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Abstract: In this paper, an adaptive fuzzy controller based on fuzzy neural network is proposed for 
uncertain nonlinear systems. The main advantages are the simple design, no requirement of system model, 
and release of fixed universal range of fuzzy output. A fuzzy neural network is applied to on-line identify 
the control system and provide sufficient information of the adaptive laws for the proposed fuzzy 
controller. Finally, experimental results of a two-link robotic arm are given to verify the effectiveness of 
the proposed approach. 

 

1. INTRODUCTION 

The fuzzy logic theory was first proposed by Zadeh in 1965 
(Zadeh, 1965). Its most advantage is that it is very useful for 
analysis when there is no reliable system model. Because the 
dynamic equations of systems can not be easily found 
accurately, fuzzy logic control (FLC) has become popular. A 
study was presented in the design and stability of a fuzzy 
control system (Wang, 1997). Later, fuzzy logic control has 
found wide applied in various applications such as stepping 
motors, robot manipulators, and helicopters, etc(Lee, and Sul, 
1998; Betin, et al., 2000; Guo, and Woo, 2003; Lower, 2005). 

Conventionally, the fuzzy logic controller is based on expert 
knowledge to define input-output variables, linguistic 
variables, fuzzy rules, and universal ranges. The conventional 
fuzzy logic controller can ensure the system stability, but it 
can not ensure the global system robustness. In order to 
choose fuzzy sets, designs have to base on performance 
requirements and stability regions of control systems. 
Therefore, there are many studies had combined fuzzy 
control with adaptive or other robust algorithms to guarantee 
system robustness (Ham, and Johnson, 2000; Yoo and Ham, 
2000; Er, and Chin, 2000; Khaber, et al., 2006; Guan, et al., 
2005; Sharkawy, 2005). Additionally, an adaptive fuzzy 
controller was designed to be a main controller (Sharkawy, 
2005). According to the Lyapunov stability theorem, the 
adaptive law was derived. However, the requirement of the 
system matrix is necessary. 

In order to satisfy the no requirement of a system model and 
derive the adadptive laws of the fuzzy controler, a fuzzy 
neural netwok (FNN) is utlized in this paper. FNN comprises 
the ability of fuzzy on handling uncertain or unknown 
knowledge of system model and the ability of neural network 
in learning (Horikawa, et al., 1992; Chen, and Teng, 1995). 
In this study, we develop a novel adaptive fuzzy logic 
controller based on an on-line tuning FNN, which is named 

FNN-AFLC for uncertain nonlinear systems. The on-line 
tuning FNN can identify the nonlinear system in different 
circumstances without the knowledge of experts. The 
adaptive FLC can auto tune the centers of the membership 
function of output. In summary, with the varying universal 
range, the proposed FNN-AFLC has additional merits to the 
conventional FLC such as (a) faster tracking response, (b) 
better steady system performance, and (c) robustness against 
system uncertainties and external disturbances.  

2. FNN-ADAPTIVE FUZZY LOGIC CONTROL DESIGN 

2.1  Fundamental of a fuzzy system 

The block diagram of a typical fuzzy system is shown in Fig. 
1. There are four parts in a fuzzy system, including 
fuzzification, fuzzy rule base, fuzzy inference engine, and 
defuzzification. The system structure includes a fuzzy system 
with singleton fuzzification, if-then rule base, Mamdani 
implication, product inference engine, and center average 
defuzzification. The input variables are first translated to the 
input fuzzy sets. If-then rules are designated from experts’ 
experience. Then, the fuzzy inference engine maps input 
fuzzy sets to output fuzzy sets according to the defined fuzzy 
rules. Finally, the output fuzzy set is translated to a crisp 
output value through the center average defuzzification. Fig. 
2 shows the typical membership function with five rules. 

For N  input variables and M  rules, the crisp output y  can 
be written as 
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where j
iA  is the fuzzy set of j th fuzzy rule of i th input 

variable, jy  is the center of the output membership function 
of the j th rule. 

 

 

Fig. 1. Block diagram of a fuzzy system. 

 

Note that the universal range of the output membership 
function is usually fixed and designated by experts in general. 
However, the set of universal range may not be optimal while 
the control system possesses uncertainties and external 
disturbances. Thus, the control performance is not guaranteed. 
In this paper, an adaptive universal range is proposed. Based 
on the proposed fuzzy neural network, the adaptive universal 
range can be tuned automatically until the tracking error 
approaches zero.  
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Fig. 2. Membership function (normalized). 

 

2.2 Description of the FNN-AFLC control system 

The block diagram of an FNN-ASMC controller for a 
nonlinear system with two inputs and two outputs is shown in 
Fig. 3. Generally, to derive proper adaptive control laws for 
unknown nonlinear systems is difficult. The goal here is to 
derive a fuzzy controller with adaptive laws without the 
knowledge of system model. Fuzzy control can be applied to 
systems without system models. However, fuzzy control is 
based on experts’ experiences to establish fuzzy rules, 
membership functions, and universal ranges. To further 
guarantee tracking control performance is difficult while 
system uncertainties and external disturbances exist. 

The proposed FNN-AFLC uses the fuzzy neural networks 1 
and 2 to achieve system identification. The advantages of the 
on-line tuning FNN are the capability of fuzzy control in 

handling system uncertainties and the capability of neural 
networks in a learning procedure. Let the control input iτ  be 
defined as 

 iii rττ ˆˆ= , .2,1=i  (2)  

The gain ir̂  decides the universal range of output under the 
normalized universal range of output. The FNN can on-line 
tune parameters through the gradient descent method and 
supply the optimal parameters to an adaptive regulator. Then, 
the proposed adaptive regulator can on-line provide the 
adaptive laws of the gain ir̂  to the i th FLC until the tracking 
error reaches to zero. 
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Fig. 3. Block diagram of the FNN-AFLC control system. 

 

2.3 Description of fuzzy neural network 

The structure of a four-layer fuzzy neural network which has 
two inputs and one output is shown in Fig. 4, where nodes in 
the input layer represent input linguistic variables, nodes in 
the membership layer represent membership functions, nodes 
in the rule layer is a fuzzy rule base, and node in the output 
layer is a crisp output. The output signals of the nodes in each 
layer are described as follows.  

Layer 1: Input layer 

In Layer 1, each node is an input node representing an input 
variable. The input nodes pass signals to the next layer 
without a computation process. The output of j th node in 

layer 1, ( )1
jy , is represented as 

 ,2,1,)1( == juy jj  (3) 

where ju  is the j th input to the node of Layer 1. 

Layer 2: Membership layer 

Each node in Layer 2 represents a Gaussian-membership 
function. The output of k th node in Layer 2 with j th input, 

( )2
jky , is represented as 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

7926



 
 

 

 

 
( )

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
= 2

2
)2( exp

jk

jkj
jk

mu
y

δ
, (4) 

where jkδ  and jkm  are the standard deviation and mean of 

the Gaussian function of the k th node with j th input, 
respectively. 

Layer 3: Rule layer 

Each node in Layer 3 is a multiplication function, which 
performs a fuzzy logic rule. The output of k th node in layer 
3, ( )3

ky , is obtained from multiplying incoming signals and 
represented as 

 ∏=
j

jkk yy )2()3( . (5) 

In other words, ( )3
ky  is the firing strength of k th rule node. 
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Fig. 4. Architecture of a fuzzy neural network. 

 

Layer 4: Output layer 

The node in Layer 4 is a summation function, which sums all 
incoming signals. The output in Layer 4, ( )4y , is obtained 
from summing incoming signals and represented as 

 ( ) ∑=
k

kk wyy )3(4 , (6) 

where kw  is the weight of k th link and represents output 
strength of the k th rule node. 

 

2.4 FNN On-line learning algorithm 

In Fig. 3, there are two FNNs. The purpose of FNN is to 
execute system identification of an unknown nonlinear 

system with two inputs and two outputs. Therefore, let the 
inputs of FNN be the control input, 1τ  and 2τ , and the output 

of FNN be ( )4
1y  and ( )4

2y . Thus, the output of i th FNN can 
be represented as 

 ( ) 2,1),,( 21
4 == iFNNy ii ττ . (7) 

To derive the on-line learning algorithm, the supervised 
gradient descent method is adopted. In the system 
identification phase, let the energy function for i th link be 
defined as 

 ( )( )24

2
1

iii yxE −= . (8) 

Minimizing the given energy function (8), three parameters 
including the mean jkm , the standard deviation jkδ  of 

Gaussian functions, and the link weight kw , are to be tuned. 
The on-line learning algorithm can be described as follows. 

The updating law of jkm  for i th FNN is 

 i
jk

ii
m

i
jk m

Em
∂

∂
−=Δ η , (9) 

where i
mη  is the learning rate of the mean of the Gaussian 

function for i th FNN. 

The updating law of jkδ  for i th FNN is 

 i
jk

iii
jk

E
δ

ηδ δ
∂

∂
−=Δ , (10)  

where i
δη  is the learning rate of the standard deviation of the 

Gaussian function for i th FNN. 

The updating law of kw  for i th FNN is 

 i
k

ii
w

i
k

w
Ew

∂

∂
−=Δ η , (11) 

where i
wη  is the learning rate of the weight for i th FNN. 

The mean and standard deviation of the Gaussian function 
and the weight of i th FNN are updated as follows: 

 ( ) ( ) i
jk

i
jk

i
jk mnmnm Δ+=+1 , (12) 

 ( ) ( ) i
jk

i
jk

i
jk nn δδδ Δ+=+1 ,  (13) 

 ( ) ( ) i
k

i
k

i
k wnwnw Δ+=+1 . (14) 

Then, the two FNN can act an identified nonlinear system as 
long as the FNN is fulfilled through (9)-(14). Without the 
system model, an advantage of the identified FNN is that it 
can be behalf of a real system under system uncertainties and 
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external disturbances. Thus, the adaptive laws of the FLC can 
be obtained easily through the identified FNN as the 
following descriptions. 

 

2.5 Adaptive laws design 

In the tracking phase, let the energy function for i th output 
be defined as  

 ( )2

2
1

iidi xxV −= .  (15) 

According to the supervised gradient descent method, the 
adaptive law of ir̂  is 

 
i

ii
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ˆ

ˆ
∂
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−=Δ η , (16) 

where i
rη  is the learning rate of the i th input gain. As long 

as the on-line tuning FNN with the updating laws (9)-(14) is 
fulfilled, the system identification will be completed, i.e., 

( )
ii xy →4 . One may rewrite (16) with the control law (2), i.e., 
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The control gain of the input iτ  are updated as follows, 

 ( ) ( ) iii rnrnr ˆˆ1ˆ Δ+=+ .  (18) 

Hence, the convergence of ir̂  is proven by (17). The control 
gain ir̂  will reach optimal values until the tracking error 
approximates to zero. 

In summary, the adaptive fuzzy controller based on fuzzy 
neural network is proposed for nonlinear systems. In Fig. 3, 
the proposed on-line tuning FNN with the updating laws (9)-
(11) provides the parameters i

jkm , i
jkδ , and i

kw  for the 
adaptive regulator. Then, the adaptive regulator adjusts the 
control gain ir̂  automatically using (17). Simultaneously, the 
universal range of output is also tuned automatically. In this 
approach, the adaptive universal range replaces the fixed 
universal range in conventional fuzzy control. Therefore, the 
proposed adaptive FLC has the optimal universal range 
according to the tracking error for control systems with 
uncertainties and external disturbances. 

 

3. EXPERIMENTAL RESULTS 

Figure 5 shows the photograph of a two-link robotic arm. 
Motors 1 and 2 drive the Links 1 and 2 to swing. Sensors 1 
and 2 return the angles of links. Figure 6 shows the 
developed two-link robotic arm control system. A motion 
control card and the VisSim software are adopted on a 
personal computer. In the driver, the stopped value for the 

analog input is 2.5V. The lowering voltage will increase the 
speed in reverse; raising the voltage will increase the speed 
forward. To reduce the cost, a cheap varying resistance is 
used to be a feedback sensor. Applying the dividing voltage 
theorem, the angle of robotic arm can be calculated 
accordingly. The most advantages are that the method is 
cheap and simple. Oppositely, the shortcoming of a varying 
resistance is less accuracy than an encoder. In this practical 
system, we only consider one input ie  as input variable in the 
FLC. Although it is different from the conventional FLC with 

ie  and ie&  as input variables, one input ie  can handle the 
whole control system enough. 

 

 

Fig. 5. Photograph of a two-link robotic arm. 

 

In order to demonstrate the control performance, let the 
desired trajectory be ( )t2sin60 . The fuzzy rules are set as 
following: 

Rule 1: If ie  is NB, then iτ̂  is NB 

Rule 2: If ie  is NM, then iτ̂  is NM 

Rule 3: If ie  is ZE, then iτ̂  is NB 

Rule 4: If ie  is PM, then iτ̂  is PM 

Rule 5: If ie  is PB, then iτ̂  is PB 

The normalized membership functions in Fig. 2 are used. The 
universal range of input variable ie  is [-30, 30]. The initial 
universal range of output variable iτ̂  is set as [-1, 1]. The 
initial 1̂r  and 2̂r  are 2 and 1.5, respectively. The sampling 

time is 0.01 seconds. The learning rates i
mη , i

δη , i
wη , and 

i
rη are set to be 0.8. In the FNN structure, five nodes are used 

in Layer 3 (rule layer), i.e., 5=k . The initial parameters are 
=im11 =im21 0 , =im12 =im22 25.1 , =im13 =im23 5.2 , 
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=im14 =im24 75.4 , =im15  =im25 5 , i
11δ i

12δ= = L =  
i

15δ = i
21δ i

22δ= = L = i
25δ 75.0= , and iw1

iw2= = L  

= iw5  1= , respectively. 

With the FLC (1), the updating laws (9-14), and the adaptive 
laws (17), a most advantage is that the proposed FNN-AFLC 
does not need the dynamic equation of the two-link robotic 
arm. Figures 7 and 8 show the tracking trajectories, 
respectively. Since the initial gains 1̂r  and 2̂r  are arbitrarily 
chosen, the tracking response is not good in the beginning. A 
few seconds later, the tracking response is more satisfactory 
as long as the adaptive gains reach their optimal values. Note 
that the maximum motor voltage is limited between 0V and 
5V as shown in Figs. 9 and 10. Through the adaptive gains 1̂r  
and 2̂r  can be tuned automatically to their optimal values 
until the tracking errors approach to zero theoretically, 
however, there are still small tracking errors which are 
caused by the defects of the too simple mechanism design. 
The gains 1̂r  and 2̂r  are blocked from 1 to 2.5 in order to 
protect the hardware. Finally, Figure 11 shows the changing 
curves of the adaptive gains. The experimental results reveal 
that the proposed FNN-AFLC is indeed effective in practice. 

 

X

Y

 

Fig. 6. A two-link robotic arm control system. 

 

4. CONCLUSIONS 

In this study, an adaptive and intelligent control method for 
unknown nonlinear systems is presented. The strategy 
involves an on-line tuning FNN and an adaptive FLC. 
According to the gradient descent method, the FNN can on-
line identify the unknown nonlinear system and provide the 
optimal adaptive parameters for the adaptive FLC. The 
adaptive FLC can auto-tune the universal range according to 
the tracking error. The main contributions of this adaptive 
fuzzy controller include: 1) speeding up the tracking response, 
2) improving the steady system performance, 3) increasing 
the system robustness, and 4) releasing the requirement of 
system model. Finally, the proposed control method was 
applied to the tracking control of a practical two-link robotic 
arm. In the experiment, the mechanism design was too simple, 
so there were still some small transient errors. However, the 

theoretical result was verified. The proposed method can be 
effectively applied to those control systems without system 
models. 
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Fig. 7. Tracking control of first link. 
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Fig. 8. Tracking control of second link. 
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Fig. 9. Control input of first link. 
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Fig.10. Control input of second link. 
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Fig. 11. Control gains. 
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