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Abstract: This paper presents a sliding-mode-based diagonal recurrent cerebellar model articulation 
controller (SDRCMAC) for multiple-input-multiple-output (MIMO) uncertain nonlinear systems. Sliding 
mode technology is used to reduce the dimension of the control system. Two learning stages are adopted to 
train the SDRCMAC and to improve the stability of the control system. Lyapunov stability theorem and 
Barbalat’s lemma are adopted to guarantee the asymptotical stability of the system. Performance is 
illustrated on a two-link robotic control and motor control of the human arm in the sagittal plane. 

 

1. INTRODUCTION 

In control engineering application, control of multiple-input-
multiple-output (MIMO) uncertain nonlinear systems is a 
challenging task. Neural networks have been suggested as a 
powerful building strategy (Huang, Huang & Chiou, 2003). 
Cerebellar model articulation controller (CMAC), a non-fully 
connected associative memory network, has good 
generalization capability and fast learning property (Albus, 
1975). For acquiring the derivative information of input and 
output variable, a CMAC with differentiable Gaussian 
receptive field basis function has been developed (Chiang & 
Lin, 1996); and a recurrent CMAC has been presented to 
solve dynamic problems (Wai, Lin & Peng, 2004). Some 
applications of CMAC for complex dynamic systems have 
been presented (Miller et al., 1990; Peng & Lin, 2007; Lin, 
Chen & Chen, 2007; Yeh, 2007). However, though CMAC 
can accurately learn the inverse mapping of the plant, it is 
hard to maintain the stability when a CMAC is solely used in 
the control systems. 

Sliding mode control (SMC) is an effective robust control 
approach for MIMO systems (Slotine & Li, 1991; Hung, Gao 
& Hung, 1993). However, the control chattering in the SMC 
may result in unforeseen instabilities. Some methods have 
been proposed to solve the problem (Man, Paplinski & Wu, 
1994; Feng, Yu & Man, 2002). 

It this study, a sliding-mode-based diagonal recurrent 
cerebellar model articulation controller (SDRCMAC) is 
proposed. The sliding mode technology is used to integrate 
the feedback information and reduce the dimension of the 
controller. A coarse-tuning stage is to enable the output 
behaviour of the SDRCMAC to approximate control surface 

of a SMC controller. A fine-tuning stage follows to improve 
the stability of the control system. 

While the new SDRCMAC should be applicable to a range of 
MIMO uncertain nonlinear systems, our specific motivation 
is the biological movement control. Such research is useful in 
the study of how the brain controls the movements (Todorov, 
2004). Yet, there is a lack of efficient methods to handle 
realistic biomechanical control problems. The characteristics 
of these problems are high dimension nonlinear dynamics, 
control constraints, complex performance criteria. 

The organization of this paper is described as follows. 
Section 2 presents problem formulation. The sliding mode 
controller is described in Section 3. The SDRCMAC control 
system is constructed in Section 4. Simulation results are 
shown in Section 5. And, conclusions are drawn in Section 6. 

2. PROBLEM FORMULATION 

Consider an MIMO nonlinear uncertain system described by 
the following: 

 
1 2

2

;
( , ) ( , ) ( ).

x x
x F X t B X t u d t

=⎧
⎨ = + +⎩

�
�

                                          

(1) 

 
where mu R∈ , and 2

1 2[ , ]T nX x x R= ∈ , 1 2, nx x R∈  represent 
the control input, and the state vector, respectively. 

( , ) nF X t R∈  and ( , ) n mB X t R ×∈  are bounded real continuous 
functions. ( )d t  represents the bounded disturbance and 
model uncertainty. Let the Euclidean norm || ( ) ||d t D Dκ≤ < , 
κ  is a positive decimal fraction, and D  is a positive constant. 
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The object of the control system is to design a suitable 
control law such that the state vector X  can track a specified 
reference trajectory 2

1 2[ , ]T n
d d dX x x R= ∈ . 

3. SLIDING MODE CONTROLLER 

We define the following sliding mode vector as 

 
1 2 1 2 1 2[ , , , ] [ ][ ] .T T

nS s s s CE C C e e= = ="

                  

(2) 

 
where 1 1( , , ) n n

nC diag c c R ×= ∈…  is a positive matrix, 2
n nC R ×∈  

is a unit matrix, dE X X= − is the tracking error vector. The 
SMC law is defined as 

 
( )2 1 1 1 1( ( )) ( ) ( ) ( ) ( ) .d du inv B X F X x C x x Dsat S S C sat S= − + + − + + +�� � � (3) 

 
where ( ( ))inv B X  represents the inverse of the matrix ( )B X , 

( )sat s  is a saturation function, which is defined as follows: 

 
1 / 1;

( ) / 1 / 1;
1 / 1.

s
sat s s s

s

δ
δ δ

δ
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(4) 

 
where 0δ >  is the layer thickness, /s δ κ<  is assumed. 

Consider a Lyapunov function as 

 

1 1 1
1 1( ( ) ) ( ( ) ) .
2 2

T TV S sat S S sat S S Sδ δ= − − =
        

                 (5) 

 
Differentiating (5) with respect to time, we have 

 
1 1 1 1 1 1 2 2

1 1
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 (6) 

 
In the case of / 1S δ > , 1 1( )S sat S S= , then 1 0V <� ; in the 

case of / 1S δ ≤ , 1 0S = , 1 0V =� . It can be shown that the 

error E δ<  as t → ∞  for any initial error. Thus, the SMC 
law (3) can guarantee the stability of the system (1). 

4. SDRCMAC CONTROLLER 

In the SDRCMAC control system, there are two learning 
stage, the coarse-tuning learning stage and the fine-tuning 
learning stage. 

4.1  SDRCMAC Architecture 

The architecture of the SDRCMAC is shown in Fig. 1, in 
which T  denotes the delay time. The network is composed 
of input space, association memory space with recurrent units, 
receptive field space, weight memory space and output space. 
The input of the SDRCMAC is the signed sliding mode 
vector S  through (2). Firstly, nS R∈  is normalized, the input 
space is quantized into discrete regions (called elements), and 
the number of elements is Ne . Next, S  is mapped into the 
association memory space through receptive basis functions, 
where the space consists of n Na×  blocks, a complete block 
is formed by Nr  elements, Na  is the number of blocks 
relative to each input. Thirdly, the association memory matrix 

n NaA R ×∈  is mapped into the receptive field space through 
multidimensional receptive field functions. Lastly, the 
receptive field vector NrRs R∈  is projected onto weight 
matrix m NrW R ×∈  to computer the output mY R∈ . The 
SDRCMAC consists of two primary functions that are 
performed in the association memory space and the receptive 
field space, respectively. 

 

Fig. 1. Architecture of a SDRCMAC 

1) Receptive basis function: The Gaussian function is 
adopted here, which can be represented as 

 
2

2

( )
exp , 1, , ; 1, , ; 3 .rij ijh

ij
ij

s
i n h Nr j p h

λ
α

σ
⎛ ⎞−

= − = = = +⎜ ⎟⎜ ⎟
⎝ ⎠

… …       (7) 

 
where h

ijα  represents the j th block of the i th input is  with 
the mean ijλ  and variance ijσ in the h th layer, and 

0, , Ne h
Nrp ceil −= ⎡ ⎤⎣ ⎦… . The mean and variance can be expressed 

in the vector form n NaR ×Λ ∈ and n NaR ×Σ ∈ . The input rijs  in 
time step k  is represented as 

 
( ) ( ) ( ).h

rij i rij ijs k s k w k Tα= + −                                               (8) 
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where rijw  is the recurrent weight, ( )h h
ij ijTk Tα α− �  denotes 

the value of ( )h
ij kα  through time delay T . The recurrent 

weight matrix can be expressed as n NaWr R ×∈ . Fig. 2 depicts 
the schematic diagram of a 2-dimension SDRCMAC. 

2) Multidimensional receptive field function: Receptive fields 
are formed by blocks, named as 1 2b b  and 1 2d d  in Fig. 2. The 
multidimensional receptive field function is defined as 

 
3

11

, 0,1, , , 1,2, , .
p hn

h
h ij

ji

Ne hr p ceil h Nr
Nr

α
+

==

−⎡ ⎤= = =⎢ ⎥⎣ ⎦
∑∏ … …

      
(9) 

 
In this SDRCMAC scheme, no receptive field is formed by 
the combination of blocks in different layers, such as 1b  and 

2d . Thus, the number of receptive fields is Nr . This kind of 
composition reduces the memory requirement, and makes 
nearby inputs can produce similar outputs, which provide 
local generation to SDRCMAC. 

The output of the SDRCMAC is expressed as
 

Y W Rs= i , 
where the l th element in Y  is 

1

Nr
l lh hh

y w r
=

=∑ . In the two-
dimension case (Fig. 2), the output is the sum of receptive 
fields 1 2b b , 1 2d d  and 1 2e f  when the input is (0.17,0.67) . 

 

Fig. 2. Two-dimension SDRCMAC with 3Nr =  and 4Ne = . 

4.2  Coarse-tuning Stage 

The purpose of this stage is to enable the output behaviour of 
the SDRCMAC to approximate the control surface of the 
SMC controller. The control system is shown in Fig. 3(a). 
The control law ( )u t  is the sum of the SDRCMAC output 

( )Cu t  and the SMC output ( )Su t . ( )u t  is used as the target 
output, the error function is defined as 

 

( ) ( ) 2
1

1

1 1( ) ( ) ( ) ( ) ( ) ( ) .
2 2

m
T

C C Sl
l

E k u k u k u k u k u k
=

= − − = ∑
     

(10) 

 

Initially, the SDRCMAC weight matrixes are set as zero 
matrixes. And then, according to the gradient descent method, 
these weight matrixes are updated at each time step by the 
following learning rules 
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where 1wη , 1λη , 1ση , and 1rη  are positive constants, the 
subscript h  can be derived from the subscript j , and 
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                         (12) 

 
The gradient descent method can guarantee the convergence 
of the parameters ijλ , ijσ , and rijw , and the output of the 
receptive field basis functions are limited in [0,1] . Therefore, 
the stability of the control system will not be destroyed due to 
the adaptive learning rules shown in (11). 

4.3  Fine-tuning Stage 

The objective of this stage is to improve the system stability. 
The control system is shown in Fig. 3(b). Learning rules are 
derived from the gradient of SS�  with respect to parameters in 
the SDRCMAC. 
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                  (13) 

 
where 2wη , 2λη , 2ση  and 2rη  are positive constants. The 
adaptive rules (13) can be expressed in vector form as 
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where ( )tr i  is defined as 2

1
( )

n
T

i
i

tr S S s
=

=∑ , { }h h ij n Nar r λΛ ×= ∂ ∂ , 

{ }h h ij n Nar r σΣ ×= ∂ ∂ , and { }hWr h rij n Nar r w ×= ∂ ∂ . The parame-
ters update equations are given by 

 
( 1) ( )

( 1) ( )
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                                         (15) 

 
where coarse tuningW − , coarse tuning−Λ , coarse tuning−Σ , and coarse tuningWr −   
are the final SDRCMAC parameters at the coarse-tuning 
stage;  the behaviour of the sliding mode controller is implicit 
in these parameters. Since the learning error will not 
accumulated in the fine-tuning stage, the instability caused by 
the continued learning after the tracking error has been 
reduced can be solved by (15). 

4.4  Stability Analysis 

Lyapunov analysis is employed to investigate the stability of 
the SDRCMAC control system. In the coarse-tuning stage, 
the SMC law (3) can guarantee the stability of the control 
system according to the stability analysis in Section 3. In the 
following, the stability of the control system in the fine-
tuning stage will be proved. 

For the stability analysis, we assume the optimal parameter 
matrixes W , Λ , Σ , and Wr  of the SDRCMAC exists, 
which makes the SDRCMAC output to approximate the SMC 
law (3) with an error smaller than ξ , ξ  is a positive number. 

 
( )max ( , , , , ) .Su S W Wr u ξΛ Σ − <                                       (16) 

 
where ( , , , , )u S W Wr WRsΛ Σ � , Then, Su WRs= + Ξ , where 

mRΞ∈ . The SDRCMAC output can be written as 
ˆ ˆ ˆ ˆ ˆˆ( , , , , )u S W Wr WRsΛ Σ � . According to (1), (3) and (16), the 

following equation can be derived 
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2
1 ˆ ˆ( ) ( ) ( ) .
2
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= − + + + −

= − + + + + Ξ −

= − + + + + +

�

� � � �

(17) 

 

where ˆW W W= −�  and ˆRs Rs Rs= −� . Taylor linearization 
technique is employed to transform the nonlinear function 
into a partially linear form 

 

( ) ( ) ( )
ˆ ˆ ˆ

ˆˆ

ˆ

.

r Wr Wr

T T T
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Λ Σ
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�

� � �

� �� (18) 

 
where ˆΛ = Λ − Λ� , ˆΣ = Σ − Σ� , ˆWr Wr Wr= −� , H is a high-
order term, and , , Nr

WrR R R RΛ Σ ∈ . 

Choose the Lyapunov function as 
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Differentiating (19) with respect to time and using (15), (17) 
and (18) yields 
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where the approximation error term ŴH WRsΔ = + + Ξ� �  is 
assumed to be bounded by 1 1B C CκΔ ≤ < . Then, (20) 
becomes 

 
2 1 ( ) ( ) ( )T TV S C sat S S B S Dsat S S d t≤ − + Δ − +�             (21) 

 
In the case of / 1S δ > , ( ) ( )2 1 ( ) 0V S C B S D d t≤ − − Δ − − <� ; 

in the case of / 1S δ < , ( ) ( )2 1 ( ) 0V S C B S D d tκ κ≤ − − Δ − − ≤� . 

Since 2V�  is negative semidefinite that is 2 2 (0)V V≤ , it implies 
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that variables S , W� , Λ� , Σ� , and Wr�  in 2V  are bounded. Let 
function 

  
( ) ( )

( )
1
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2
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( )

.

L S C B S D d t

S C B D d t

V

κ κ

κ κ

≡ − Δ + −

≤ − Δ + −
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                                     (22) 

 
and integrate L  with respect to time, it can be shown that  

2 20
(0)

t
Ld V Vτ ≤ −∫ . Because 2 (0)V  is bounded and 2V  is non-

increasing and bounded, the following result can be shown 

0
lim

t

t
Ldτ

→∞
< ∞∫ . In addition, since L�  is bounded by Barbalat’s 

lemma, it can be shown that lim 0
t

L
→∞

= . That is, 0S →  as 

t → ∞ . As a result, the control system is asymptotically 
stable. 

 

Fig. 3. SDRCMAC control system 

5.  SIMULATION RESULTS 

In this section, the proposed SDRCMAC is applied to control 
two control problems. The control objective is to let the 
system state X  track the reference trajectory dX . The 
SDRCMAC used in these systems is characterized as follows: 

4Ne = ; 3Nr = ; 6Na = . The receptive fields are selected to 
cover the input space {[ 1,1],[ 1,1]}− −  along each input dimen-
sion. Therefore, the initial values of the parameters for the 
receptive field basis functions in the coarse-tuning stage are 
[ ] [ ]1 2 3 4 5 6, , , , , 1.25, 0.75, 0.25,0.25,0.75,1.25i i i i i iλ λ λ λ λ λ = − − − , and 

0.75ijσ = . The weight W and Wr  in coarse-tuning stage are 
initialized from zero matrixes, and the initial parameters in 
the fine-tuning stage are chosen as the final parameters in the 
coarse-tuning stage. 

5.1  A Two-link Robotic Arm 

 The dynamic equations for a two-link robotic arm are from 
(Sun & Wang, 2006). The initial state are [ ]0 0 0 degTθ = , 

[ ]0 0 0 deg/secTθ =� , and the reference trajectories are set as 

[ ]( ) 30 10sin 60 30sin degT
d t t tθ = + + . In order to study the 

robustness of the proposed controller, assume the robotic arm 
has external disturbance 2{exp( 0.1 )}d t Rτ = − ∈ . The control 
parameters are chosen as 0.3δ = , 1 (10,10)C diag= , 0.3κ = , 

5D= , 0.6wiη = , 0.1i i riλ ση η η= = = , where 1,2i = . These 
parameters are chosen through trial and error to achieve 
satisfactory performance. For comparison, the fuzzy CMAC 
(FCMAC) (Sun & Wang, 2006), the SMC and the 
SDRCMAC are used in the simulation. Fig. 4(a) and (b) 
show the angle tracking responses of these three methods. 
The results of the SDRCMAC and the SMC scheme are all 
satisfactory, and slightly better than that of the FCMAC. Fig. 
4(c) and (d) show the angle velocity tracking responses of the 
SMC and the SDRCMAC to more compare these two 
methods. These figures illustrate that the SDRCMAC 
controller can more smoothly track the reference trajectory. 
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Fig. 4. Trajectory tracking response of the robotic arm 

5.2  A Model of the Human Arm 

The model of the two-link six-muscle human arm in the 
sagittal plane is rather complex, we lack the space to describe 
it in detail, see (Liu, Wang & Zhu, 2007). The initial state are 

[ ]0 0 0 degTθ = , [ ]0 0 0 deg/secTθ =� , and the reference trajectories 

are set as [ ]( ) 60sin 60 60cos degT
d t t tθ = − . In order to study 

the robustness of the proposed controller, assume some pulse 
signals as external disturbance are added into the human arm, 
the pulse amplitude is 1 , period is 3.5s , and the width is 
15% of the period. The control parameters are chosen as 

0.35δ = , 1 (10,10)C diag= , 0.2κ = , 7D = , 
0.33wi i i riλ ση η η η= = = = , where 1,2i = . These parameters 

are chosen through trial and error to achieve satisfactory 
performance. For comparison, the EDRNN proposed in (Liu, 
et al., 2007) and the SDRCMAC are used in the simulation. 
The angle tracking results are shown in Fig. 5(a) and (b). 
These figures illustrate that the two methods can all 
implement the trajectory tracking control of the human arm 
in the sagittal plane. Fig. 5(c) and (d) show that the angle 

17th IFAC World Congress (IFAC'08)
Seoul, Korea, July 6-11, 2008

5990



 
 

 

velocity tracking responses of the EDRNN and the 
SDRCMAC. The results illuminate that the robustness of the 
proposed SDRCMAC is better than the EDRNN scheme 
when the disturbances exist in the human arm. And the 
training time of the SDRCMAC is extremely less than the 
EDRNN. 
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Fig. 5. Trajectory tracking responses of the human arm 

6. CONCLUSIONS 

In this paper, a SDRCMAC with two learning stages has 
been proposed to control MIMO uncertain nonlinear systems. 
Through the coarse-tuning stage, the output behaviour of the 
SDRCMAC can approximate the control surface of the SMC 
controller. At the fine-tuning stage, the adaptive laws are 
derived from the stable convergence feature of the SMC. 
According to Lyapunov stability theorem and Barbalat’s 
lemma, the asymptotical stability of the SDRCMAC is 
guaranteed. Finally, the SDRCMAC is applied to implement 
trajectory tracking control of a two-link robotic arm and the 
human arm in the sagittal plane. The simulation results 
demonstrate that the smoothness of the SDRCMAC is better 
than the SMC; compared with the EDRNN, the robustness is 
better and the consumed time is less. 
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