
     

An Adaptive Sensor Fusion Method with Applications  
in Integrated Navigation 

 
Dah-Jing Jwo*. Tsu-Pin Weng ** 

 
* Department of Communications, Navigation and Control Engineering 

National Taiwan Ocean University, Keelung 202-24, Taiwan 
(e-mail: djjwo@mail.ntou.edu.tw) 

** EverMore Technology Inc., Hsinchu, Taiwan 
(e-mail:bibby@emt.com.tw) 

 

Abstract: The Kalman filter (KF) is a form of optimal estimator characterized by recursive evaluation, 
which has been widely applied to the navigation sensor fusion. The adaptive algorithm is one of the 
approaches to prevent divergence problem of the Kalman filter when precise knowledge on the system 
models is not available. Two popular types of adaptive Kalman filter are the innovation-based adaptive 
estimation (IAE) approach and the adaptive fading Kalman filter (AFKF) approach. In this paper, an 
approach involving the concept of the two methods is proposed. The method is a synergy of the IAE and 
AFKF approaches. The ratio of the actual innovation covariance based on the sampled sequence to the 
theoretical innovation covariance is employed for dynamically tuning two filter parameters: fading factors 
and measurement noise scaling factors. The method has the merits of good computational efficiency and 
numerical stability. The matrices in the KF loop are able to remain positive definitive. Navigation sensor 
fusion using the proposed scheme applied to the loosely-coupled GPS/INS integration will be 
demonstrated.  

 

1. INTRODUCTION 

The Kalman filter (KF) (Brown and Hwang, 1997, Gelb, 
1974) not only works well in practice, but also it is 
theoretically attractive since it has been shown to be the filter 
that minimizes the variance of the estimation mean square 
error (MSE). Nevertheless, the fact that KF highly depends 
on a predefined dynamics model forms a major drawback. 
The case that theoretical behavior of a filter and its actual 
behavior do not agree may lead to divergence problems. For 
example, if the Kalman filter is provided with information 
that the process behaves a certain way, whereas, in fact, it 
behaves a different way, the filter will continually intend to 
fit an incorrect process signal. In various circumstances, the 
availability of a precisely known model is unrealistic due to 
the fact that in the modeling step, some phenomena are 
disregarded and a way to take them into account is to 
consider a nominal model affected by uncertainty.  

To fulfill the requirement of achieving the filter optimality or 
to preventing divergence problem of Kalman filter, the so-
called adaptive Kalman filter (AKF) approach has been one 
of the promising strategies for dynamically adjusting the 
parameters of the supposedly optimum filter based on the 
estimates of the unknown parameters for on-line estimation 
of motion as well as the signal and noise statistics available 
data. Two popular types of the adaptive Kalman filter 
algorithms include the innovation-based adaptive estimation 
(IAE) approach (Ding, et al., 2007; Mehra, 1971, 1972; 
Mohamed and Schwarz, 1999; Hide et al., 2003) and the 
adaptive fading Kalman filter (AFKF) approach (Xia et al., 
1994), which is a type of covariance scaling method. The 

AFKF incorporates suboptimal fading factors as a multiplier 
to enhance the influence of innovation information for 
improving the tracking capability in high dynamic 
maneuvering. 

The Global Positioning System (GPS) (Brown and Hwang, 
1997) and inertial navigation systems (INS) (Farrell, 1998) 
have complementary operational characteristics and the 
synergy of both systems has been widely explored. GPS is 
capable of providing accurate position information. 
Unfortunately, the data is prone to jamming or being lost due 
to the limitations of electromagnetic waves, which form the 
fundamental of their operation. The system is not able to 
work properly in the areas due to signal blockage and 
attenuation that may deteriorate the overall positioning 
accuracy. The INS is a self-contained system that integrates 
three acceleration components and three angular velocity 
components with respect to time and transforms them into the 
navigation frame to deliver position, velocity and attitude 
components. The three orthogonal linear accelerations are 
continuously measured through three-axis accelerometers 
while three gyroscopes sensors monitor the three orthogonal 
angular rates in an inertial frame of reference. For short time 
intervals, the integration with respect to time of the linear 
acceleration and angular velocity monitored by the INS 
results in an accurate velocity, position and attitude. However, 
the error in position coordinates increase unboundedly as a 
function of time. The GPS/INS integration is the adequate 
solution to provide a navigation system that has superior 
performance in comparison with either a GPS or an INS 
stand-alone system. The integration is typically carried out 
through Kalman filter. 
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2. KALMAN FILTER AND INNOVATION SEQUENCE 

The process model and measurement model are represented 
as 

kkkkk wGxΦx +=+1                           (1a) 

kkkk vxHz +=                              (1b) 

where the state vector  n
k ℜ∈x , process noise vector n

k ℜ∈w , 
measurement vector m

k ℜ∈z , and measurement noise 
vector m

k ℜ∈v . In Equation (1), both the vectors kw  and kv  
are zero mean Gaussian white sequences having zero 
crosscorrelation with each other: 
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where kQ  is the process noise covariance matrix, kR  is the 
measurement noise covariance matrix, t

k e Δ= FΦ  is the state 
transition matrix, and tΔ  is the sampling interval, ][⋅E  
represents expectation, and superscript “T” denotes matrix 
transpose. The discrete-time Kalman filter algorithm is 
summarized as follow: 

- Prediction steps/time update equations: 

kkk xΦx ˆˆ 1 =−
+                                   (3) 

kkkkk QΦPΦP +=−
+

T
1                              (4) 

- Correction steps/measurement update equations: 
1TT ][ −−− += kkkkkkk RHPHHPK                       (5) 

]ˆ[ˆˆ −− −+= kkkkkk xHzKxx                           (6) 
−−= kkkk PHKIP ][                              (7) 

Equations (3)-(4) are the time update equations of the 
algorithm from step k  to step 1+k , and Equations (5)-(7) 
are the measurement update equations. These equations 
incorporate a measurement value into a priori estimation to 
obtain an improved a posteriori estimation. 

From the incoming measurement kz  and the optimal 
prediction −

kx̂  obtained in the previous step, the innovations 
sequence is defined as 

−−= kkk zzυ ˆ                                    (8) 
The innovation reflects the discrepancy between the predicted 
measurement and the actual measurement. It represents the 
additional information available to the filter as a consequence 
of the new observation kz . Substituting the measurement 
model Equation (1b) into Equation (8) gives 

 kkkkk vxxHυ +−= − )ˆ(                            (9) 
An innovation of zero indicates that the two are in complete 
agreement. The corresponding error mean of an unbiased 
estimator is zero. By taking variances on both sides, the 
theoretical covariance matrix of the innovation sequence is 
given by  

kkkkkkk
E RHPHυυC +== − TT ][υ                     (10) 

Defining 
kυĈ  as the statistical sample variance estimate of 

kυC , matrix 
kυĈ can be computed through averaging inside a 

moving estimation window of size N  

∑=
=

k

jj
jjk N 0

T1ˆ υυCυ                            (11) 

where N  is the number of samples (usually referred to the 
window size); 10 +−= Nkj  is the first sample inside the 
estimation window. The window size N is chosen empirically 
(The values between 10 and 30 are commonly used.) to give 
some statistical smoothing. More detailed discussion is 
referred to Gelb (1974), Brown & Hwang (1997), and 
Mohamed & Schwarz (1999). 

3. THE PROPOSED ADAPTIVE SENSOR FUSION 
STRATEGY 

A new strategy for tuning the filter parameters is presented. 
The conventional KF approach is coupled with the adaptive 
tuning system (ATS) for providing two system parameters: 
fading factor and noise covariance scaling factor. In the ATS 
mechanism, both adaptations on process noise covariance 
(referred to P-adaptation herein) and on measurement noise 
covariance (referred to R-adaptation herein) are involved. 
The idea is based on the concept that when the filter achieves 
estimation optimality, the actual innovation covariance based 
on the sampled sequence and the theoretical innovation 
covariance should be equal. In other words, the ratio between 
the two should approach unity. 

3.1 Adaptation on process noise covariance 

The idea of fading Kalman filtering is to apply a factor 
matrix to the predicted covariance matrix to deliberately 
increase the variance of the predicted state vector. To account 
for the uncertainty, the covariance matrix needs to be updated, 
through the following way. The new −

kP  can be obtained by 
multiplying −

kP  by the factor Pλ :  

−− = kPk PλP                                  (12) 
and the corresponding Kalman gain is given by 

1TT ][ −−− += kkkkkkk RHPHHPK                   (13a) 

If representing the new variable kRk RλR = , we have  

1TT ][ −−− += kRkkkkkk RλHPHHPK                (13b) 
From Equation (13b), it can be seen that the change of 
covariance is essentially governed by two of the parameters:  

−
kP  and kR . In addition, the covariance matrix at the 

measurement update stage, from Equation (7), can be written 
as 

−−= kkkk PHKIP ][                          (14a) 
and  
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−−= kkkPk PHKIλP ][                        (14b) 
Furthermore, based on the relationship given by Equation 
(12), the covariance matrix at the prediction stage (i.e., 
Equation (4)) is given by 

kkkkk QΦPΦP +=−
+

T
1                         (15) 

or, alternatively 

kkkkPk QΦPΦλP +=−
+

T
1                      (16a) 

On the other hand, the covariance matrix can also be 
approximated by 

)(11 k
T
kkkPkPk QΦPΦλPλP +== −

+
−
+             (16b) 

where ),,( 21 mP diag λλλ …=λ . The main difference between 
various adaptive fading algorithms is essentially on the 
calculation of scale factor Pλ . One approach is to assign the 
scale factors as constants. When 1≤iλ  ( mi ,,2,1 …= ), the 
filtering is in a steady state processing while 1>iλ  , the 
filtering may tend to be unstable. For the case 1=iλ , it 
deteriorates to the standard Kalman filter. There are some 
drawbacks with constant factors, e.g., as the filtering 
proceeds, the precision of the filtering will decrease because 
the effects of old data tend to become less and less. The ideal 
way is to use time varying factors that are determined 
according to the dynamic and observation model accuracy. 
When there is deviation due to the changes of covariance and 
measurement noise, the corresponding innovation covariance 
matrix can be rewritten as: 

kkkkk
RHPHC += − T

υ  
and 

kRkkkPk
RλHPHλC += − T

υ                         (17) 

To enhance the tracking capability, the time-varying 
suboptimal scaling factor is incorporated, for on-line tuning 
the covariance of the predicted state, which adjusts the filter 
gain, and accordingly the improved version of AFKF is 
obtained. The optimum fading factors can be calculated 
through the single factor: 
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where ][⋅tr  is the trace of matrix; 1≥iλ , is a scaling factor. 
Increasing iλ  will improve tracking performance.  

3.2 Adaptation on measurement noise covariance 

As the strength of measurement noise changes with the 
environment, incorporation of the fading factor only is not 
able to restrain the expected estimation accuracy. For 
resolving these problems, the ATS needs a mechanism for R-
adaptation in addition to P-adaptation, to adjust the noise 
strengths and improve the filter estimation performance.  

A parameter which represents the ratio of the actual 
innovation covariance based on the sampled sequence and the 

theoretical innovation covariance matrices can be defined as 
one of the following methods: 

(a) Single factor 
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λ ==  , nj ,2,1 …=                 (19a) 

(b) Multiple factors 

jjk
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j )(

)ˆ(

υ

υλ
C
C

=  , nj ,2,1 …=                      (19b) 

It should be noted that from Equation (17) that increasing kR  
will lead to increasing

kυC , and vice versa. This means that 
time-varying kR  leads to time-varying

kυC . The value of Rλ  
is introduced in order to reduce the discrepancies between 

kυC  and kR . The adaptation can be implemented through the 
simple relation: 

kRk RλR =                                 (20) 
Further detail regarding the adaptive tuning loop is illustrated 
by the flow charts shown in Figs.1 and 2, where two 
architectures are presented. Fig.1 shows the System 
architecture #1 and Fig.2 shows the System architecture #2, 
respectively. In Fig.1, the flow chart contains two portions, 
for which the block indicated by the dot lines is the adaptive 
tuning system (ATS) for tuning the values of both P and R 
parameters; in Fig.2, the flow chart contains three portions, 
for which the two blocks indicated by the dot lines represent 
the R-adaptation loop and P-adaptation loop, respectively.  

An important remark needs to be pointed out. When the 
System architecture #1 is employed, only one window size is 
needed. It can be seen that the measurement noise covariance 
of the innovation covariance matrix hasn’t been updated 
when performing the fading factor calculation. In the System 
architecture #2, the latest information of the measurement 
noise strength has already been available when performing 
the fading factor calculation. However, one should notice that 
utilization of the ‘old’ (i.e., before R-adaptation) information 
is required. Otherwise, unreliable result may occur since the 
deviation of the innovation covariance matrix due to the 
measurement noise can not be correctly detected. One 
strategy for avoiding this problem can be done by using two 
different window sizes, one for R-adaptation loop and the 
other for P-adaptation loop.   

4. SIMULATION EXPERIMENTS AND ANALYSIS 

Simulation experiments have been carried out to evaluate the 
performance of the proposed approach in comparison with 
the conventional methods for GPS/INS navigation processing. 
The loosely-coupled architecture is selected for 
demonstration, as shown in Fig.3. The computer codes were 
constructed using the Matlab® 6.5 version software. The 
commercial software Satellite Navigation (SATNAV) 
Toolbox by GPSoft LLC was employed for generating the 
satellite positions and pseudoranges. The satellite 
constellation was simulated and the error sources corrupting 
GPS measurements include ionospheric delay, tropospheric 
delay, receiver noise and multipath. Assume that the 
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differential GPS mode is used and most of the errors can be 
corrected, but the multipath and receiver thermal noise cannot 
be eliminated. 

 
Fig.1. Flow chart of the proposed AKF method - System 
architecture #1. 
 

 
Fig.2. Flow chart of the proposed AKF method - System 
architecture #2. 

The differential equations describing the two-dimensional 
inertial navigation state are (Farrell, 1998): 
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where [ ua , va ] are the measured accelerations in the body 
frame, rω  is the measured yaw rate in the body frame. It is 
usually difficult to set a certain stochastic model for each 
inertial sensor that works efficiently at all environments and 
reflects the long-term behavior of sensor errors. The 
following set of linearized equations is used 
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which will be utilized in the integration Kalman filter as the 
inertial error model. In Equation (22), nδ  and eδ represent the 
east, and north position errors; nvδ  and evδ represent the east, 
and north velocity errors; and δψ  represent yaw angle, 
respectively. The measurement model is given by  
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Fig.3. GPS/INS navigation processing using the proposed 
AKF. 
 
Experiment was conducted on a simulated vehicle trajectory 
originating from the (0,0) m location. The simulated outputs 
for the accelerometers and gyroscope are shown in Fig.4. The 
trajectory of the vehicle can be approximately divided into 
two categories according to the dynamic characteristics. The 
vehicle was simulated to conduct constant-velocity straight-
line during the three time intervals, 0-300, 901-1200 and 
1501-1800s, all at a speed of π10 m/s. Furthermore, it 
conducted counterclockwise circular motion with radius 3000 
meters during 301-900, and 1201-1500s where high dynamic 
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maneuvering is involved. The following parameters were 
used: window size 15=pN 20=RN ; the values of noise 
standard deviation are 1e-3 2/ sm  for accelerometers and 
gyroscopes. Trajectory for the simulated vehicle (solid) and 
the unaided INS derived position (dashed) is shown in Fig.5.  

 
Fig. 4. Simulated outputs for the accelerometers and 
gyroscope. 

 
Fig. 5. Trajectory for the simulated vehicle (solid) and the 
INS derived position (dashed). 
 
In the real world, the measurement will normally be changing 
in addition to the change of process noise or dynamic such as 
maneuvering. In such case, both P-adaptation and R-
adaptation tasks need to be implemented. In the following 
discussion, results will be provided for the case when 
measurement noise strength is changing in addition to the 
change of process noise strength. The measurement noise 
strength is assumed to be changing with variances of the 
values 2222 38164 →→→=r , where the ‘arrows (→)’ is 
employed for indicating the time-varying trajectory of 
measurement noise statistics. That is, it is assumed that the 
measure noise strength is changing during the four time 
intervals: 0-450s ( )4,0( 2N ), 451-900s ( )16,0( 2N ), 901-1350s 
( )8,0( 2N ), and 1351-1800s ( )3,0( 2N ). However, the internal 
measurement noise covariance matrix kR  is set unchanged 
all the time in simulation, which uses )3,0(~ 2Nrj , nj ,2,1 …= , 
at all the time intervals.  

Fig.6 shows the east and north components of navigation 
errors and the 1-σ bound based on the method without 
adaptation on measurement noise covariance matrix. It can be 
seen that the correct P information with incorrect R 
information (referred to partial adaptation herein) seriously 
deteriorates the estimation result. Fig.7 provides the east and 
north components of navigation errors and the 1-σ bound 
based on the proposed method (referred to full adaptation 
herein, i.e., adaptation on both estimation covariance and 
measurement noise covariance matrices are applied). The 
estimation accuracy has now been substantially improved. It 
can also been seen that the measurement noise strength has 
been accurately estimated, as shown in Fig.8. 

It should also be mentioned that the requirement 1)( ≥iiPλ  is 
critical. Example for illustration is given in Figs.9 and 10. 
Fig.9 gives the navigation errors and the 1-σ bound when the 
threshold setting is not incorporated. The corresponding 
reference (true) and calculated standard deviations when the 
threshold setting is not incorporated is provided in Fig.10. It 
is not surprising that the navigation accuracy has been 
seriously degraded due to the inaccurate estimation of 
measurement noise statistics.  

 
Fig.6. East and north components of navigation errors and the 
1-σ bound based on the method without adaptation on 
measurement noise. 

 
Fig.7. East and north components of navigation errors and the 
1-σ bound based on the proposed method (with full 
adaptation). 
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Fig.8. Reference (true) and calculated standard deviations for 
the east (top) and north (bottom) components of the 
measurement noise variance values. 
 

 
Fig.9. East and north components of navigation errors and the 
1-σ bound based on the proposed method when the threshold 
setting is not incorporated. 
 

 
Fig.10. Reference (true) and calculated standard deviations 
for the east and north components of the measurement noise 
variance values when the threshold setting is not incorporated. 

 

 

5. CONCLUSIONS 

This paper has proposed a new strategy of adaptive Kalman 
filter approach and provided an illustrative example for 
integrated navigation application. The conventional KF 
approach is coupled by the adaptive tuning system (ATS), 
which gives two system parameters: the fading factor and 
measurement noise covariance scaling factor. The ATS has 
been employed as a mechanism for timely detecting the 
dynamical and environmental changes and implementing the 
on-line parameter tuning by monitoring the innovation 
information so as to maintain good tracking capability and 
estimation accuracy. Unlike some of the conventional AKF 
method, the proposed method has the merits of good 
computational efficiency and numerical stability. The 
matrices in the KF loop are able to remain positive definitive. 
Remarks to be noted for using the method is made, such as: 
(1) The window sizes can be set different, to avoid the filter 
degradation/divergence; (2) The fading factors iiP )(λ  should 
be always larger than one while jjR )(λ  does not have such 
limitation. Simulation experiments for navigation sensor 
fusion have been provided to illustrate the accessibility. The 
accuracy improvement based on the proposed AKF method 
has demonstrated substantial improvement in both 
navigational accuracy and tracking capability. 

ACKNOWLEDGEMENTS 

This work has been supported in part by the National Science 
Council of the Republic of China under grant no. NSC 96-
2221-E-019-007. 

REFERENCES 

Brown, R., and Hwang, P. (1997). Introduction to Random 
Signals and Applied Kalman Filtering. John Wiley & 
Sons, New York. 

Ding, W., Wang, J., and Rizos, C. (2007). Improving 
Adaptive Kalman Estimation in GPS/INS Integration. 
Journal of Navigation, 60, 517-529. 

Mehra, R. K. (1971). On-line identification of linear dynamic 
systems with applications to Kalman filtering, IEEE 
Trans. Automat. Contr., AC-16, 12-21. 

Mehra, R. K. (1972). Approaches to adaptive filtering, IEEE 
Trans. Automat. Contr., AC-17, 693-698. 

Mohamed, A. H. and Schwarz, K. P. (1999). Adaptive 
Kalman filtering for INS/GPS, Journal of Geodesy, 73, 
193-203. 

Hide, C, Moore, T., and Smith, M. (2003). Adaptive Kalman 
filtering for low cost INS/GPS, Journal of Navigation, 56, 
143-152. 

Gelb, A. (1974). Applied Optimal Estimation. M. I. T. Press, 
MA. 

Farrell, J. (1998). The Global Positioning System and Inertial 
Navigation, McCraw-Hill professional. 

Xia, Q., Rao, M., Ying, Y., and Shen, X. (1994). Adaptive 
fading Kalman filter with an application, Automatica, 30, 
1333-1338. 

Reference (dashed)  

Calculated (solid)  

Calculated (solid)  

Reference (dashed)  

Reference (dashed)  

Calculated (solid)  

Calculated (solid)  

Reference (dashed)  

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

9007


