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Abstract: This paper details two control approaches for a flexible manipulator system, where
the non-minimum phase problem is treated. In the first approach, we use the motion planning
technique. It searches for proper output trajectories with polynomial form, in order to cancel
the effects of the unstable zeros. The second approach is called Path-Following with internal
model control. Its primary objective is to steer a physical object to converge to a geometric
path, and its secondary objective is to ensure that an object’s motion along the path satisfies a
given dynamic specification.
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1. INTRODUCTION

For a long time there has been a standing interest into
the use of light and flexible manipulator robots. Amongst
the many improved characteristics when compared to rigid
robots, perhaps the most appealing one is the higher
operation speeds achievable. Unfortunately, the dynamic
system of this kind of robots is of high dimension due
to the links flexibility, and the control problem that is
posed is a non-colocated one, since we apply torque at one
end and measure position at the other end of a flexible
element. This characteristic makes the control of flexible
manipulators one of the areas under great investigation in
robotics. The three main objectives in the control of the
flexible robot arms are:

• O1 - Point to point motion of the end-effector.
• O2 - Trajectory tracking in the joint space(tracking

of a desired angular trajectory).
• O3 - Trajectory tracking in the operational space

(tracking of a desired end-effector trajectory).

When comparing flexible manipulators with rigid manipu-
lators, the control methodology differs. Using rigid manip-
ulator robots, we can achieve excellent control using sim-
ple linear joints controllers, such as Proportional-Integral-
Derivative (PID) controllers. On the other hand, when we
use a flexible manipulator, we have to consider the oscil-
lations that appear at the tip during motion, therefore,
we need to design a controller that contemplates feedback
of the end-effector position. There are many references in
the literature dealing with Non-Minimum phase systems
controllers. Isidori [1999] presented a stabilization via out-
put feedback and Dačić [2005] presented three distinct
approaches for tracking in the presence of unstable zeros
dynamics. He referred to them as: the Internal Model ap-
proach, the Flatness approach and the Inversion approach.
Also Aguiar et al. [2004, 2005c,a], Aguiar [2005b], Aguiar

and Hespanha [2007] presented the path-following meth-
odology with an internal model control in order to control
a vehicle with unstable load at a constant speed. There
are less publications referring to robotic manipulator path-
following. Skjetne [2005] presents the problem of a robotic
cutting tool where the control objective is for the tip of
the tool to trace a desired repeatable path at a constant
nominal speed. Benosman and Vey [2003, 2000a,b], Benos-
man et al. [2002] made a profound analysis about stable
inversion approach in order to cancel the unstable zero
dynamics. In this paper we will mainly focus into the
Internal Model Approach and the Inversion approach.

This paper is organized as follows: Section 2 recalls the
dynamic equations of a flexible link. In section 3 the trajec-
tory planning method is presented. Section 4 presents the
path-following controller. The simulation results are shown
in section 5, and finally the conclusions are presented in
section 6.

2. DYNAMIC EQUATIONS

The research presented is based on the one joint planar
flexible robot represented in figure 1. It will be considered

Fig. 1. Mechanical model of a single flexible link
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that the flexible link is clamped to a rigid hub with a
moment of inertia (IH), radius (r) and an input torque
(τ). Martins et al. [2002], Martins et al. [2003] and Martins
et al. [2005] describes how to obtain the ordinary differen-
tial equations of the current system in the form

Mq̈ + Kq = T

where M is the system inertia matrix, K is the system
stiffness matrix, T is the vector of external forces and q is
the vector of generalized coordinates.

q = [θ η1 η2]
T

T = [τ 0 0]
T

Here, ηi is the nodal amplitude of the ith clamped-
free mode considering the assumed modes discretisation
procedure. In this paper it will be considered only the first
two clamped-free modes.

Considering linear displacements, the displacement at dis-
tance x from the frame origin into the OX direction, can
be described as:

y (x, t) = x θ (t) + ν (x, t) (1)

The total displacement is a function of the rigid body
motion θ (t) and elastic deflection ν (x, t) where

ν(x, t) =

2
∑

i=1

φi (x) ηi (t)

φi (x) and ηi (t) represent the modal functions and modal
amplitudes of the ith clamped-free mode respectively. The
modal functions considered are

φ1 (x) = 3
( x

L

)2

− 2
( x

L

)3

φ2 (x) =
( x

L

)2

−
( x

L

)3

φ (x) = [ φ1 (x) φ2 (x) ]

where L is the total beam length.

3. MOTION PLANING - STABLE INVERSION
METHOD

We consider a non-minimum phase linear system repre-
sented in the following form,

P (
d

dt
)u(t) = Q(

d

dt
)y(t) (2)

where P and Q are polynomials in a differential operator
d/dt, with degrees m and n respectively (m < n). In a first
analysis, the solution of (2) is composed by two terms: the
transient and the steady-state.

Since system (2) has a non-minimum phase characteristic,
the transient conditions contains divergent terms, as a
result of the unstable zeros. Thus, the solution Benosman
and Vey [2003, 2000a,b] presented is to plan the output
trajectory in a way that the undesirable response of the
system is cancelled considering a polynomial in time form
for the output trajectory,

yd =

p
∑

i=1

ait
i−1 (3)

where the degree of the polynomial form p depends of the
number of output initial and final constraints, as well as
the number of unstable zeros associated to (2). Solving (2),

we obtain u(t) = ut(t) + up(t) where ut is the transient
solution of the homogeneous differential (2), and up is the
one particular solution of the inverse system.
The transient solution can be represented by:

ut(t) =
m

∑

i=1

Ai(ai, t0, u
(1)
0 , ..., u

(n−1)
0 ) expri,ti (4)

Where the ri are all the roots of the characteristic equa-
tion. The Ai are linear functions of ai coefficients and
all initial conditions. It can be shown that their general
expression is

Ai = u0 +

p
∑

j=1

aj

zeroj
i

(5)

Furthermore, particular solution can be represented by:

up(t) =

p
∑

i=1

Bi(ai)t
i−1 (6)

To cancel the effect of the unstable zeros on the transient
solution (4), (all the zeros on the right half plane or pure
imaginary zeros), the Ai associated to the unstable zeros
must be equal to zero.

Ai(ai, t0, u
(1)
0 , ..., u

(n−1)
0 ) = 0 (7)

With the previous constraint in the linear system above
we can obtain the output coefficients (ai). Just adding the
final and initial constraints, this leads to the next linear
system:







Ai(ai, t0, u
(1)
0 , ..., u

(n−1)
0 ) = 0

yi
d(t0) = initial conditions

yi
d(tf ) = final conditions

(8)

where i is the highest order for the specified output
derivatives. From (8) we have the coefficients ai and the
necessary output to cancel the unstable zeros. So, the
result of the remaining stable Ai is known. To complete
the desired input u(t), it is only necessary to obtain the
particular input solution (6). The Bi elements are obtained
as linear functions of the output coefficients ai, through
substitution of (4) into the differential equation (2). Now,
all necessary elements to obtain the desired input on an
open loop form is:

uol =

p
∑

i=1

Bi(ai)t
i−1+

+

m
∑

i=1

Aist(ai, t0, u
(1)
0 , ..., u

(n−1)
0 ) exprist,ti

(9)

where rist and Aist, are the stable zeros and the corre-
sponding Ai terms respectively. On a final approach to
the problem, it is recommended to close the loop around
the joint position in order to bring some robustness. The
final closed-loop control is:

ucl(t) = uol(t) + k
(

eθ, e
1
θ, . . . , e

n−1
θ

)T
(10)

where the error is eθ(t) = θd(t) − θ(t).

3.1 Example of implementation

A dynamic model from one link flexible arm with the
following properties, with two bodies will be considered:

• The first one is a rigid hub with a R = 0.075m radius.
• The second body is a flexible link with length of

L = 0, 5m.
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The system transfer function is

y

τ
=

92.5s4 + 8.545 × 10−12s3 − 4.924 × 106s2−

s2(s4 + 1.066 × 10−14s3 + 56780s2+

−3.015 × 10−7s + 1.163 × 1010

+5.795 × 10−10s + 1.307 × 108)

(11)

For simplification we will call the coefficients of the
numerator as a vector N , and the coefficients of the
denominator as a vector D. The transfer function zeros
are:
s1,2 = ±225, 2893 s3,4 = ±49, 7712
We have two unstable zeros.
The differential equation representing (11) is

5
∑

i=1

N (i)τ (5−i) (t) =

7
∑

j=1

D (i)y(7−j) (t) (12)

associated to the initial conditions:
{

τ (i) (0) = 0, i ∈ {0, 1, 2, 3}
y(j) (0) = 0 j ∈ {0, 1, 2, 3, 4, 5}

As shown previously, the obtained input-output equation
can be associated to any initial conditions. In this case
we set the initial conditions to zero. The output that will
cancel the unstable zeros must be found. The result p = 12
is obtained (2 unstable zeros plus 4 initial conditions on
τ plus 6 initial conditions on y) where yd from (3) must
satisfy 12 constraints:

• The indices Ai corresponding to the unstable zeros
• Initial and final conditions.

Ak = τ0 +
p
∑

j=1

aj

Zo
j

k

= 0

yi(0) = 0 i ∈ {0, 1, 2, 3}
yi(tf ) = yf

yi(tf ) = 0 i ∈ {1, 2, 3, 4, 5}

The variable Zoj
k represents the kth unstable zero powered

to j. Note that these conditions were chosen to force the
desired torque to be simetric. The desired ai coefficients
are then directly obtained, solving the linear system above.
In this way it is possible to calculate the transient solution
of the system (4). The next step is to obtain the partic-
ular solution of the system (6). The coefficients Bi’s are
obtained as a linear functions of the output coefficients ai

substituting equation (6) and equation (3) into equation
(12). As introduced in section 3, equation (10), in order
to bring some robustness to this control, a close-loop form
should be used. Two types were chosen.

(1) A partial state feedback, based on the joint position
and velocity variables.

Tcl = Tol + Kp(θd(t) − θ(t)) + Kv(θ̇d(t) − θ̇(t))
Kp > 0, Kv > 0

(2) An open loop form where the input of the system is
the angle of the joint.

4. PATH-FOLLOWING FOR ONE LINK
NON-MINIMUM PHASE ROBOT

The objective of the Path-Following method is to force the
non-minimum phase system output to follow a geometric
path without a timing law assigned to it. The systems with
unstable zero dynamics have limited tracking capabilities.

The only way to solve this performance limitation is to
change the input-output structure of the system. This
structure can be changed by reformulating the problem as
path-following, rather than reference tracking. With this
reformulation, it is possible to add a new timing law γ(t)
that becomes an additional control input.

In this section we define the Path-Following problem,
called Internal model control, and it has the goal to
achieve asymptotic tracking of reference signals, as it is
demonstrated by Aguiar et al. [2005a]. The controller that
incorporates an internal model of the exosystem is capable
to ensure an asymptotic convergence of the tracking error
to zero for every possible reference signal generated by the
exosystem. The following linear time-invariant system is
assumed:

ẋ(t) = Ax(t) + Bu(t) x(t0) = x0

y(t) = C x(t) + Du(t)
(13)

where x(t) is the state, u(t) the input, and y(t) the output.
The main objective of this method is to reach and follow
a desired geometric path yd(γ). The geometric path yd(γ)
can be generated by an exosystem of the form:

d

dγ
w (γ) = S × w (γ) w (γ0) = w0

yd (γ) = Q × w (γ)
(14)

where w ∈ R
2n is the exogenous state and S +S′ = 0. For

any timing law γ(t), the Path-Following error can be de-
fined as e(t) = y(t)−yd(γ(t)). The path yd (γ) is described
in more detail in Pires [2007]. The following problems can
be associated to the Path-Following methodology:

Geometric Path-Following: For the desired path yd(γ), it
is necessary to design a controller that achieves:

• Boundedness: the sate x(t) is uniformly bounded for
all t > t0, and every initial condition (x(t0), w(γ0)),
γ0 = γ(t0).

• error convergence: the path- following error e(t) con-
verges to zero as t → ∞.

• forward motion: γ̇ (t) > c for all t > t0, where c is a
positive constant.

Speed-assigned Path-Following: Given a desired speed
vd > 0, it is required that γ̇ → vd as t → ∞.
As demonstrated by Aguiar et al. [2005a] and Aguiar
[2005b], we can always assume a small L2-norm of the
path following error,

J =

∞
∫

0

‖y(t) − yd(t)‖
2
dt =

∞
∫

0

‖e(t)‖
2
dt < δ

that verifies a δ arbitrarily small in order to consider a
perfect tracking problem.

4.1 Controller Design - Internal model control

Aguiar et al. [2005a] presented one solution to achieve
path controller for (13), such that the closed loop state is
bounded. If (A, B, C,D) is a non-minimum phase system,
the pair (A, B) is stabilizable, the pair (C, A) is detectable,
the number of inputs is as large as the number of out-
puts and the zeros of (A, B,C, D) do not coincide with
the eigenvalues of S (14). Then for the geometric Path-
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Following problem there are constant matrices K and L,
and a timing law γ(t) such that the feedback law is:

u(t) = Kx(t) + L(γ̇d)w(γ(t)) (15)

To calculate the matrices K and L, the following internal
model approach is considered :

vdΠS = AΠ + BΓ

0 = CΠ + DΓ − Q
(16)

As shown before, the Sylvester equations (16), are solvable
if the system (A, B, C,D) is right-invertible and its zeros
do not coincide with the eigenvalues of vdS. The method-
ology to solve this equation is described as follows:

• Transform the system (16) matrices into the following
system:

NewA =

[

Kron (I (ns) , A) − Kron
(

S
′

, I (na)
)

Kron (I (ns) , C)

Kron (I (ns) , B)
Kron (I (ns) , D)

]

NewB =

[

0
Q

]

(17)

Where ns is the size of the square matrix S, na is the size
of the square matrix A, and I the identity matrix.

• From equation (17) and (16) the following formula is
obtained:

[ Π Γ ]
T

= [NewA]
−1

[NewB]

• Since we now have all Π and Γ it is possible to obtain
the controller gains K and L. K is calculated by
a minimum quadratic regulator, that minimizes the
quadratic cost function,

J (u) =

∞
∫

0

(

xT Qx + uT Ru + 2xT Nu
)

dt

and L is equal to L = Γ − K × Π.

Now that the path controller design is complete, a evolu-
tion rule to γ has to be created, in a way that, lim

t→∞

γ = γd

and lim
t→∞

γ̇ = vd.

5. SIMULATION RESULTS

In this section we report some simulation results on the
IST flexible arm described on figure 1.

5.1 Motion Planing - Control where the input is the torque

The method was solved for tf = 2.7s and yf = −0.35m.
The closed loop control was obtain using Kp = 4 and
Kv = 0.03. In figures 2 and 3 we presented the simulation
tracking error and the corresponding deformation of the
end-effector. After a brief analysis, it is visible that the
stationary error is equal to 2.5×10−7m, and the vibration
on the end effector is about 2 × 10−7m. Those are very
small values comparing to the obtained during the path
evolution. Furthermore the error verified in figure 2 is
due to the fact that the simulated model is quadratic in
deformation Martins et al. [2002]. Figure 4 presents the
output torque of close-loop controller. In this figure, the
torque appears with small differences from the desired, due
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Fig. 2. Simulation tracking error
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Fig. 3. Simulated end-effector deformation
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Fig. 4. Simulated close-loop torque

to the addition of the tracking error. The minor oscillation
occurring in the steady state (t > 2.5s in fig. 2), are also
due to the quadratic terms of the simulated system.

5.2 Control where the input of the system is the angle of
the joint.

In this type of controller, the main idea is to make the
system robust to external factors such as friction. Instead
of calculating the transfer function between the torque
and the position of the end-effector, the transfer function
between the angle of the joint and the position of the end-
effector has been calculated.

y

θ
=

1330s4 + 1.398 × 10−9s3 − 7.079 × 107s2+

s6 + 334.3s5 + 7.198 × 107s4 + 1.456 × 107s3+
+7.493 × 10−5s + 1.672 × 1011

7.925 × 108s2 + 6.393 × 109s + 2.907 × 1011
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Fig. 5. Desired θ

Calculating the desired angle in a way that the undesired
transient response is eliminated, the angles shown in figure
5 are obtained. By observing figure 6 and 7, we notice that
the stationary error has been reduced to an insignificant
value. Using this controller the system has become more
robust to external factors, such as joint friction, and
reduces the vibration in the steady state.
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Fig. 6. Simulated end-effector deformation
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Fig. 7. Simulated error

5.3 Path-Following results

The variable yd was used as a desired path output. The
path used was:

yd =
(

1 − e(−wd×γ) × (1 + wd × γ)
)

yf

dyd

dγ
=

(

wde
(−wd×γ) × (1 + wd × γ) − wde

(−wd×γ)
)

yf

d2yd

dγ2
=

(

−w2
de(−wd×γ) × (1 + wd × γ) + 2w2

de(−wd×γ)
)

yf

(18)
where the variable wd and yf sets the convergence velocity
of the system to the final value yf . For the results presented
in the next section, the following data was used. The
system state space representation in continuous form is:

A =















0 0 0 0 16040.41 9038.62
0 0 0 0 1143.68 2422.93
0 0 0 0 −81331.5 −57923.19
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0















B = [ 607.9 −296.4 −364.7 0 0 0 ]
T

C = [ 0 0 0 0.575 1 0 ] , D = [0]

(19)

where in this representation, the states are represented in
the following way

q =
[

θ̇, η̇1, η̇2, θ, η1, η2

]T

The variable θ represents the joint angle. For the controller
calculus we used the Matlab LQR command, which re-
quires the matrix A and B (19) and result in the following
gain state space matrix

K = [ - 10.2518 - 16.8531 - 2.3238 - 181.8310

- 126.2391 8.1224 ]
(20)

The value of the controller L (15) is calculated for different
values of speed assignments between 0m/s and 5m/s. The
five seconds simulation has yf = π/8 as final value. The
path simulation has the following properties:

• A final y value yf = π/8 in a five seconds simulation
• ωd equal to 20.

In figure 8 we present the desired yd versus the γ variable.
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Fig. 8. Evolution of the desired output versos the path
variable

Figures 9 and 10 present the simulation tracking error and
the corresponding deformation of the end-effector. The
tracking error and the end-effector deformation converge
to zero value, as expected.
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Fig. 9. Simulation Tracking error

Fig. 10. Deformation of the end-effector

6. CONCLUSIONS

The stable inversion method is a simple and efficient
control methodology, where all the computational effort
is made offline. Regarding the control where the input of
the system is the angle of the joint, it is evident that this
kind of control is more robust and efficient than the control
where the input is the torque. Thus, this is the controller
recommended for experimental applications, due to joint
friction.

Path following is still under intensive study, but the
present results show its applicability to flexible manipu-
lators. Since the reference-tracking controller is an open-
loop controller respect to the tip, when the reference
achieves the final value, the controller becomes passive and
it does not observe the end-effector deflection, resulting
on a permanent vibration. The path-following ability to
separate the dynamic follower controller from the states
boundedness controller, improves the control actuation.
Even when the system reaches to the final value, it still
removes the external perturbation. It becomes clear that
the path-following controller is a much more developed and
robust controller than the reference tracking controller.
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