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Abstract: Self-organizing maps are excellent tools for information visualization. In this paper,
they are used to extract information about the dynamic behavior of a multivariable system
in several operating points. The input space of the SOM is constituted by extended vectors
composed of the state of the process and the coefficients of the transfer functions that represent
the dynamic behavior of the system for each operating point. New tools of visualization, such
as maps of multivariable zeros or maps of relative gain, have been defined in order to explore
the system so that suitable control strategies can be selected. The proposed method has been
tested on a real multivariable system (a Quadruple-tank industrial scale model).
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1. INTRODUCTION

Dimension reduction techniques (Kourti and MacGregor,
1995) are useful to map the complex input space of
industrial processes onto a low output space that is easier
to manage. These algorithms are often used along with
visualization techniques, giving rise to visual data mining
(Keim, 2002). In contrast to automated approaches, the
aim of these techniques is to transform the information,
without a significant loss, so that it can be projected onto
visualizable low-dimensial spaces. Thus, it is possible to
take advantage of the human ability to detect patterns
and reason with graphical information.

A suitable algorithm for dimension reduction purposes
is the Self-Organizing Map (SOM)(Kohonen, 1989,
2001). SOM has been successfully used as a tool for infor-
mation visualization (Vesanto, 1999). Self-organizing maps
have also been applied for temporal sequence processing
and extraction of dynamic features (Barreto, 2007) in
different areas such as prediction, speech recognition or
control.

Multivariable processes require a comprehensive exploratory
analysis to be understood in depth and recognize re-
strictions that lead to performance limitations in control
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systems (Åstrom, 2000). These limitations are related to
nonlinear zero dynamics (Zames, 1981). For that reason,
it would be useful that the proposed techniques could be
used not only to represent functional relationships among
variables, but also to represent the dynamic behavior of
proceses.

In this work, we use maps of dynamics (Dı́az et al., 2008),
a method based on SOM to represent dynamics of non-
linear or non-stationary industrial processes for multiple
input-multiple output systems. The maps of dynamics are
consistent with the component planes. They can be used
together to analyze the relationships between the static
variables and the dynamic behavior of the process. New vi-
sualization maps are defined to provide information about
the zeros and the relative gain of the processes. Those
tools are tested against a multivariable laboratory process
(Johansson, 2000) with direct physical interpretation.

This paper is organized as follows. In section 2, self-
organizing maps are reviewed. In section 3, our proposal
of maps of dynamics based on SOM for multivariable
proceses is presented. Section 4 describes the Quadruple-
Tank process, which constitutes the testing ground of the
proposed approach. The results of these tests are discussed
in section 5. Finally, conclusions and further work are
described in section 6.
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2. SELF-ORGANIZING MAPS

The SOM is an unsupervised neural network, based on
competitive learning, that implements a nonlinear smooth
mapping of a high-dimensional input space onto a low-
dimensional output space. The neurons of the SOM form a
topologically ordered low-dimensional lattice (usually two-
dimensional) that is an outstanding visualization tool to
extract knowledge about the nature of the input space
data.

Each neuron of the lattice is described by a d−dimensional
prototype (codebook) vector mi, in the input space, and
a position gi, in the low-dimensional grid of the output
space. Neurons are related to the adjacent ones according
to a neighborhood function hij , which works as a shortcut
to allow lateral interactions.

The SOM algorithm implements its mapping in two stages.
First, the best matching unit (BMU) of the input vector,
mc, is selected by means of a competitive process c =
arg mini ‖x−mi(t)‖, i = 1, 2, . . . , N , where ‖◦‖ denotes the
Euclidean norm. Then, a cooperative step is performed,
where the winning unit and its neighbors are adapted:

mi(t + 1) = mi(t) + α(t)hci(t)[x(t) − mi(t)] (1)

where α(t) is the learning rate and the neighborhood func-
tion hci(t) is usually implemented as Gaussian. The success
of the mapping critically depends on the parameters of this
adaptive rule, which, in general, should decrease with time.

The SOM provides a good approximation to the input
space (Luttrell, 1989), similar to vector quantization (VQ),
and divides the space in a finite collection of Voronoi
regions. It reflects the probability density function, since
regions which a high probability of occurrence are magni-
fied to gather a larger quantity of neurons.

The learning rule of the map drives the neighboring
units, along with the BMU, towards the current input
like a flexible net folding onto the input data sets. For
that reason, a spatially-ordered and topology-preserving
map emerges providing a faithful representation of the
important features of the input.

Some useful representations such as the U-Matrix (Ultsch
and Siemon, 1990) or the component planes (Tryba et al.,
1989) have been developed. In fact, any scalar property
of the input space can be visualized in the output space
using the SOM. These maps associate the property value
of a certain neuron, mi, to the corresponding coordinates
of the lattice, gi. The property values are usually shown
using a color level, so the gi nodes form a picture where
the property distribution for the process states is depicted.

As well as the SOM can be used to represent process
variables, revealing the static relationships, it can also be
used for an ordered representation of the different local
dynamic behaviors of the process. These dynamical models
are defined by vectors of parameters. Different approaches
have been used, like time embedding using delays (Principe
et al., 1998; Cho et al., 2006), analysis of the trajectory
projected by the successive BMUs of the process (Srinivasa
and Ahuja, 1999) or modifications in the activation or
learning rules (Kangas, 1990; Euliano and Principe, 1999).
Most of the approaches that use visualization to explore
dynamic features are based on trajectories (Simula and

Kangas, 1995; Domı́nguez et al., 2007; Fuertes et al., 2007),
but only a few of them have been proposed for explicit
visualization of dynamical parameters (Dı́az et al., 2008).

3. MAPS OF DYNAMICS FOR MULTIVARIABLE
SYSTEMS

In this section, we present a method to analyze the dy-
namic behavior of multivariable linearized systems using
Self-organizing Maps. Using the approach presented in
Dı́az et al. (2008), the input space of the SOM is aug-
mented. The extended vectors are composed of a set of
process variables and a set pi of parameters of a paramet-
ric dynamical model

y(k) = f(φ(k),pi) (2)

where φ(k) is a vector of known data at sample k and
the choice of f(·, ·) defines the type of parametric model
considered.

After a regular training, a SOM mapping between the pa-
rameter space and the output space will be set. Each unit
will represent a local dynamic model, whose working point
is defined by x and whose parameters are defined by p.
The resulting mapping is a consistent joint representation
of the working point and its dynamics. Therefore, it can be
compared with static maps such as the component planes
to find links among them.

In this paper, codification of dynamics is done using a ma-
trix of transfer functions that associates the multivariable
outputs with the inputs. This matrix is derived from the
linearization of the state-space equations of the system
around several stationary operating points.

Let us consider a multivariable system characterized by a
matrix of transfer functions G, which relates the output
Y with the input U:









y1

y2

...
yi









=









G11(s) G12(s) · · · G1j(s)
G21(s) G22(s) · · · G2j(s)

...
...

. . .
...

Gi1(s) Gi2(s) · · · Gij(s)









·









u1

u2

...
uj









(3)

where Gij is the transfer function that relates the output
i with the input j, as follows

Gij(s) =
Bij(s)

Aij(s)
(4)

where
Bij(s) = b

ij
0 + b

ij
1 s + . . . + bij

n sn (5)
and

Aij(s) = 1 + a
ij
0 s + . . . + a

ij
m−1s

m. (6)

The extended vectors conforming the input space of the
SOM are defined as

q = [xT ,pT ] (7)

where
xT = [x1, . . . , xi] (8)

define the operating point of the process and

pT =
[

b11
0 , b11

1 , . . . , b11
n , a11

0 , . . . , a11
m−1, . . . ,

b
ij
0 , b

ij
1 , . . . , bij

n , 1, a
ij
0 , . . . , a

ij
m−1

] (9)

the coefficients of the transfer functions in that point.

As stated before, any scalar property of the input space
can be represented. In our case, these properties provide
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Fig. 1. Generation of maps of dynamics of multidimensional systems by means of the projection of parameter space.
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Fig. 2. Schematic diagram of the quadruple-tank process.

information about the dynamic behavior of the process.
Figure 1 shows this idea graphically. A straightforward
representation of the process dynamics are the component
planes of model parameters. They describe, in an ordered
fashion, the distribution of the model parameters for the
different states reached by the process. The frequency
response maps describe the variation of the frequency
response of the process at frequency θ for each of the
process states. The peak gain maps show the peak gains
(resonance) of the process dynamics for every working
point between two frequencies θ1 y θ2. Those maps were
used (Dı́az et al., 2008) to extract knowledge about the dy-
namic behavior of single input-single output linear systems
(SISO). In this paper, a similar method is proposed to work
with Multiple Input-Multiple Output systems (MIMO).

In addition to the previous representations, two new maps
are proposed:

• Maps of multivariable zeros: The property shown in
these maps is the multivariable zero of the parametric
model associated to each neuron. The visualization
of these maps reveals the operation points where the
system is nonminimum-phase, i.e., one of the zeros
is in the right half-plane (RHP). This introduces an
additional difficulty for the system control.

• Maps of relative gain: The scalar property associated
to each neuron is an element of the Relative Gain
Array (RGA). The RGA, Λ, introduced by Bristol
(1966), shows how the inputs and outputs of the
system are coupled. It is defined as:

Λ = G(0) ∗ G−T (0), (10)

where ∗ denotes the Schur product (element-by-
element matrix multiplication).

Finally, other visualization maps (Dı́az Blanco et al.,
2005) like fuzzy maps, which represent the output of a
fuzzy inference system in the lattice, and maps of models,
which associate to each neuron a function of the input
space variables (for example a linear combination), can be
used. They can be specially useful to analyze the dynamic
behavior when combined with the maps defined above.

4. QUADRUPLE-TANK PROCESS

The quadruple-tank process proposed by Johansson (2000)
is a multivariable system with two inputs and two outputs.
It is composed of four water tanks interconnected to each
other in such a way that the exit of the water-drainage of
the upper tanks ends at the lower ones. Flow is supplied
to the tanks by two symmetrically placed pumps. A three-
way valve for each pump distributes the flow between the
upper and lower tanks.

The purpose of the process is to control the levels in
the lower tanks: h1 and h2. The process inputs are the
variables of the pumps υ1 and υ2. The positions of the
three-way valves (γ1 and γ2) determine the proportion of
the output flow that goes into the upper tanks. Figure 2
shows a diagram of the multivariable system and Table 1
shows the main variables and constants of the quadruple-
tank process.

The matrix of transfer functions, which links the input
with the output for the different operational points of the
process, must be obtained in order to form the extended

Variable Units Description

hi cm water level in the tanks
h0

i
cm steady-state tanks

xi cm deviations of water levels xi = hi − h0

i

qi cm3/s flows of the pumps to tanks
υj 0 − 100 ratio of the pumps
υ0

j
0 − 100 steady-state pumps

uj 0 − 100 deviations of pumps ui = υj − υ0

j

qpump,j cm3/s total flows of the pumps
γj 0 − 1 ratio of the flows

Constant Units Description

Ai cm2 cross-section of the tanks
ai cm2 cross-section of the lower outlets
g cm2/s acceleration due to gravity
kj cm3/s pump flow constants
kc cm lower tank constants

Table 1. Variables and constants of the
quadruple-tank process
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vectors. The SOM is trained with these vectors to generate
the maps of dynamics.

The equations applicable for the tanks and the pumps
are Bernoulli’s law, qout = ai

√
2ghi, and mass balances,

Aḣ = qin − qout.

The model of the whole system can be obtained putting
them together:

dh1

dt
= − a1

A1

√

2gh1 +
a3

A1

√

2gh3 +
(1 − γ1)k1

A1
υ1

dh2

dt
= − a2

A2

√

2gh2 +
a4

A2

√

2gh4 +
(1 − γ2)k2

A2
υ2

dh3

dt
= − a3

A3

√

2gh3 +
γ2k2

A3
υ2

dh4

dt
= − a4

A4

√

2gh4 +
γ1k1

A4
υ1.

(11)

If these differential equations are linearized around an
operating point υ0

1 , υ0
2 using the Taylor series expansion,

it is possible to obtain the state-space representation:

dx

dt
=





















− 1

T1
0

A3

A1T3
0

0 − 1

T2
0

A4

A2T4

0 0 − 1

T3
0

0 0 0 − 1

T4





















x

+























(1 − γ1)k1

A1
0

0
(1 − γ2)k2

A2

0
γ2k2

A3
γ1k1

A4
0























u

y =

(

kc 0 0 0
0 kc 0 0

)

x

(12)

where the time constants are

Ti =
Ai

ai

√

2h0
i

g
i = 1, · · · , 4 (13)

The Laplace transform of (12) yields the transfer matrix
of the quadruple-tank system.

G(s) =





(1 − γ1)c1

1 + sT1

γ2c1

1 + (T3 + T1)s + T3T1s2

γ1c2

1 + (T4 + T2)s + T4T2s2

(1 − γ2)c2

1 + sT2





(14)

Therefore, the extended input vectors of the SOM are,
according to (7), as follows:

q = [γ1, γ2, υ1, υ2, h1, h2, h3, h4; (1 − γ1)c1, T1, 1, γ2c1, T3T1,
(T3 + T1), 1, γ1c2, T4T2, (T4 + T2), 1, (1 − γ2)c2, T2, 1]

(15)

Fig. 3. Scale-model of the quadruple-tank process used to
test the proposed method.

5. EXPERIMENTAL RESULTS

The proposed analysis, based on SOM, of the dynamic
behavior of multivariable systems has been tested using
a quadruple-tank industrial scale model. This equipment
was developed by the group of Automatic Control of
the University of León. Figure 3 shows a picture of the
industrial scale model. It keeps the original structure of
the quadruple-tank process proposed by (Johansson, 2000)
but it is built using common industrial instrumentation:

• Grundfos UPE 25-40 flow pumps equipped with
expansion modules Grudfos MC 40/60 that control
them by means of an analogical signal.

• Samson 3226-3760 three-way valves with positioners
Samson 3760 to allow an external signal to control
the opening degree of the valves.

• Endress&Hauer PMC 731 pressure transmitters, for
acquisition of the tank height.

• SMC digital electrovalves to simulate perturbations
on the level of the tank.

• Opto 22 SNAP Ultimate I/O data acquisition system,
used as an interface between the applications and the
scale model

The values of the descriptive parameters for this process,
according to the model, are shown in Table 2.

The input space of the SOM is a 22-dimensional space
formed by the state variables of the operating points of
the process and the parameters of the transfer functions
associated to those points, according to the expression
(15), which defines the dynamic behavior in each point.

Approximately five thousand matrices of transfer functions
were calculated, including all the possible operation modes
of the system operation from the minimum to the max-
imum level of the tanks and from the minimum to the
maximum opening of the valves.

A SOM with a 40×40 grid and a rectangular topology was
trained using the batch training algorithm. The training
length was 50 epochs. The neighborhood function was

Gaussian hij(t) = exp
(

−d(i,j)
σ(t)2

)

and σ was made to

Parameter Ai g a1, a2 a3, a4

Value 389.16cm2 981cm2/s 2.5547cm2 1.539cm2

Table 2. Parameters of the scale model
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Fig. 4. Component planes of the process variables (the first 8) and the model parameters (the rest).

decrease monotonically from 10 to 1. Figure 4 shows the
component planes of that map.

The maps of multivariable zeros are shown in Fig. 5(a) and
Fig. 5(b). Watching the first map, it is noticeable (value
< 0) that the first zero of the system is always located in
the negative semiplane. The area in the upper part of the
maps is not considered in the analysis, since it corresponds
with operation points in which the levels of the tanks are
minimum and, therefore, the linear model is not valid.
However, in the second figure, it can be distinguished a
zone where the zero is positive and another one where
the zero is negative. Therefore, the system clearly has two
different operational zones (again, value greater or less
than 0 in the map):

• The zone where the system is nonminimum phase,
when one of the zeros is in the RHP (right-half plane).
The nonminimum-phase system is harder to control
if the influence of the coupled variables is rejected, so
it is better to control the system with a centralized
strategy instead of decentralized.

• The zone where the system is minimum-phase. Both
zeros are in the LHP (left-half plane), so the system
is simple to control. In this case, the coupling effect
between variables is minimum and the system can be
divided in simpler subsystems and therefore decen-
tralized control is the suitable strategy.

This same conclusion is reached by analyzing the Relative
Gain. The matrix of Relative Gain in the scale model,

according to equation (10), is
(

λ 1 − λ

1 − λ λ

)

where λ =

(1−γ1)(1−γ2)
1−γ1−γ2

The difficulty of the control depends on the

value of λ, and it is specially hard for values of λ <
0 according to McAvoy (McAvoy, 1983). Figure 5(c)
shows the model map of the relative gain (evaluates the

expression λ > 0). In this map, the same two zones of
operation are observed, corresponding to nonminimum-
and minimum-phase zones. It is even more clear than
in the analysis of the maps of multivariable zeros. The
blue zones, where λ < 0, correspond with the zones of
nonminimum-phase where the control becomes especially
hard. In this case, the system has a zero in the positive
semiplane (compare Fig. 5(b) and 5(c)).

Figure 5(d) shows the model map γ1 +γ2 for each station-
ary operating point of the process. It can be observed by
comparing this map with the Fig. 5(c) that the zones where
the system is nonminimum-phase (blue zones) correspond
with those where γ1 + γ2 is included in the interval [1, 2]
(strip of color from yellowish to reddish in Fig. 5(d)) When
valves are in this interval, the sum of the flows to the upper
tanks is greater than the flows to the lower ones, so it is
more complicated to control the levels y1 and y2.

6. CONCLUSION

In this paper, we present a method, based on Self-
organizing Maps, to extract information about the dy-
namic behavior of multivariable systems. Vectors extended
with the coefficients of the transfer functions that relate
inputs and outputs of the system for each operating point
are used as the input space of the SOM. Once the SOM
is trained, similar dynamic behaviors of the process are
grouped in similar regions. This allows obtaining an or-
dered representation of the dynamic of the process. As the
output space is low dimensional (usually 2D or 3D), these
regions can be visualized.

This visual character of the SOM allows us to define
new visualization maps that help to discover dynamic
properties of the process. Maps of multivariable zeros
are very useful to classify the zones where the system is
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(d) Model map of γ1 + γ2

Fig. 5. Model maps

nonminimum-phase, whereas maps of relative gain let us
find out where the application of a decentralized control is
effective or not. The proposed method has been validated
against a quadruple-tank industrial scale model designed
to make experiences of multivariable level control.

Results suggest further work in the development of other
useful visualization tools of dynamic parameters. This
method might also be merged with an algorithm for local
dynamic modeling, like the ones cited in section 1, to
provide results directly from the process variables.
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