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Abstract: The globally exponentially stable conditions for delayed parabolic neural networks
with variable coefficients are considered in this paper. We first derive the globally exponentially
stable condition for delayed parabolic neural networks with variable coefficients based on delay
differential inequality combining with Young inequality. Compared with the method of Lyapunov
functionals as in most previous studies, our method is simpler and more effective for stability
analysis.

1. INTRODUCTION

Neural networks have many applications in pattern recog-
nition, image processing, association, etc. Some of these
applications require that the equilibrium points of the de-
signed network be stable (Zhang et al., 2005). Therefore, it
is vital to study the stability of neural networks. In biolog-
ical and artificial neural networks, time delays often arise
in the processing of information storage and transmission.
In recent years, the stability of delayed neural networks
(DNN) have been investigated by many researchers (Joy
M. 1999; Liao and Wang 1999; Arik 2000; Cao 2001; Cao
and Wang 2003; Cui and Lou 2006; Lou and Cui 2006).

On the other hand, parabolic (and hyperbolic) evolution
equations describe processes that are evolving in time. For
such an equation the initial state of the system is part
of the auxiliary data for a well-posed problem. We also
notice that parabolic equations play a special role in the
mathematical modelling of polymerization-type chemical
reaction phenomena (coagulation and fragmentation of
clusters), in atmosphere physics, biology, and immunology.
Recently, the existence, stability and oscillation of such
systems have been widely studied (Brzychczy 2002; Leiva
and Sequera 2003; Li and Cui 2001; Minchev and Yoshida
2003; Wang and Teo 2005).

Furthermore, real neural networks are more likely to be
time-varying evolving networks, namely, the topology is
changing with the time. In this paper, we further extend
the parabolic models to describe the varying topology
neural networks. Using the Green’s formula and boundary
condition, we can easily deal with the parabolic terms.
To the best of our knowledge, this is the first time to
introduce and study delayed parabolic neural networks
with variable coefficients. The main purposes of this paper
are firstly to present the model of delayed parabolic neural
networks with variable coefficients; and secondly to discuss
the stability of delayed parabolic neural networks by
using delay differential inequality combining with Young
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inequality. One criterion is given to guarantee the global
exponential stability for delayed parabolic neural networks
with variable coefficients.

2. SYSTEM DESCRIPTION AND PRELIMINARY

In this paper, we obtain some conditions for delayed
parabolic neural networks with variable coefficients of the
form

∂ui(x, t)

∂t
= ai(t)∆ui(x, t) +

s∑

k=1

bik(t)∆ui(x, t − ρk(t))

−ci(t)ui(x, t) +

n∑

j=1

wij(t)fj(uj(x, t))

+
n∑

j=1

hij(t)fj(uj(x, t − τj(t))) + Ii,

(x, t) ∈ Ω × [0,∞), (1)

for i = 1, 2, · · · , n, where Ω is a bounded domain in
Rn with a piecewise smooth boundary ∂Ω, ∆ is the

Laplacian in Rn and ∆u(x, t) =
n∑

r=1

∂2u(x,t)
∂x2

r
. ui(t, x) is

the state of the ith unit at time t. fi(·) denote the signal
functions of the ith neurons at time t and in space x.
ci(t) > 0 represents the rate with which the ith neuron
will reset its potential to the resting state in isolation
when disconnected from the network and external inputs
at time t. wij(t), hij(t) stand for the weights of neuron
interconnections. Ii denote the external inputs on the
ith neurons. τj(t) are time-varying delays of the neural
network satisfying 0 ≤ τj(t) ≤ σ (σ is a constant).

We assume throughout this paper that

(H1) ai(t), bik(t) ∈ C([0,∞); [0,∞)), k = 1, 2, · · · , s;

(H2) ρk(t) ∈ C([0,∞); [0,∞)), lim
t→∞

(t − ρk(t)) = ∞, k =

1, 2, · · · , s;

(H3) The neurons activation functions fi(·) (i = 1, 2, . . . , n)
are bounded and Lipchitz-continuous, that is, there exist
constants Li > 0 such that
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|fi(ξ1) − fi(ξ2)| ≤ Li|ξ1 − ξ2|

for all ξ1, ξ2 ∈ R.

Consider the following boundary condition:

∂u(x, t)

∂N
= 0, (x, t) ∈ ∂Ω × [0,∞), (2)

where N is the unit exterior normal vector to ∂Ω.

Suppose that the system (1) is supplemented with initial
conditions of the form

ui(s, x) = φi(s, x), s ∈ [−σ, 0], i = 1, 2, · · · , n, (3)

where φi(s, x) (i = 1, 2, · · · , n) are continuous on [−σ, 0]×
Ω and system (1) has an equilibrium point u∗ =
(u∗

1, u
∗
2, · · · , u

∗
n)T . We denote

‖φ − u∗‖ = sup
−σ≤s≤0

[
n∑

j=1

∫

Ω

|φj(s, x) − u∗|pdx

]1/p

.

We say that an equilibrium point u∗ = (u∗
1, u

∗
2, · · · , u

∗
n)T is

globally exponentially stable if there exist constants ε > 0
and M ≥ 1 such that

‖u(t) − u∗‖ ≤ M‖φ − u∗‖e−εt. (4)

We will use D+ to denote the Dini derivative. For any
continuous function V : R → R, the Dini derivative of
V (t) is defined as

D+V (t) = lim
h→0+

sup
V (t + h) − V (t)

h
. (5)

In order to simplify the proofs and compare our results,
we present some lemmas as follows.

Lemma 1 (Young inequality (Hardy et al., 1952)). As-
sume that a > 0, b > 0, p > 1, 1

p + 1
q = 1, then the

following inequality:

ab ≤
1

p
ap +

1

q
bq (6)

holds.

Lemma 2 (Halanay inequality (Gopalsamy 1992)). Let
α and β be constants with 0 < β < α. Let x(t) be a
continuous nonnegative function on t ≥ t0 − τ satisfying
inequality (6) for t ≥ t0

ẋ(t) ≤ −αx(t) + βx̃(t), (7)

where x̃(t) = sup
t−τ≤s≤t

{x(s)}. Then

x(t) ≤ x̃(t0)e
−r(t−t0), (8)

where r is a bound on the exponential convergence rate
and is the unique positive solution of

r = α − βerτ .

3. MAIN RESULTS

Theorem 1. Suppose (H1)-(H3) hold. If there exist real
constants ζij , ηij and positive constants λi > 0, p ≥ 1,
i = 1, 2, · · · , n such that

min
1≤i≤n

{
pci(t) −

n∑

j=1

(λj

λi
Li|wji(t)|

p(1−ζji)

+(p − 1)Lj |wij(t)|
pζij

p−1 + (p − 1)Lj |hij(t)|
pηij

p−1

)}

> max
1≤i≤n

{
n∑

j=1

λj

λi
Li

1

p
|hji(t)|

p(1−ηji)

}
, (9)

then the equilibrium point u∗ of system (1) is globally
exponentially stable.
Proof. Integrating (1) with respect to x over the domain
Ω, we have

∂

∂t

[ ∫

Ω

ui(x, t)dx
]

= ai(t)

∫

Ω

∆ui(x, t)dx +
s∑

k=1

bik(t)

∫

Ω

∆ui(x, t − ρk(t))dx

−ci(t)

∫

Ω

ui(x, t)dx +
n∑

j=1

wij(t)

∫

Ω

fj(uj(x, t))dx

+
n∑

j=1

hij(t)

∫

Ω

fj(uj(x, t − τj(t)))dx + Ii, (10)

From Green’s formula and boundary condition (2), it
follows that∫

Ω

∆ui(x, t)dx =

∫

∂Ω

∂ui(x, t)

∂N
dS = 0, t ≥ 0 (11)

and
∫

Ω

∆ui(x, t − ρk(t))dx =

∫

∂Ω

∂ui(x, t − ρk(t))

∂N
dS = 0,

t ≥ 0, k = 1, 2, · · · , s, (12)

where dS is the surface element on ∂Ω.
Combining (10)-(12), we have

∂

∂t

[ ∫

Ω

ui(x, t)dx
]

=−ci(t)

∫

Ω

ui(x, t)dx +
n∑

j=1

wij(t)

∫

Ω

fj(uj(x, t))dx

+
n∑

j=1

hij(t)

∫

Ω

fj(uj(x, t − τj(t)))dx + Ii. (13)

Let vi(t) =
∫
Ω
(ui(x, t) − u∗

i )dx, it follows from (13) that

dvi(t)

dt
=−ci(t)vi(t) +

n∑

j=1

wij(t)gj(vj(t))

+
n∑

j=1

hij(t)gj(vj(t − τj(t))). (14)

Now we define a function

V (t) =
n∑

i=1

λi|vi(t)|
p. (15)
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Calculating and estimating the upper right derivative
D+V of V along the solution of (14) as follows:

D+V (t) =
n∑

i=1

λip|vi(t)|
p−1sign(vi(t))v̇i(t)

=
n∑

i=1

λip|vi(t)|
p−1sign(vi(t))

[
− ci(t)vi(t)

+
n∑

j=1

wij(t)gj(vj(t))

+
n∑

j=1

hij(t)gj(vj(t − τj(t)))
]

≤
n∑

i=1

λip

[
− ci(t)|vi(t)|

p

+
n∑

j=1

|wij(t)|Lj |vi(t)|
p−1|vj(t)|

+
n∑

j=1

|hij(t)|Lj |vi(t)|
p−1|vj(t − τj(t))|

]

=
n∑

i=1

λip

[
− ci(t)|vi(t)|

p

+

n∑

j=1

Lj

(
|wij(t)|

1−ζij |vj(t)|
)

×
(
|wij(t)|

ζij

p−1 |vi(t)|
)p−1

+
n∑

j=1

Lj

(
|hij(t)|

1−ηij |vj(t − τj(t))|
)

×
(
|hij(t)|

ηij

p−1 |vi(t)|
)p−1

]
. (16)

Let a = |wij(t)|
1−ζij |vj(t)|, b =

(
|wij(t)|

ζij

p−1 |vi(t)|
)p−1

, by

Lemma 1, we have

(
|wij(t)|

1−ζij |vj(t)|
)(

|wij(t)|
ζij

p−1 |vi(t)|
)p−1

≤
1

p
|wij(t)|

p(1−ζij)|vj(t)|
p

+
p − 1

p
|wij(t)|

pζij

p−1 |vi(t)|
p. (17)

Similarly, let a = |hij(t)|
1−ηij |vj(t − τj(t))|,

b =
(
|hij(t)|

ηij

p−1 |vi(t)|
)p−1

, by Lemma 1, we get

(
|hij(t)|

1−ηij |vj(t − τj(t))|
)(

|hij(t)|
ηij

p−1 |vi(t)|
)p−1

≤
1

p
|hij(t)|

p(1−ηij)|vj(t − τj(t))|
p

+
p − 1

p
|hij(t)|

pηij

p−1 |vi(t)|
p. (18)

Substituting (17) and (18) into (16), we obtain

D+V (t)≤
n∑

i=1

λip

[
− ci(t)|vi(t)|

p

+
n∑

j=1

Lj
1

p
|wij(t)|

p(1−ζij)|vj(t)|
p

+
n∑

j=1

Lj
p − 1

p
|wij(t)|

pζij

p−1 |vi(t)|
p

+
n∑

j=1

Lj
p − 1

p
|hij(t)|

pηij

p−1 |vi(t)|
p

+
n∑

j=1

Lj
1

p
|hij(t)|

p(1−ηij)|vj(t − τj(t))|
p

]

=
n∑

i=1

λi

[
− pci(t) +

n∑

j=1

λj

λi
Li|wji(t)|

p(1−ζji)

+
n∑

j=1

(p − 1)Lj |wij(t)|
pζij

p−1

+
n∑

j=1

(p − 1)Lj |hij(t)|
pηij

p−1

]
|vi(t)|

p

+
n∑

i=1

λi

[
n∑

j=1

λj

λi
Li

1

p
|hji(t)|

p(1−ηji)

]

×|vi(t − τi(t))|
p

≤− min
1≤i≤n

{
pci(t) −

n∑

j=1

(λj

λi
Li|wji(t)|

p(1−ζji)

+(p − 1)Lj |wij(t)|
pζij

p−1

+(p − 1)Lj |hij(t)|
pηij

p−1

)}
V (t)

+ max
1≤i≤n

{
n∑

j=1

λj

λi
Li

1

p
|hji(t)|

p(1−ηji)

}
Ṽ (t).

(19)

Applying Lemma 2, then it follows (9) and (15) that

λmin

∫

Ω

|u(x, t) − u∗|pdx ≤ V (t) ≤ Ṽ (t0)e
−ε(t−t0). (20)

So, we have
∫

Ω

|u(x, t) − u∗|pdx ≤
λ

1/p
max

λ
1/p
min

e−
r
p

t‖φ(x, t) − u∗‖p. (21)

Therefore, the proof is completed.

Corollary 1. Suppose (H1)-(H3) hold. If there exist con-
stants λi > 0 such that

min
1≤i≤n

{
ci(t) −

n∑

j=1

(λj

λi
Li|wji(t)|

)}

> max
1≤i≤n

{
n∑

j=1

λj

λi
Li|hji(t)|

}
, (22)
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then the equilibrium point u∗ of system (1) is globally
exponentially stable.
Proof. Taking p = 1, ζij = ηij = 0 in theorem 1 above,
then we can easily obtain Corollary 1.

Corollary 2. Suppose (H1)-(H3) hold. If there exist con-
stants λi > 0 such that

min
1≤i≤n

{
2ci(t) −

n∑

j=1

(λj

λi
Li|wji(t)|

+Lj(|wij(t)| + |hij(t)|)
)}

> max
1≤i≤n

{
n∑

j=1

λj

λi
Li

1

p
|hji(t)|

p(1−ηji)

}
, (23)

then the equilibrium point u∗ of system (1) is globally
exponentially stable.
Proof. It is easy to check that the inequality (8) is satisfied
by taking p = 2, ζij = ηij = 0.5 and hence the theorem 1
implies Corollary 2.

Remark 1. If the parameters λi, p, ζij , ηij are properly
chosen, we can easily obtain a series of corollaries.

Remark 2. In many papers, the delay function τj(t) is
needed to be differentiable, for example (Joy M. 1999; Cao
and Wang 2003;). However, the restriction is neglected.
Moreover, we introduce the parabolic models to describe
the delayed neural networks. Thus, the conditions given in
this paper are less restrictive, general and conservative.

4. NUMERICAL EXAMPLES

In this section, we will give two numerical examples to
show the validity of our results.

Example 1. Consider a delayed parabolic neural network
with variable coefficients

∂ui(x, t)

∂t
= ai(t)∆ui(x, t) +

s∑

k=1

bik(t)∆ui(x, t − ρk(t))

−ci(t)ui(x, t) +
n∑

j=1

wij(t)fj(uj(x, t))

+
n∑

j=1

hij(t)fj(uj(x, t − τj(t))) + Ii,

(x, t) ∈ (0, π) × [0,∞), (24)

with boundary condition

∂ui(0, t)

∂x
=

∂ui(π, t)

∂x
= 0, t ≥ 0, i = 1, 2.

The system parameters are chosen as follows:

a1(t) = a2(t) = 1,
bik(t) = et (i = 1, 2; k = 1, 2),
ρ1(t) = π

2 , ρ2(t) = 3π
2 ,

c1(t) = c2(t) = 1, I1 = 1, I2 = 2,

W = (wij)n×n =

[
0.1 −0.1
0.1 0.1

]
,

0 5 10 15 20
−3

−2

−1

0

1

2

3

time(s)

s
ta

te
s

x
1
(t)

x
2
(t)

Fig.1. Numeric simulation for the exponential stability of the

system (26)

H = (hij)n×n =

[
0.4 −0.1
0.1 0.4

]
.

The activation function is PWL: fi(y) = 1
2 (|y+1|−|y−1|).

Clearly, fi satisfies the assumption (H3) with L1 = L2 = 1.
Furthermore, let λ1 = λ2 = 1, then one can easily check
that

min
1≤i≤n

{
ci(t) −

n∑

j=1

(λj

λi
Li|wji(t)|

)}
= 0.8

> max
1≤i≤n

{
n∑

j=1

λj

λi
Li|hji(t)|

}
= 0.5. (25)

Therefore, by Corollary 1, the equilibrium point of (24)
is globally exponentially stable. By a simple computation,

we can easily seen that the matrix C + CT =

[
2 0
0 2

]
is

not negative semidefinite. Thus the condition in (Li et al.,
2003) does not hold. For this example, our result is less
restrictive than that given in (Li et al., 2003).

Example 2. If we do not consider the parabolic term, the
system (24) reduce to a normal delayed neural network as
follows

dui(t)

dt
=−ci(t)ui(t) +

n∑

j=1

wij(t)fj(uj(t))

+
n∑

j=1

hij(t)fj(uj(t − τj(t))) + Ii, (26)

We choose the same parameters as (24) and let τ(t) = 0.5.
Then, by Corollary 1, the system (26) is exponentially
stable. Fig. 1 indicates that [x1(t), x2(t)]

T converge to
[1.3000, 2.7000]T with the initial values [−1.0,−3.0]T.

5. CONCLUSIONS

The global exponential stability of parabolic neural net-
works with variable coefficients and time-varying delays
has been studied. Some stability criteria, which are in-
dependent of the delay parameter, have been derived by
employing delay differential inequality and Young inequal-
ity. The conditions given in this paper are less restrictive,
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general and conservative. Moreover, the approaches pre-
sented in this paper can be applied to some other neural
networks, such as neural networks with reaction-diffusion
terms, robust neural networks, and Cohen-Grossberg neu-
ral networks.
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