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Abstract: This paper investigates the robust sliding mode control problem for a class of uncertain switched delay 
systems. A single sliding surface is constructed such that the reduced-order equivalent sliding motion restricted to the 
sliding surface is completely invariant to all admissible uncertainties. For the cases of known delay and unknown 
delay, the existence conditions of the sliding surface are proposed, respectively. The corresponding hysteresis 
switching laws are designed to asymptotically stabilize the sliding motion. Furthermore, variable structure controllers 
are developed to drive the state of the switched system to reach the single sliding surface in finite time and remain on 
it thereafter. Finally, a numerical example is given to illustrate the effectiveness of the proposed method. 

 

1. INTRODUCTION∗ 

The sliding mode control (SMC) has various attractive 
features such as fast response, good transient response and 
order-reduction (Roh & Oh, 1999; Choi, 2007). It is also 
insensitive to variations in system parameters and external 
disturbances. Generally the SMC is to employ a discontinuo- 
us control to drive the state from an arbitrarily initial state to 
along a desired prespecified trajectory. In recent years more 
and more research in this area has been done (Utkin, 1977; 
Choi, 2003; Xia & Jia, 2003; Kim, Park & Oh, 2000; 
Gouaisbaut, Dambrine & Richard, 2002). 

 

For switched systems, only a few research results in which 
the SMC technique is employed exist due to the complexity 
of control systems and the excess burden of the control 
synthesis and switching law design. Akar & Ozguner (1998) 
proposed a SMC method to make nominal switched systems 
exponentially stable. In this paper the existence conditions of 
sliding modes were given and a state feedback controller was 
designed such that sliding modes occur. Variable structure 
control with sliding mode sector was presented for a hybrid 
system in Pan, Suzuki & Furuta (2005). The sliding mode 
sector was defined as subspace inside which some norm of 
state decrease for each subsystem of the hybrid system, and a 
variable structure control law was designed to switch the 
hybrid system among subsystem to ensure its quadratic 
stability.  

                                                 
★This work was supported in part by Dogus University Fund for Science and 
the NSF of China under Grant 60574013 

On the other hand, time-delay is often encountered in various 
industrial systems. Switched systems with time-delay are one 
of the most useful models and have strong engineering 
background such as power systems (Meyer, Schroder & 
Doncker, 2004) and networked control systems (Kim, Prak & 
Ko, 2004). However, due to the complicated behaviour of 
switched delay systems, very few results on such systems 
have appeared. Sufficient conditions of asymptotical stability 
were established for switched linear delay systems under 
arbitrary and constructed switching signals respectively in 
Xie & Wang (2004). Sun, Wang & Xie (2006) investigated 
the problem of delay-dependent common Lyapunov functions 
for switched linear delay systems, which established the 
relationship between delay-dependent common Lyapunov 
functions and the common Lyapunov functions for 
corresponding switched systems without delays. The 
stabilization problem of arbitrary switched linear systems 
with unknown time varying delays was considered in Hetel, 
Daafouz & Iung (2006). For uncertain linear discrete-time 
switched systems with state delays, sufficient conditions of 
robust stability and stabilizability in terms of matrix 
inequalities and Riccati-like inequalities were given in Phat 
(2005). Stability of a class of switched delay systems was 
shown in Kim Campbell & Liu (2006) by using a common 
Lyapunov functional method. However, to the best of the 
authors’ knowledge, there are no results for the SMC of 
switched delay systems in the current literature, which is 
indeed our motivation. 

 
This paper considers the robust SMC problem for a class of 
uncertain switched delay systems. A single sliding surface is 
constructed such that the reduced-order equivalent sliding 
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motion restricted to the sliding surface is completely 
invariant to all admissible uncertainties. For the delay-known 
case, a sufficient condition of the existence of the sliding 
surface is given in terms of linear matrix inequalities (LMIs), 
and by using the information of current state and delay-state, 
a hysteresis switching law is designed to guarantee the 
stability of the sliding motion. For the delay-unknown case, a 
sufficient condition of the existence of the sliding surface is 
given by solving Riccati inequality, and the corresponding 
hysteresis switching law that only depend on the current state 
is designed. Variable structure controllers are developed 
respectively for two cases such that the state of the switched 
system reach the single sliding surface in finite time and 
remain on it thereafter. 
 
Throughout this paper, •  denotes the Euclidean norm for a 
vector or the matrix induced norm for a matrix. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

Consider the uncertain switched delay system of the form 
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where nRtx ∈)(  is the system state, =Ξ→∞),0[:σ  
},,,2,1{ l…  is the piecewise constant switching signal that 

might depend on time t  or state x , m
i Ru ∈  is the control 

input of the thi −  subsystem, iA , diA , B  are constant 
matrices with appropriate dimensions, )(tϕ  is a differentiable 
vector-valued initial function on ]0,[ τ− , iAΔ  and diAΔ  
represent system parameter uncertainties, )(tZi  and ),( txf i  
represent the input matrix uncertainty and nonlinearity of the 
system, respectively. The following standard assumptions are 
introduced. 
Assumption 1. The parameter uncertainties can be represent- 
ed and emulated as   

[ ]EtDtDAA iiiidii )()(]   [ 2211 ΣΣ=ΔΔ , Ξ∈i , 
where iD1 , iD2  and E  are constant matrices with 
appropriate dimensions and the matrix E  is right invertible. 

)(1 tiΣ  and )(2 tiΣ  are unknown matrices with Lebesgue 

measurable elements and satisfy Iii ≤ΣΣ Τ
11 , Iii ≤ΣΣ Τ

22 . 
Assumption 2. The input matrix B  has full rank m  and 

nm < . 
Assumption 3. There exist known nonnegative scalar-valued 
functions ),( txiφ , Ξ∈i  such that ),(),( txtxf ii φ≤  for all t . 
Assumption 4. There exist known nonnegative constants iρ , 

Ξ∈i  such that 1)( <≤ ii tZ ρ  for all t . 
 
Remark 1. Assumptions 1~4 are standard assumptions in the 
study of variable structure control. 
 
Let Γ  be an nn ×  symmetric matrix satisfying 

,EEI g−=Γ                                  (2) 
where gE  is the Moore-Penrose inverse of E . 

Remark 2. If the matrix E  is not right invertible, we can 
make a decomposition of E , that is, to express E  as the 
product of a left invertible matrix and a right invertible 
matrix. Let ),( 21 EE  is any full-rank factor, i.e., 21EEE = , 
where 1E  is a left invertible matrix and 2E  is a right 
invertible matrix, then we can easily obtain the Moore-
Penrose inverse of E  as Τ−Τ−ΤΤ= 1

1
11

1
222 )()( EEEEEEE g . 

 
We design the single sliding surface for the switched system 
(1) as  

0)()()()( 1 =+ΓΓ== −ΤΤ txBYBXBtSxtζ ,           (3) 
where X  and Y  are symmetric matrices which will be 
determined latter. 
 
Remark 3. The single sliding surface 0)()( == tSxtζ  is 
designed such that the switched delay system (1) is 
asymptotically stable based on the single Lyapunov function 
approach in the sliding surface. The purpose of designing the 
single sliding surface for the switched delay system is to 
reduce the reaching phase in which systems are sensitive to 
uncertainties and perturbations, and improve the transient 
performance and robustness. 
 
Lemma 1. For the system (1) and the sliding surface (3), the 
sliding motion dynamics restricted to the sliding surface is 

).()~~(~~           

)()~~(~~)(

1
1

1
1

1

τξ

ξξ

σ

σ

−+

=
−ΤΤ

−ΤΤ

tBPBBPAB

tBPBBPABt

d

�
            (4) 

Proof. To get a regular form of the system (1), we define a 
nonsingular matrix G  and an associated vector ξ  as follows 
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where B~  is an orthogonal complement of the matrix B , 
Τ+ΓΓ= BYBXP  and 
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with mnR −∈1ξ , mR∈= ζξ2 . Note that the matrix G  is 
invertible. Indeed, it can be checked that  

[ ]111 )()~~(~ −−Τ− = SBBBPBBPG .                (7) 
By the state transformation (6), the system (1) is represented 
by the following regular form  
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where  
1

1111 )~~(~])([~ −ΤΤ Σ+= BPBBPEtDABA σσσσ , 
1

1112 )(])([~ −Τ Σ+= SBBEtDABA σσσσ , 
1

2211 )~~(~])([~ −ΤΤ Σ+= BPBBPEtDABA dd σσσσ , 
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1
2212 )(])([~ −Τ Σ+= SBBEtDABA dd σσσσ , 

1
1121 )~~(~])([ −ΤΣ+= BPBBPEtDASA σσσσ , 

1
1122 )(])([ −Σ+= SBBEtDASA σσσσ , 

1
2221 )~~(~])([ −ΤΣ+= BPBBPEtDASA dd σσσσ , 

1
2222 )(])([ −Σ+= SBBEtDASA dd σσσσ , 

)(~)(1 tBt ϕϕ Τ= ; )()(2 tSt ϕϕ = . 
Then the sliding motion dynamics in the sliding surface 

)0)()(( == tt ζζ �  can be described by following )( mn −  
dimensional switched system 
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By (2), we can easily obtain  
0~])1()1[(~

=+−−= Τ BBYBEEXEEEBEP gg . 
Then the sliding motion (9) can be represented by (4).  
 
Remark 4. We can see that by using the SMC method, the 
uncertainties iAΔ  diAΔ  and the nonlinearities ),( txfi  
disappear in the sliding motion (4) and the order of the 
considered system is reduced. Therefore we only need to 
study stabilization of the )( mn −  dimensional linear 
switched delay system (4) without uncertainties. 
 
Definition 1. The sliding motion (4) is said to be 
asymptotically stable if there exist a Lyapunov function 

)(xV  and a switching law σ  such that the derivative V  
along the trajectory of the system (4) satisfies  

0)()( <= tVtL �  

for all +∈ Rt .  
 
The objective in this paper is how to determine the sliding 
matrix S , design the switching law )(tσ  and variable 
structure controllers iu , Ξ∈i  such that  
1). the )( mn −  dimensional sliding motion (4) restricted to 
the sliding surface (3) is robustly asymptotically stable under 
the switching law )(tσ ; 
2). the state of the system (1) is driven towards the sliding 
surface (3) and stays there for all the future time.  
 
The design of the switched delay system (1) is split into the 
known and unknown time-delay cases. The corresponding 
results will be described in the next sections. 

3. MAIN RESULTS 

In this section, we give the design method. In general, 
variable structure control design methodology comprises two 
steps. First, the sliding surface is designed, so that the 
controlled system will yield the desired dynamic performance 
in the sliding surface. The second phase is to design the 
variable structure controllers such that the trajectory of the 
system arrive the sliding surface and remain on the sliding 
surface for all subsequent time. 

3.1 τ  is a Known Constant 

In this subsection, the system (1) with known time-delay τ  is 
considered. 
The following theorem shows that the system (1) in the 
sliding surface (3) is robustly asymptotically stabilizable 
under the switching law σ . 
Theorem 1. The sliding motion (4) based on the sliding 
surface (3) is asymptotically stabilizable via switching. If 
there exist symmetric matrices X , Y  matrix 00 >Q  and 

scalars Ξ∈≥ ii ,0α ,  1
1∑ =

=
l

i iα  satisfying the following 
LMIs 
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Then, we design the following hysteresis switching law  
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where ΤΤΤ −= )](),([)(ˆ

111 τξξξ ttt . 
Take symmetric positive-define matrices 1P , Q  and choose a 
Lyapunov functional candidate 
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Then the derivative of the Lyapunov functional (12) along 
the trajectory of the system (4) is  
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with 1
11 )~~(~~~ −ΤΤ= BPBBPABA σσ , 1

11 )~~(~~~ −ΤΤ= BPBBPABA dd σσ . 

Take the matrices 1
1 )~~( −Τ= BPBP , 1

0
1 )~~()~~( −Τ−Τ= BPBQBPBQ , 

then we have 0<V� . By the single Lyapunov function 
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method, the sliding motion (4) based on the sliding surface (3) 
is asymptotically stable under the switching law (11). This 
completes the proof. 
Next, the result of controller design of reaching motion is 
given. 
Theorem 2. Suppose LMIs (10) are feasible and the single 
sliding surface is given by (3). Then the state of the system (1) 
can enter the sliding surface in finite time, and subsequently 
remain on it by employing the following variable structure 
controllers 
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where 1μ  is a positive scalar.  
Proof. Consider the following Lyapunov function candidate 
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Its derivative along the trajectory of the system (1) is given  
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Applying the variable structure controllers (13) to the 
inequality (15) results in ζμζζ 1−≤Τ � . Hence the state of 
the system (1) will reach the single sliding surface (3) in 
finite time and subsequently remain on it. This completes the 
proof. 

3.2 τ is an Unknown Constant 

When time-delay τ  is an unknown constant, the switching 
law (11) and the controllers (13) are not applicable. We 
assume the time-delay is an unknown, but it is bounded by 
the known constant τ . 
 
The following theorem shows that the system (1) with 
unknown time-delay τ  in the sliding surface (3) is robust 
asymptotically stabilizable under the switching law σ . 
Theorem 3. The sliding motion (4) based on the sliding 
surface (3) is asymptotically stablilizable via switching. If 
there exists a positive number ε , matrix 01 >Q  symmetric 

matrices X , Y  and scalars Ξ∈≥ ii ,0β ,  1
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=
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∑ =

l

i ii A1
β , },,{ 11 QQdiagR …= . 

Proof. We define regions 

{

}.,0)(          
)~~)~~(          

~~~~){()(

1

1
1

1
1

11

Ξ∈<×
ΓΓΓΓ++

ΓΓ+ΓΓ=Φ
ΤΤ−−Τ

ΤΤΤΤ

it
BXABQBXABQ

BAXBBXABtt

didi

iii

ξ
εε

ξξ
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Then, we design the following hysteresis switching law  
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Take symmetric positive-define matrix 2P  and define the 
following Lyapunov-Krasovskii functional 
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where 1Q  satisfy (16).  
Then the derivative of (18) along the trajectory of the system 
(4) is  
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Applying the standard bounding relation 
bbaaba 1−ΤΤΤ Ζ+Ζ≤ , ,0,,, >Ζ∈Ζ∀∈∀ ×nnn RRba  

gives 

).()()(~~    

)~~()~~(~~)(  

)()~~(~~)(2

1212112

11
2

1
1

11
2

1
21

1
1

21

τξετξξ

εξ

τξξ

σ

σ

σ

−−+×

≤

−

ΤΤΤ

−Τ−−−−−ΤΤΤ

−ΤΤΤ

tPQPttPBPAB

BPBPQPBPBBPABPt

tBPBBPABPt

d

d

d

 (20) 

Substituting the right side of the inequality (20) into (19), we 
have 
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Choosing 1
2 )~~( −Τ= BPBP , we get 0)( <tV� . By the single 

Lyapunov function method, the sliding motion (4) based on 
the sliding surface (3) is asymptotically stable under the 
switching law (17). This completes the proof. 
Next, the result of controller design of reaching motion is 
given. 
Theorem 4. Suppose inequalities (16) are feasible and the 
single sliding surface is given by (3). Then the state of the 
system (1) can enter the sliding surface in finite time, and 
subsequently remain on it by employing the following 
variable structure controllers 
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,),(}2 Ξ∈+ isign ζμ                                         (22) 
where 2μ  is a positive scalar. 
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Proof. It follows from the Razumikin theorem (Hale & Lunel, 
1993) that for any solution )( θ+tx  of (1), there exist a 
constant 1>λ  such that  

0 ,)()( ≤≤−≤+ θτλθ txtx .                 (23) 
Consider the Lyapunov function candidate 

ζζζ Τ=
2
1)(V .                            (24) 

Its derivative along the trajectory of the system (1) is 

).,()(      

)()(      
]})([)({   

)]),()([       
)()()()((

2

1

txSBtxESD

txSAtExSD
utZuSBtxSA

txfutZuSB
txAAStxAASV

ii

dii

iiii

iiii

didiii

φζζτ

ζτζ

ζ

τζ

+−+

−++

++≤

+++
−Δ++Δ+=

Τ

Τ�

      (25) 

Applying the variable structure controllers (22) to the 
inequality (25) results in ζμζζ 2−≤Τ � . Hence the state of 
the system (1) will reach the single sliding surface (3) in 
finite time and subsequently remain on it. This completes the 
proof. 

4. EXAMPLES 

In this section, we present a numerical example to 
demonstrate the effectiveness of the proposed design method. 
Consider the following uncertain switched delay system 

],0,[  ),()(
)],,()([           

)()()()()(

τϕ

τ

σσσσ

σσσσ

−∈=
+++

−Δ++Δ+=

tttx
txfutZuB

txAAtxAAtx dd�
          (26) 

where }2,1{)( =Ξ∈tσ , 5.0≤τ , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=
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5.012.0

1A , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

1.015.0
111
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2A , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

5.0
1
0

B , 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

5.011
5.005.0
5.05.01

1dA , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

5.010
5.05.00

011.0

2dA , =1Z  

02 =Z , 021 == ff , the parameter uncertainties ii DA 1=Δ  

Ei1Σ× , ,22 EDA iidi Σ=Δ  where Τ== ]010[1211 DD , 

=21D Τ= ]001[22D , ]011[=E , ]1,1[11 −∈=Σ ii ν , 
=Σ i2 ]1,1[2 −∈iν .  

We select 4.01 =β , 6.02 =β , 1.0=ε , 52 =μ .  
By solving inequality (16), we can obtain the following 
solutions  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−−−
−−

=
6.66.3805.375

6.3801.10734.33
5.3754.332.1015

X , ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

1922.20423.6
423.64973.8

1Q , 

9448.4=Y . 
By (3) the single sliding function is  

[ ] )(02022.02022.0)( txt =ζ .                (27) 
From Theorem 4, the reaching control laws are taken as 
follows 
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It is easy to verify that the conditions of Theorem 3 and 4 are 
satisfied. Following the proposed design method use 
Theorem 3 and 4.  
The hysteresis switching law is  

⎪
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⎨

⎧
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where 

}0)(
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0126.00063.0862.0
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−−
−−=Φ Τ txtxtx . 

The simulation results for the switched system (26) are 
depicted in Fig. 1-Fig. 4. 
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Fig. 1. The state responses of the switched system (26) 
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Fig. 2. The input signal of the switched system (26)  
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Fig. 3. The trajectory of the sliding function (27) 
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Fig. 4. The switching signal (28) 

 

The state of the system (26) in the closed-loop and with the 
same initial state vector  [ ]Τ−= 1,2，10x  is shown in Fig. 1. It 
is clearly seen that the closed-loop system of the switched 
system (26) with the designed controllers and the switching 
law (28) is asymptotically stable. 

5. CONCLUSION 

In this paper, the problem of robust sliding mode variable 
structure control has been studied for a class of uncertain 
switched delay systems. The single sliding surface has been 
constructed. The existence conditions of the sliding surface 
have been proposed for delay-known and delay-unknown 
cases, respectively. The corresponding hysteresis switching 
laws and variable structure controllers have been developed 
such that the resulting closed-loop system is robust stable and 
completely invariant to all admissible uncertainties in the 
sliding surface. 
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