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Abstract: This paper investigates the robust sliding mode control problem for a class of uncertain switched delay
systems. A single sliding surface is constructed such that the reduced-order equivalent sliding motion restricted to the
sliding surface is completely invariant to all admissible uncertainties. For the cases of known delay and unknown
delay, the existence conditions of the sliding surface are proposed, respectively. The corresponding hysteresis
switching laws are designed to asymptotically stabilize the sliding motion. Furthermore, variable structure controllers
are developed to drive the state of the switched system to reach the single sliding surface in finite time and remain on
it thereafter. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.

1. INTRODUCTION

The sliding mode control (SMC) has various attractive
features such as fast response, good transient response and
order-reduction (Roh & Oh, 1999; Choi, 2007). It is also
insensitive to variations in system parameters and external
disturbances. Generally the SMC is to employ a discontinuo-
us control to drive the state from an arbitrarily initial state to
along a desired prespecified trajectory. In recent years more
and more research in this area has been done (Utkin, 1977,
Choi, 2003; Xia & Jia, 2003; Kim, Park & Oh, 2000;
Gouaisbaut, Dambrine & Richard, 2002).

For switched systems, only a few research results in which
the SMC technique is employed exist due to the complexity
of control systems and the excess burden of the control
synthesis and switching law design. Akar & Ozguner (1998)
proposed a SMC method to make nominal switched systems
exponentially stable. In this paper the existence conditions of
sliding modes were given and a state feedback controller was
designed such that sliding modes occur. Variable structure
control with sliding mode sector was presented for a hybrid
system in Pan, Suzuki & Furuta (2005). The sliding mode
sector was defined as subspace inside which some norm of
state decrease for each subsystem of the hybrid system, and a
variable structure control law was designed to switch the
hybrid system among subsystem to ensure its quadratic
stability.
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On the other hand, time-delay is often encountered in various
industrial systems. Switched systems with time-delay are one
of the most useful models and have strong engineering
background such as power systems (Meyer, Schroder &
Doncker, 2004) and networked control systems (Kim, Prak &
Ko, 2004). However, due to the complicated behaviour of
switched delay systems, very few results on such systems
have appeared. Sufficient conditions of asymptotical stability
were established for switched linear delay systems under
arbitrary and constructed switching signals respectively in
Xie & Wang (2004). Sun, Wang & Xie (2006) investigated
the problem of delay-dependent common Lyapunov functions
for switched linear delay systems, which established the
relationship between delay-dependent common Lyapunov
functions and the common Lyapunov functions for
corresponding switched systems without delays. The
stabilization problem of arbitrary switched linear systems
with unknown time varying delays was considered in Hetel,
Daafouz & Iung (2006). For uncertain linear discrete-time
switched systems with state delays, sufficient conditions of
robust stability and stabilizability in terms of matrix
inequalities and Riccati-like inequalities were given in Phat
(2005). Stability of a class of switched delay systems was
shown in Kim Campbell & Liu (2006) by using a common
Lyapunov functional method. However, to the best of the
authors’ knowledge, there are no results for the SMC of
switched delay systems in the current literature, which is
indeed our motivation.

This paper considers the robust SMC problem for a class of
uncertain switched delay systems. A single sliding surface is
constructed such that the reduced-order equivalent sliding
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motion restricted to the sliding surface is completely
invariant to all admissible uncertainties. For the delay-known
case, a sufficient condition of the existence of the sliding
surface is given in terms of linear matrix inequalities (LMIs),
and by using the information of current state and delay-state,
a hysteresis switching law is designed to guarantee the
stability of the sliding motion. For the delay-unknown case, a
sufficient condition of the existence of the sliding surface is
given by solving Riccati inequality, and the corresponding
hysteresis switching law that only depend on the current state
is designed. Variable structure controllers are developed
respectively for two cases such that the state of the switched
system reach the single sliding surface in finite time and
remain on it thereafter.

Throughout this paper, ||0|| denotes the Euclidean norm for a

vector or the matrix induced norm for a matrix.
2. PROBLEM FORMULATION AND PRELIMINARIES

Consider the uncertain switched delay system of the form
x(t)=(4, + A4 ) x(t)+(A4,, + A4, )x(t—7)
+Blu, () +Z,(Ou, () + [, (x,0)], Q)
x(t) = (1), 1 €[-7,0],
where x(¢) e R" is the
{1,2,,...,1} is the piecewise constant switching signal that

system state, o :[0,00) >E=

might depend on time ¢ or state x, u; € R™ is the control
input of the i—th subsystem, 4,, A4, , B are constant
matrices with appropriate dimensions, ¢(¢) is a differentiable
vector-valued initial function on [-7,0] , A4, and A4,

represent system parameter uncertainties, Z,(¢) and f;(x,?)

represent the input matrix uncertainty and nonlinearity of the
system, respectively. The following standard assumptions are
introduced.
Assumption 1. The parameter uncertainties can be represent-
ed and emulated as

[Ad; Ad,;]= [Dlizli (0 DXy, (t)]E s 1€8,

where D D, and E are constant matrices with

i >
appropriate dimensions and the matrix £ is right invertible.
2,(®) and Z,,(f) are unknown matrices with Lebesgue
measurable elements and satisfy %,,'2,, <7, 'S, <1 .
Assumption 2. The input matrix B has full rank m and
m<n.

Assumption 3. There exist known nonnegative scalar-valued
functions ¢(x,f),i €Z such that || f (x,t)" < @.(x,¢t) forall 7.
Assumption 4. There exist known nonnegative constants p;, ,
i € 2 such that ||Zl. (t)” <p; <1 forall ¢.

Remark 1. Assumptions 1~4 are standard assumptions in the
study of variable structure control.

Let I be an nxn symmetric matrix satisfying
'=1-E*®E, 2)

where E¢ is the Moore-Penrose inverse of E .

Remark 2. If the matrix £ is not right invertible, we can
make a decomposition of E , that is, to express E as the
product of a left invertible matrix and a right invertible
matrix. Let (E,E,) is any full-rank factor, i.e., E=EE,,
where E, is a left invertible matrix and E, is a right
invertible matrix, then we can easily obtain the Moore-
Penrose inverse of E as E¢ = E) (E,E,) " (E[E)"E/.

We design the single sliding surface for the switched system
(1) as

C(t)=5Sx(t)=B"(TXT +BYB") 'x()=0, 3)
where X and Y are symmetric matrices which will be
determined latter.

Remark 3. The single sliding surface £(¢) = Sx(z) =0 is

designed such that the switched delay system (1) is
asymptotically stable based on the single Lyapunov function
approach in the sliding surface. The purpose of designing the
single sliding surface for the switched delay system is to
reduce the reaching phase in which systems are sensitive to
uncertainties and perturbations, and improve the transient
performance and robustness.

Lemma 1. For the system (1) and the sliding surface (3), the
sliding motion dynamics restricted to the sliding surface is

&(1)=B"4,PB(B"PB)"& (1) @
+B"4, PB(B'PB)"'&(t—1).
Proof. To get a regular form of the system (1), we define a
nonsingular matrix G and an associated vector & as follows

B [ B
oLl

where B is an orthogonal complement of the matrix B ,
P=TXT +BYB" and
& B"

()= = Gx(1) = x(1) (6)
: & (0 B'p!
with & e R"™ , & = €R™ . Note that the matrix G is
invertible. Indeed, it can be checked that

G =|PB(B"PE)" B(sB)|. %
By the state transformation (6), the system (1) is represented
by the following regular form

|:§.l ([):| — |:"Ecrll "Eolz i||:§l (t):| + |:"Edall "Edalz :||:§1 (t - Z'):|
Q'(t) AUZI Ao‘22 C:(t) Adan Ada22 é/(t - T)
{ 0 }(u O+ Z u,(t)+ £, (x,0), 3
SB| ¢ e 7

fl(t) = (El(t)’t € [_T’O]’
¢ =,(0),t €[-7,0],

where

A, =B"[4,+D,_ %, (t)EJPB(B"PB)™",
A, =B"[4,+ D%, ()EIB(SB)™,
Zdo'll = ET[AdO' +D2022G(t)E]P§(§TP§)71 5
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sz = B[4y + Dy, 20, (DEIB(SB) ™,

o1 = S[4, + D2, (NEIPB(B'PB) ™",

o0 =S[4, + DX, (t)E]B(SB)_I >

son =S 4sy + Dy, %,, (DEIPB(B"PB) ",

o = S[44, + Dy, X5, (t)E]B(SBY1 >

2.()=B"p(t): 7,(t) = Sp(t) .

Then the sliding motion dynamics in the sliding surface

($()=<¢(t)=0) can be described by following (n—m)

dimensional switched system

E(1)=B"4,PB(B"PB) "' & (1)+ B"4,,PB(B"PB)™'

x&(t=7)+B'D,X,,(DEPB(B'PB)'&,(1)  (9)
+B'D, %, ()EPB(B"PB)™ & (t 7).

By (2), we can easily obtain

EPB = E[(1- E°E)X(1- ESE)+ BYB"]B =0.
Then the sliding motion (9) can be represented by (4).

A ] |

LN

Remark 4. We can see that by using the SMC method, the
uncertainties A4, A4, and the nonlinearities f;(x,?)

disappear in the sliding motion (4) and the order of the
considered system is reduced. Therefore we only need to
study stabilization of the (n—m) dimensional linear

switched delay system (4) without uncertainties.

Definition 1. The sliding motion (4) is said to be
asymptotically stable if there exist a Lyapunov function
V(x) and a switching law o such that the derivative V

along the trajectory of the system (4) satisfies
L(H)=V()<0
forall reR".

The objective in this paper is how to determine the sliding
matrix S , design the switching law o(¢#) and variable

structure controllers u,, i € 2 such that
1). the (n —m) dimensional sliding motion (4) restricted to

the sliding surface (3) is robustly asymptotically stable under
the switching law o (¢) ;

2). the state of the system (1) is driven towards the sliding
surface (3) and stays there for all the future time.

The design of the switched delay system (1) is split into the
known and unknown time-delay cases. The corresponding
results will be described in the next sections.

3. MAIN RESULTS

In this section, we give the design method. In general,
variable structure control design methodology comprises two
steps. First, the sliding surface is designed, so that the
controlled system will yield the desired dynamic performance
in the sliding surface. The second phase is to design the
variable structure controllers such that the trajectory of the
system arrive the sliding surface and remain on the sliding
surface for all subsequent time.

3.1 7 is a Known Constant

In this subsection, the system (1) with known time-delay 7 is
considered.

The following theorem shows that the system (1) in the
sliding surface (3) is robustly asymptotically stabilizable
under the switching law o .

Theorem 1. The sliding motion (4) based on the sliding
surface (3) is asymptotically stabilizable via switching. If
there exist symmetric matrices X , ¥ matrix O, >0 and

scalars ¢, 20,ie 2, Z;ai =1 satisfying the following
LMIs
['XT + BYB" >0,

B'(ATXT +TXTA")B+Q, B'ATxTB|_ (10)
B'TXTA] B -0, ’
— i — !
where 4 = Zizla"Ai A4, = ZizlaiAdi :

Proof. We define regions

Q- { &0 H (B"PB)" (1) }
’ G(t—1)

(B'PB) & (t-7)
. {E "(ATXT+TXTANB+0, B TAdiFXFE}

B'TXTALB -0,

BRSO | s
(B"PB)'&(t-0)| '

Obviously, U Q, = R*"™ A\ {0} .

[=c)

Then, we design the following hysteresis switching law
o(0) = min arg{Q,| gél 0)eq,},
fort >0,
{i, if E()eQ. and o(t) =i,
o(t) = R .
minarg{Q, |§1(t) eQ.},if {M)eQ, and o(t7) =i,
an
where & (1) =[¢]' (0.¢ (1-0)]".
Take symmetric positive-define matrices F,, O and choose a
Lyapunov functional candidate

v=&lorao+[" gop0s@d.  (12)

Then the derivative of the Lyapunov functional (12) along
the trajectory of the system (4) is

{ &0 } ANP4+PA, 40 Py, { &) }
&-1) ZdTallPl -0 &-1)
{ P& (1) } RAN, + A, PP 0P A, P
R&(t-1) P4, -R'op”
R0
RE(t-7) [

with A, = B4 PB(B"PB)"', 4,,, =B"4, PB(B"PB)™.
Take the matrices P =(B"PB)", 0=(B"PB)"Q,(B"PB)",
then we have V<0 . By the single Lyapunov function

9884



17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

method, the sliding motion (4) based on the sliding surface (3)
is asymptotically stable under the switching law (11). This
completes the proof.

Next, the result of controller design of reaching motion is
given.

Theorem 2. Suppose LMIs (10) are feasible and the single
sliding surface is given by (3). Then the state of the system (1)
can enter the sliding surface in finite time, and subsequently
remain on it by employing the following variable structure
controllers

u, = —(SB) ™ (SA,x(t) + SA,,x(t - z'))—(S L {p,]|S4.x(0)|

< plsaue—e elon <]+ Jso. w0

+[[SBllg: (x.0)+ w1 ysign(£).i € . (13)
where g is a positive scalar.
Proof. Consider the following Lyapunov function candidate

Ve)=5¢"¢ (14)
Its derivative along the trajectory of the system (1) is given
V=CT(S(A4 +A4)x(t) + S(A, +Ad,)x(t - 1)
+ SBlu, + Z.(H)u, + f,(x,1)])
< CMSAx(t) + SA,x(t —7) + SBlu, + Z,()u,]}
+spflExfle]+[souflIExt - ]
+[sBfleT cx.-
Applying the variable structure controllers (13) to the
inequality (15) results in ¢ "¢ < — 1, ||§ || . Hence the state of

the system (1) will reach the single sliding surface (3) in
finite time and subsequently remain on it. This completes the
proof.

(15)

3.2 7 is an Unknown Constant

When time-delay 7 is an unknown constant, the switching
law (11) and the controllers (13) are not applicable. We
assume the time-delay is an unknown, but it is bounded by
the known constant 7 .

The following theorem shows that the system (1) with
unknown time-delay 7 in the sliding surface (3) is robust
asymptotically stabilizable under the switching law o .

Theorem 3. The sliding motion (4) based on the sliding
surface (3) is asymptotically stablilizable via switching. If
there exists a positive number ¢, matrix O, >0 symmetric

Y and scalars f,20,ieZ , Z;l B =1
satisfying the following inequalities
CXT + BYB" >0,

BTATXTB + B'TXTA"B + £0,
+(B"A4,TXTB)s 'R (B"4,TXTB)" <0,
where A, :[ B B'A,TXTB, VB, ETAd,rXFE], A=
> BA . R=diaglQ,...0} .

Proof. We define regions

matrices X ,

(16)

®, = &) ()BT ATXTB + B'TATA' B
+&0,+(B"4,TXT'B)e Q' B"4,TXT'B)"
x & (2)<0,i e E}.
Obviously, U ®, = R"™ \{0}.

Then, we design the following hysteresis switching law
o(0) = minarg{® | £,(0) e D},
forz >0,
i if&)e®, ando(t) =
t
“O= minarg(o, £ e®, ), if £ e ®, and ot ) =i
7)
Take symmetric positive-define matrix P, and define the
following Lyapunov-Krasovskii functional
N =&'Pé&+[ & (OP0PE©0)6.
where Q, satisfy (16).
Then the derivative of (18) along the trajectory of the system
4)is
V() =& (0{(B"4,PB(B"PB) )" P,
+P,(B"4,PB(B"PB) )+ eP,0,P,}&, (1)
+2&7(t)P,B" 4,,PB(B"PB) ™" &,(t — 7)
— &Nt —1)eP, QP& (t - 1)
Applying the standard bounding relation
a'b<a'Za+b'Z"'b, Ya,be R",NYZe R"™",Z>0,
gives
27 (1)P,B" 4,, PB(B"PB)™&,(t - 1)
<& (t)P,B 4, PB(B"PB) ' P'¢ 0 P,"(B"PB)™" (20)
xB PA;onzégl (O +& (1 =1)eP, O P, (t = 7).

Substituting the right side of the inequality (20) into (19), we
have

V()= & (PP, (4,PB(B"PBY ) +(4,PB(B'PB)™)

x P +20,+B"4,,PB(B"PB) ' P's 0By
x(B'PB) ' B"PA,BIP& 1),

Choosing P, =(B"PB)™", we get V(1)< 0. By the single

Lyapunov function method, the sliding motion (4) based on

the sliding surface (3) is asymptotically stable under the

switching law (17). This completes the proof.

Next, the result of controller design of reaching motion is

given.

Theorem 4. Suppose inequalities (16) are feasible and the

single sliding surface is given by (3). Then the state of the

system (1) can enter the sliding surface in finite time, and

subsequently remain on it by employing the following

variable structure controllers

(18)

(19)

e2y)

— (38" SA ) -2 L (S Ax@ + 254, o)

ool A ool lsbeo

iy ysign({)i € E,
where , is a positive scalar.

(22)
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Proof. It follows from the Razumikin theorem (Hale & Lunel,
1993) that for any solution x(¢+6) of (1), there exist a

constant A >1 such that
[x(z+0)| < 2|x@), -7 <o <0.
Consider the Lyapunov function candidate
V@)=5¢"¢.
Its derivative along the trajectory of the system (1) is
V = ¢ (S(A, +M)x()+S(Ay + A, )x(t—7)
+8Blu, +Z,(Hu, + f;(x,1)])
< TSAx(t)+ SBlu, + Z,(t)u,]}
+sDuflEx@flc] + 4. e -]
+Hlspa el -]+ Isallcle: .o
Applying the variable structure controllers (22) to the

inequality (25) results in ¢ ch’ <-u, ||é’ " Hence the state of

the system (1) will reach the single sliding surface (3) in
finite time and subsequently remain on it. This completes the
proof.

(23)

(24)

(25)

4. EXAMPLES

In this section, we present a numerical example to

demonstrate the effectiveness of the proposed design method.

Consider the following uncertain switched delay system
x(t)=(A4, + A4, )x(t)+(A,, +AA4,, )x(t—71)

+Blu, +Z_ (Hu, + £, (x,1)], (26)
x(t) = o(1), t€[-7,0],
where o(f)e2={1,2}, 7 <0.5,
02 1 -05 -0.1 1 0.2 0
4=/051 05|, 4= 1 1 -1|,B=| 1 |,
0 0 -05 05 1 0.1 -0.5
1 05 -05 0.1 1 0
4,=/-05 0 05|, 4,=|0 05 -05]|, 2 =
1 1 -05 0 1 05

Z, =0, f,=f, =0, the parameter uncertainties A4, = D,,
xX,E , Ad, =D,%, E, where D,=D,=[0 1 0],
Dy=Dy=[1 0 0", E=[1 1 0], X, =v, e[-11],
X, =v, €[-11].

Weselect f,=04, §,=0.6, £=0.1, u, =5.

By solving inequality (16), we can obtain the following
solutions

10152 334

=375 84973 —6423
X=| -334 -1073.1 -380.6], Q1 = 6423 20.1922 S
3755 -380.6 6.6 e :

Y =4.9448.
By (3) the single sliding function is
@) =[0.2022 0.2022 OJx(r). (27)
From Theorem 4, the reaching control laws are taken as
follows

uy ==0.7x, (£) = 2x, () — (7.2426x(1)|
+[|x, (1) + x, ()| + 5)sign(£ (1)),
1, ==0.9x, () = 2x, (1) +0.8x, () — (7.2426]|x(1)|
[, (1) + x, (1)) + 5)sign(¢ (1))
It is easy to verify that the conditions of Theorem 3 and 4 are
satisfied. Following the proposed design method use

Theorem 3 and 4.
The hysteresis switching law is
Lif (x(0) € @))or(x(t) € ®ando(t ") =1)
O} =2
()= or(x(t) ¢ ®,ando(t™) =2), (28)
2,if (x(0) & @,)or(x(t) e ®,ando(t™)=2)

or(x(t) g ®ando(t™) =1),

where
-1.0992 -0.862 -1.724
D, = {x(t)|xT (1)) —0.862 0.0063 0.0126 |x(¢) < 0},
-1.724 0.0126 0.0252
0.2443  0.3891  0.7782
D, = {x(t)|xT(t) 0.3891 —-0.0811 —0.1621 [x(z) < 0}.
0.7782 -0.1621 -0.3242

The simulation results for the switched system (26) are
depicted in Fig. 1-Fig. 4.

5

20 I I I I I I I I I
0

Fig. 2. The input signal of the switched system (26)
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0.6+ i

0.5[

0.4% i

O'ST

0.27‘\‘ R
|

\
0.1} A _
\

-0.1
0

Fig. 3. The trajectory of the sliding function (27)

0.5¢ R

Fig. 4. The switching signal (28)

The state of the system (26) in the closed-loop and with the
same initial state vector x, =[1, 2,—1]" is shown in Fig. 1. It

is clearly seen that the closed-loop system of the switched
system (26) with the designed controllers and the switching
law (28) is asymptotically stable.

5. CONCLUSION

In this paper, the problem of robust sliding mode variable
structure control has been studied for a class of uncertain
switched delay systems. The single sliding surface has been
constructed. The existence conditions of the sliding surface
have been proposed for delay-known and delay-unknown
cases, respectively. The corresponding hysteresis switching
laws and variable structure controllers have been developed
such that the resulting closed-loop system is robust stable and
completely invariant to all admissible uncertainties in the
sliding surface.
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