem, where the trajectories of the inputs can be
manipulated in order to maximize a criterion that determines
how much information about the system can be captured by
estimating process parameters.

2. BACKGROUNDS

2.1 Experimental Optimality Criteria

The measured output is a function of the parameters and is 
affected by measurement noise

( )y y , (1)

where is the observation of the output,
is the true value of the output

and is the measurement noise. In
practice the measurement noise is often assumed to be
normally distributed with zero mean and a covariance matrix

. For this case, the measurements are also normally
distributed and their density function is given by
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The partial derivative of the logarithm of the density function
with respect to the parameter can be written as
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which can be used for computation of the Fisher information
matrix:
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In many cases the noise is uncorrelated and the covariance
matrix is a diagonal matrix with the variance along the
diagonal. The Fisher information matrix can then be written
as product of the sensitivity matrix with its transpose

T

T
yFIM T

y , (5)

where the variances of the covariance matrix are viewed as
scaling factors that can be omitted as they does not affect the
experimental design. The inverse of the Fisher information
matrix is the Cramer-Rao lower bound (Walter and Pronzato,
1990).

A set of real functions of the Fisher information matrix need
to be defined to compare the information content of the
matrix for experimental design. These functions are called the
experimental optimality criteria and are named alphabetically
(Kiefer, 1959; Pukelsheim, 1993; Silvey, 1980). The most
popular criterion is the D-optimality criterion which
maximizes the logarithm of the determinant of the Fisher
information matrix:

* max ( ) max log det( )D D FIM FIM . (6)

This criterion minimizes the volume of the confidence
ellipsoid with an arbitrary fixed confidence level for a least 
square estimator. This criterion is used in this work, however,
the presented techniques can be easily generalized to other
criteria.

2.2 Simultaneous Perturbation Stochastic Approximation
(SPSA)

The parameter selection and optimal experimental design
procedure results in an objective function where the
expectation of the criterion function needs to be maximized

max E ( , )vw
w v , (7)

where w is a vector of the decision variables and v is a vector
of random variables according to some distribution. The
expectation is operated on v and returns a function of w.

To evaluate the objective function directly a multi-dimension
integral is required to calculate. A much more efficient
method is the stochastic approximation as described by
Robbins and Monro (1951). The method avoids evaluating
the expectation and solves such kind of optimization problem
using the update of

1 ˆk k ka kw w g , (8)

where is the gradient of the criterion function at some
value of v:

ˆ kg
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ˆ ( ) ( , )kg v w v
w k . (9)

The gradient of the criterion function is calculated in a next
step. One possible procedures for this is to approximate the
gradient using the method of simultaneous perturbation
(Spall, 1992) which only uses 2 evaluations of the criterion
function to calculate the gradient
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where refers to the perturbation. A
sampling point v

T
1[ , , ]k k kp

k is generated according to the distribution
for each iteration to evaluate .ˆ kg

The parameters used for SPSA can be selected as

1ka a k A , (11)

and

1kc c k , (12)

where the values =0.602 and =0.101 are often 
recommended in practice (Spall, 1998). The variables a, c are 
initial values of the coefficients and A is chosen to reduce the
value of ak from one iteration to the next. Those values of
these variables can be determined by trial and error. Each
component of the perturbation k can use a Bernoulli ±1
distribution with probability of 1/2 for each ±1 outcome.

3. SIMULTANEOUS SELECTION OF PARAMETER
SUBSETS AND EXPERIMENTAL DESIGN

The following four types of variables exist which affect state 
estimation: time-varying adjustable variables whose values
can change over time and can be manipulated, time-invariant
adjustable variables which are also adjustable variables but
which cannot be changed after time zero, parameters which
are estimated and the unknown factors whose values are not
known nor need to be known. The sensitivity values and the
FIM are evaluated along the state trajectories so the FIM is a 
dependent upon the choice of these four types of variables

( ( ), , , )tFIM FIM u v , (13)

where u(t) is a vector of time-varying adjustable variables, v

is a vector of time-invariant adjustable variables,  is a vector
of the parameters, and  is a vector of the unknown factors.

Though the values of the parameters and the unknown factors
are not known when the FIM is computed, some information
about their uncertainty such as the range of the values or their
distribution is often available. Therefore, these two types of
variables can be described as random variables according to
some distribution based on the knowledge of the uncertainty.

Some criterion of the FIM can be used to denote how good a
subset of parameters is for parameter estimation. A selected
parameter subset should have a large mean criterion value
over the uncertainty range of the unknown variables so that 
the chosen parameter set has a high average value of the
criterion.

The experimental conditions for generating a data set for 
parameter estimation are determined by the trajectories of the
manipulated variables. Since the manipulated variables can
be adjusted, they should be chosen such that a trajectory has a 
beneficial effect on parameter estimation. The optimal
trajectory of the manipulated variables can be determined by
optimizing the experimental criterion. It needs to be
emphasized here that the selection of parameter sets is 
dependent on the trajectories of the controlled variables while
on the other hand the optimal trajectory of the manipulated
variables is dependent on the parameters selected for
estimation. Therefore, these two procedures are performed
simultaneously.

A new formulation of the parameter set selection that takes
into account the effect that these four types of variables have
on the FIM is given by (14). The binary variable z denotes if
a parameter i is selected for estimation (zi=1) or is set to its
constant value (zi=0). The first two constraints represent the
system equations while the third and the fourth constraint are
the sensitivity equations. The system equations and the
sensitivity equations are solved simultaneously to compute
the sensitivity value. The sensitivity matrix is formed by
combining the sensitivity values at different time points.
Some columns of the sensitivity matrix are selected
according to the decision variables z to compute the Fisher
information matrix. The parameters  and other unknown
variables  are assumed to be random variables with
distribution functions based on knowledge of their
uncertainties. Solving this optimization problem determines
the subset of parameters which can be estimated most
accurately in the sense of averaging over the unknown
variables. The optimal trajectories of the manipulated
variables for generating a data set for parameter estimation
are also computed.

The optimization problem (14) is a mixed-integer nonlinear
programming (MINLP) problem which also includes the
solution of a set of differential equations. This type of
problem is difficult to solve by standard methods. However,
according to the special features of the parameter selection, a 
two-stage meta-heuristic method is developed in this work.
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The nominal criterion value, which is calculated while all the
variables are fixed at their nominal values, can be used to
identify a collection of the promising candidate subset which
are likely to become the optimal subset of the problem (14),
even though the nominal criterion value by itself is not likely
to be useful for determining the optimal subset due to
uncertainty in the parameter values and changes in the inputs.
In practice it is unlikely that a subset which has a very low
nominal criterion value will have a very high mean criterion
value even when the adjustable variables are optimized.
Selection of a collection of the promising subsets is a 
prescreening method which eliminates unimportant subsets
from consideration and decreases the number of the subsets
to be searched. A genetic algorithm can be used to determine
such a collection of parameter sets (Chu and Hahn, 2007).
The more subsets are included, the more likely it is that the
optimal parameter set will be included in this collection of 
sets.

Determining a collection of parameter sets for estimation of 
their optimal input trajectories, fixes the values of the discrete
variable z for each individual parameter set. As a result, the
optimization problem described by (14) simplifies to the one
given by (7). SPSA can then be applied to solve this
optimization problem to determine the optimal trajectories of 
the manipulated variables. The mean criterion value for 
uncertainty in the parameter values can then be computed for
each set of parameters for the optimal input trajectory. The
parameter set which has the largest mean criterion among all
the ones selected by the first step of this procedure should be
chosen as the one used for parameter estimation. A flowchart
of the described procedure is shown in Fig. 1.

Fig. 1. Flowchart of the presented method

Another advantage of this procedure, when compared to
methods which are only performed at the nominal values of
the parameters, is that a collection of parameter sets rather
than just one optimal set is determined. This is important in
practice because the criterion value of the optimal set may be 
just slightly higher than that of a suboptimal one. In this case 
it is likely that the two parameter sets will be equally good
for all practical purposes. Additionally, it is possible that
some practical considerations play a role in the decision
making process as well. If two parameter sets have similar
values for their statistical criteria then a parameter set can be
selected among the group of good parameter sets using other
criteria.

4. CASE STUDY

A model of an exothermic continuously-stirred tank reactor
(Muske and Georgakis, 2003) is used to illustrate the
technique for parameter set selection. The differential
equations are

/

/

( )

( ) (

( )
c

f E RT
A A AA

f E RT )A c
P P

fc
c c c

c P c

F
c c c ke c

V
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F hA
T T T
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, (15)

The three states of the system are the concentration of one of
the components, the temperature of the reactor, and the
temperature of the coolant jacket. The reactor temperature is 
measured and is the only output of the system. The variables
and their nominal values are listed in Table 1.

In the analysis all the variables are normalized by their 
nominal values to eliminate effects caused by different units.
The uncertain parameters and the unknown factor are
assumed to be uniformly distributed in the range from 20% to
180% of their nominal values. The range of the manipulated
variables is assumed to be from 50% to 150% of their
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nominal values. The time window for generating data for 
parameter estimation is set to 8 hr and the time-varying
inputs are assumed to be step functions where a step can
occur every hour.  The algorithm is implemented in Matlab.

Table 1. Nominal value of the variables in the CSTR
model

Parameter Sym-
bol Nominal value   Type

Feed temperature Tf 20 oC
Feed composition cf

A 2500 mol/m3

Fluid heat capacity CP 1600 kJ/ m3•oC
Heat of reaction H 160 kJ/mol
Activation energy E/R 255 K 
Pre-exponential factor k 2.5 h-1

Coolant inlet 
temperature Tf

c 10 oC

Coolant heat capacity CPc 1200 kJ/ m3•oC
Heat transfer
coefficient h 1000 W/m2•oC

Parameter

Initial value of 
composition cA0 1000 mol/m3 Unknown

factor
Feed flow rate F 0.1 m3/h
Coolant flow rate Fc 0.15 m3/h

Time-varying
input

Initial value of reactor
temperature T0 20 oC

Initial value of coolant 
temperature Tc0 20 oC

Time-invariant
input

Reactor volume V 0.2 m3

Cooling volume Vc 0.055 m3

Heat transfer area A 4.5 m2

Design
parameter

Table 2 presents the singular values of the sensitivity matrix
at the nominal point. The smallest singular value is near zero
indicating that the sensitivity matrix is nearly rank deficient
and not all the parameters are estimable in practice. The sum
of the first five singular values is more than 99% of the sum
of all the singular values. Accordingly, the number of
parameters to be estimated can be chosen to be equal to five
with little loss of information that cannot be represented by
this set of parameters.

Table 2. Singular values of the sensitivity matrix at the
nominal point

No
. 1 2 3 4 5 6 7 8 9

s.v. 18.1 2.88 0.99 0.67 0.56 0.16 0.05 0.02 0.00

The 10 parameter sets with the largest nominal criterion 
value are selected by an exhaustive search and are shown in 
Table 3. While an exhaustive search can be performed for the
system shown here with a reasonably small number of
parameters, an approach using heuristic optimization
procedures, e.g., genetic algorithms, can be used for systems
with a larger number of parameters (Chu and Hahn, 2007).
Once a parameter set is selected then the optimal input
trajectory can be found by SPSA. The time-dependent
profiles of the two manipulated variables, i.e., the feed flow
rate F and the coolant flow rate Fc, are shown in Fig. 2 for the
parameter set {cf

A, H, Tf
c, CPc, h} which is the parameter set 

with the largest mean criterion value at the optimal setting of 
the manipulated variables.

Table 3. The selected parameter subsets

 No. Subsets
Optimal
mean D-
criterion

Mean D-
criterion

Nominal
D-criterion

1 cf
A, H, Tf

c, CPc, h 5.22 3.74 3.43
2 cf

A, CP, H, Tf
c, CPc 4.93 3.83 3.43

3 cf
A, CP, Tf

c, CPc, h 4.80 3.78 3.43
4 cf

A, k, Tf
c, CPc, h 4.59 4.39 3.86

5 cf
A, CP, k, Tf

c, h 4.58 4.16 3.74
6 cf

A, E/R, Tf
c, CPc, h 4.49 3.65 3.44

7 cf
A, CP, H, Tf

c, h 4.44 3.71 3.43
8 cf

A, CP, k, Tf
c, CPc 4.36 4.27 3.78

9 cf
A, CP, E/R, Tf

c, CPc 4.11 3.54 3.41
10 cf

A, CP, E/R, Tf
c, h 4.03 3.41 3.36

The 10 selected parameter sets in Table 3 are ordered by the
mean criterion value for the optimal input trajectory. The
mean criterion is calculated from 1000 sampling points for
varying values of the uncertain parameters. The mean
criterion value at the nominal setting of the manipulated
variables and the criterion value evaluated with the
parameters fixed at their nominal values are also shown in the
table. It can be seen that there are clear differences between
the three methods and which set of parameters should be
estimated.  The parameter set {cf

A, k, Tf
c, CPc, h} should be

estimated if an input trajectory is fixed and it is assumed that 
the parameters are at or near their nominal values. A local
approach to parameter set selection would return this result.
While this result coincidentally turns out to also be the best
parameter set if uncertainty in the parameter values is taken 
into account, it is nevertheless not the optimal parameter set
if the input trajectory is allowed to change. There are three
sets of parameters which are better for parameter estimation
for a more appropriate choice of the input trajectory.
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Fig. 2. Trajectories of (a) optimal feed flow rate F and (b)
optimal coolant flow rate Fc

It can also be concluded that the criterion value can
significantly increase if an optimal input trajectory is used. In
fact, each of the 10 parameter sets shown in Table 3 has a 
larger mean value of the D-optimality criterion for its optimal
input trajectory than the best parameter set has for a the fixed
input trajectory and with parameters at the nominal point.  It 
should be noted that this is the case despite the fact that the
original input trajectory excited by the system with values
ranging from the smallest to the largest value for both inputs.

The subset of {cf
A, H, Tf

c, CPc, h} has the largest mean
criterion value for its optimal input trajectory, however, when
the input trajectories are assumed to be fixed and the
parameters are at their nominal point then this parameter set
is only ranked as the sixth best one and would likely be
overlooked. Therefore, it is important to integrate optimal
experimental design and investigation of the effect that
uncertainty in the model parameters has on parameter
sensitivity analysis into the parameter set selection procedure.
Additionally, it can be useful to investigate a collection of
parameter sets instead of focus on one optimal set as many
factors can influence the choice of a parameter set (What is 
the uncertainty range of the parameters? To what degree can
an input trajectory be changed?) as it is important to make a 
comparison between results computed for different situations.

5. CONCLUSION

A prerequisite for successful parameter estimation is
appropriate selection of parameters which can be accurately
estimated from data. Though many methods for parameter
selection have been developed and applied to a wide range of
systems, most of them are based upon optimizing a certain
criterion value, where the computation of the value is in
many cases based upon local information. However, it can be
shown the criterion value varies with the assumed nominal
values of the parameters, of the system initial conditions, and
the values of the input signals for nonlinear systems.
Accordingly, there is a need to develop techniques which

simultaneously compute the set of parameters to be estimated
and the input trajectories for generating a data set. This paper
addresses this point by formulating an optimization problem
in addition to presenting a solution technique for this problem.
A collection of suboptimal sets of parameters is identified
and the optimal input trajectories for each parameter set are
computed using SPSA. The parameter set to be estimated is 
selected by the largest mean criterion value for an optimal
input trajectory. The technique was illustrated by applying it 
to the model of a CSTR. 
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